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Abstract of the same object or not. If an image is represented by a

set of patches found by interest point operators, one partic
We present a new method for classification with struc- ular way to solve this problem is to first find the correspon-
tured latent variables. Our model is formulated using the dence between patches in the two images, then learn a bi-
max-margin formalism in the discriminative learning liter  nary classifier based on the result of the correspondence [2]
ature. We propose an efficient learning algorithm based on Of course, the correspondence information is “latent” — not
the cutting plane method and decomposed dual optimiza-available in the training data, and “structured” — assuming
tion. We apply our model to the problem of recognizing one patch in one image matches to one or zero patches in
human actions from video sequences, where we model a huthe other image, this creates a combinatorial structurg [29

man action as a global root template and a constellation  one simplified approach to solve the above-mentioned
of several “parts”. We show that our model outperforms problems is to ignore the latent structures, and treat them
another similar method that uses hidden conditional ran- as standard classification prob|em5’ e.g., D&|a|r|ggs [8]

dom fields, and is comparable to other state-of-the-art ap- jn the case of pedestrian detection. However, there is ev-
proaches. More importantly, our proposed work is quite jdence [11, 24, 30, 32] showing that incorporating latent

general and can potentially be applied in a wide variety of structures into the system can improve the performance.
vision problems that involve various complex, interdepen-

In this paper, we propose a max-margin learning frame-
dent latent structures. pap prop 9 9

work for training classifiers with structured latent vari-
ables. We introduce an efficient learning algorithm based
ducti on the cutting plane method and decomposed dual opti-
1. Introduction mization. We apply our proposed model to recognize hu-
Many problems in computer vision can be formulated Man actions from video sequences, where we model a
asclassification with structured latent variable€onsider ~ Person by a root template and a constellation of several
the following three vision tasks. (Bedestrian detection ~ “Parts”. Our model is closely related to a recent work [32]
it can be formulated as a binary classification problem that ©n part-based human action recognition using hidden con-
classifies an image patahto be +1 (pedestrian) or -1(non-  ditional random fields (HCRF) [24]. The main differ-
pedestrian). The locations of the body parts can be consid-€nce between our approach and the approach in [32] is
ered as latent variables in this case, since most of the exthat our approach uses a max-margin criterion for train-
isting training datasets for pedestrian detection do not pr ing. We call our approach thilax-Margin Hidden Con-
vide this information. These latent variables are afsac-  ditional Random Field (MMHCRF)We show experimen-
tured — e.g., the location of the torso imposes certain con- tally that the MMHCRF achieves better performance than
straints on the possible locations of other parts. Previousthe HCRF. More importantly, the max-margin learning al-
approaches [11, 30] usually use a tree-structured model tdows us to deal with more complex latent structures (e.g.,
model these constraints. (@bject recognitionthis prob-  Matching/correspondence mentioned before).
lem is to assign a class label to an image that contains the This paper represents our first step towards solving the
object of interest. If we consider the figure/ground labglin  general problem of classification with structured latent-va
of pixels of the image as latent variables, object recogniti  ables using the max-margin framework. Here we only con-
is also a problem of classification with latent variablese Th  sider latent structures that form a tree-structured meadel,
latent variables are also structured, typically represe bty we restrict ourselves to the application domain of human ac-
a grid-structured graph. (®)bject identificationgiven two tion recognition. But the proposed framework is quite gen-
images, the task is to decide whether these are two image®ral and can be applied in other domains that involve highly



complex latent structures. potential functions and parametrization of our model are
also significantly different from those used in LSVMs. In

2. Previous Work our model, a hidden variable corresponds to a “part label”,
) » while in LSVMs, a hidden variable corresponds to the

The problem of action recognition has been approachEdIocation of a part. The parts in our model can have a variety

in many ways in the literature. A lot of approaches use ¢ .,nstraints, while in the model used in LSVMs, the parts
interest-points and bag-of-words representations [22F, .y have constraints with respect to a root filter.
There are also methods based on global templates [10]. In-

spired by part-based models for object recognition (eLd,,[ 3. Model
12]), recent work has applied similar part-based models for =* oae
actions [14, 21, 32]. Our approach uses motion features based on optical

Our work is closely related to the hidden conditional flows (Sec. 3.1). A frame in a video is represented by a
random field (HCRF) model [24]. The HCRF was origi- global motion feature extracted from the whole frame and
nally proposed for object recognition. The basic idea is to a set of salient local patches. Our model consists of a root
model an object as a constellation of “parts” conditioned filter and a constellation of several hidden parts. The root
on local observations found by an interest point operator. filter models the compatibility of the action label and the
For each object class, the probability of assigning part la- global motion feature of the whole frame. A hidden part as-
bels to local features is modeled by a conditional random signs a latent “part label” to a local patch. Intuitivelypte
field (CRF) [16]. The parameters of a HCRF model are “part labels” correspond to local motion patterns that are
learned by maximizing the conditional likelihood of the useful for discriminating different actions. Figure 1 stow
training data. HCRFs have also been applied to part-basedome sample frames and the learned hidden part labels. The
human action recognition [32]. The limitation of HCRFs constraints among the patches are captured by pairwise po-
is that the training involves summing over all the possi- tential functions defined in the model (Sec. 3.2).
ble labelings of the latent variables. If the latent varésbl
form certain graph structures (e.g. trees, graphs of loartre  3.1. Motion Feature
width), this summation can be done analytically. For la-
tent structures of general graph topology, HCRFs have to
resort to various approximations (e.g. loopy belief prop-
agation, mean-field variational methods, etc.) for train-
ing. For even more complicated structures (e.g. match-
ing/correspondence), it is not even clear how to approxi-
mate the computation. Compared with HCRFs, our model
can handle a much wider range of latent structures. This is
in analog to the advantage of the max-margin Markov net-
work (M3N) [28, 29] over the CRF in the structured-output
learning literature.

Another closely related work is the latent
SVM (LSVM) [11]. The LSVM is proposed for ob-
ject detection (binary classification). It models an object
as a global coarse template covering an entire object an
several higher resolution part templates. The positions
of the root template and the parts are latent in LSVMs.
LSVMs learn the model parameters using a max-margin
discriminative training method. Our work is different

Similar to [32], we use the optical flow feature in Efros et
al. [10]. This motion descriptor has been shown to perform
reliably with noisy image sequences, and has been applied
in various tasks, such as action classification, motion syn-
thesis, etc.

To calculate the motion descriptor, we first need to track
and stabilize people in a video sequence. Any tracking or
human detection algorithm can be used, since the motion
descriptor is very robust to jitters introduced by the tiagk
Given a stabilized video sequence in which the person of in-
terest appears in the center of the field of view, we compute
the optical flow of each frame using the Lucas-Kanade [20]
algorithm. The optical flow vector field is then split into
Jwo scalar fields¥,, and F,, corresponding to the andy
components oft’. F, and F), are further half-wave rec-
tified into four non-negative channelsf, F,, F,\, F,,
so thatF, = F,f — F, andF, = F, — F, . These
four non-negative channels are then blurred with a Gaus-
from LSVMs in several directions. First of all, our model sian kernel and normalized to obtain the final four channels

directly handles multi-class classification. Unfortutgte Fb; Fb, ’Fb;’Fby'

unlike LSVMs, the resultant optimization problem is not .

in a standard form that can be solved by off-the-shelf 3.2. Hidden Part Model

SVM solvers (e.g., SVMLight). We propose an efficient Let I be a frame in a video sequence. We assume
algorithm based on the cutting-plane method and thecontains a set of salient patchgg, I, ..., [, }. Letz be
decomposed dual optimization. Our learning algorithm is the feature vector extracted from the fratheandy € Y
intuitive and easy to implement. It is also quite general be a class label, with discrete domaih We assumer

— one only needs to change a small component of thehas the form oft = (so, s1, ..., $m), Wheresg is the mo-
algorithm in order to handle different latent structurebeT  tion feature vector extracted from the whole frame, and



si(i = 1,2,...,m) is the motion feature vector extracted
from the patchl;. We assumd is associated with a vec-
tor of hidden variables of the form = (z1, 22, ..., 2m),
where z; takes values from a discrete st of possible
“part” labels. Intuitively, z; assigns a “part label” to the
patch;, where a “part label” corresponds to certain mo-
tion patterns distinctive of certain actions. For example,
one “part label” might corresponds to the “moving down”
pattern commonly observed in “bending” action, another
“part label” might correspond to the motion pattern distinc
tive of “hand-waving” action. See Figure 1 for examples
of learned part labels. In our model, there are certain con-
straints between some pairs ©f;, z;). We use an undi-
rected graplyy = (V, £) to representzi, 2a, ..., z2mm), Where

a vertexv; € V corresponds to the part label, and an
edge(v;,v,) € £ corresponds to the constraint betwegn
andz;. Similar to HCRFs [24, 32]¢ is assumed to form a
tree. The tree structure is obtained by running a minimum
spanning tree algorithm over the salient patches.

The (x,y) pair is scored by a function of the form
fw(z,y) = max,w'®(z,h,y). Herew is a vector of
model parameters and are the latent variables. The ex-
amplex is classified according t9* = argmax, f,(x,y).
The model parameters) have four componentsy =
{wo, w1, ws, w3}, andw ' ®(z, h,y) is defined as:

w' Oz, h,y) = wg - oy, s0) + ZU’I - o1(s5,25)
jev

+Y wy - daly, )+ > wy - sy, 2 )

Jev (4:k)e€

@)

The forms of these potential functions and the
parametrization are identical to those in [32]4 ¢o(y, so0)
is a root filter that models the compatibility of the class la-
bely and the large-scale global feature of the whole image.
It is parametrized asig ¢o(y, 50) = > ,cy Woa - Ly =
a) - g(so), Whereg(sy) is the concatenation of the motion
featuresFbf, Fb,, Fb}, Fb, from the patchs, (i.e., the
whole image)wq, can be interpreted as a root filter that
measures the compatibility of the class lab@nd the mo-
tion vectorg(sp), wo is a simply the concatenation afy,
forva € Y. Similarly, w{ ¢1(sj, z;) = 3 .cpywi,-1(z;
¢) - g(s;) measures the compatibility of the feature vector
g(s;) extracted from thg-th patch and a hidden part label
z; for the j-th patch.w, ¢o(y, 2;) = D acy 2ober Waab °
1(y = a) - 1(2; = b) measures the compatibility of the
class labely and a hidden part label; for the j-the patch.
w3 $3(y. ), 21) Dacy 2aben 2acen Waabe - L(y =
a) - 1(z; = b) - 1(z, = ¢) measures the compatibility of
a class labey and a pair of hidden part labe(s;, z) for a

wavel wave?2

walk
Figure 1. Visualization of the learned parts. Patches alered
according to their most likely part labels. Interesting etvations
can be made. For example, the parts colored in red, yellow and
green seem to be distinctive of “bend” “pjump” and “wave” ac-
tions, respectively. We can also observe the “sharing ofspar
among different actions. For example, the parts coloredliie b

jack” actions.

and light blue are shared by “walk” “run

4. Learning

Our learning method is inspired by the success of max-
margin methods in machine learning [1, 7, 11, 28]. Given a
learned model, the classification is achieved by first finding
the best labeling of the hidden parts for each action, then
picking the action label with the highest score. The learn-
ing algorithm aims to set the model parameters so that the
scores of correct action labels on the training data aredrigh
than the scores of incorrect action labels by a large margin.

4.1. Max-Margin HCRF

A max-margin  hidden conditional random
field (MMHCRF) is defined as follows. Recall that
an(x,y) pair is scored by a function of the form:

fuw(z,y) = max w' ®(z, h,y) 2)

wherew is the model parameter aridis a vector of hid-
den variables. In this paper, we consider the case in which
h = (z1,29,...,2m) forms a tree-structured undirected
graphical model, but our proposed model is a rather general
framework and can be applied to a wide variety of struc-

pair of (4, k)-th patches. These constraints defined on edgestures. We will briefly discuss them in Sec. 4.4. Similar to

capture the intuition that patches with certain hidden laart
bels tend to appear together for certain actions.

latent SVMs, MMHCRFs are instances of the general class
of energy-based models [18].



Let D = (<£Cl,y1>, <l‘2,y2>,..., <CCN,yN>) be a set of

It can be shown that both steps always improve or maintain

labeled training examples. The goal of learning is to learn the objective [11].

the model parameterw, so that for a new example we can
classifyx to be clasg/* if y* = argmax, f(z,y).

In analogy to classical SVMs, we would like to train
w from labeled example® by solving the following op-
timization problem:

1
min Sl +CH &

st fu(ri,y) = folziy) <& —1, Vi, Yy#y,

whereC' is the trade-off parameter similar to that in SVMs,
andg; is the slack variable for thethe training example to
handle the case of soft margin.

The optimization problem in (3) is equivalent to the fol-
lowing optimization problem:

1 9
min g fwl® +CH &
s.t. m}?wa<I>(:vi, h,y) — H}Lz}waq)(xi,h’,yi)

S gi - 5(3/1 yi)7 VZ, Vy

where 6(y,y;) = { L ity # v 4)

0 otherwise

4.2. Semi-Convexity and Primal Optimization

Similar to LSVMs, MMHCRFs have the property of
semi-convexity. Note thaf, (=, y) is a maximum of a set of
functions, each of which is linear i, so f,,(x) is convex
in w. If we restrict the domain o’ in (4) to a single choice,
the optimization problem of (4) becomes convex [4]. This
is in analog to restricting the domain of the latent variable
for the positive examples to a single choice in LSVMs [11].
But here we are dealing with multi-class classification, our
“positive examples” are those;;, y) pairs wherey = y;.

We can compute a local optimum of (4) using a coordi-
nate descent algorithm similar to LSVMs [11]:

1. Holdingw, ¢ fixed, optimize the latent variablés for
the (z;, y;) pair:

iy, = arg max w' ®(xi, W, yi)

2. Holdingh; ,, fixed, optimizew, ¢ by solving the fol-
lowing optimization problem:

1
min 5wl +C;§i

s.t. m}?XWT(I’(SCi, hoy) —w' ®(xi, hiy,,yi)

The optimization problem in Step 1 can be solved ef-
ficiently for certain structures ok’ (see Sec. 4.4 for de-
tails). The optimization problem in Step 2 involves solv-
ing a quadratic program (QP) with piecewise linear con-
straints. Although it is possible to solve it directly using
barrier methods [4], we will not be able to take advantage of
existing highly optimized solvers (e.g., CPLEX) which only
accept linear constraints. It is desirable to convert (&) &
standard quadratic program with only linear constraints.

One possible way to convert (5) into a standard QP is to
solve the following convex optimization problem:

. 1 9
min 5wl +02i:€i

s.t. wT(I)(xia h,y) — wT‘I)(xi, Riyis Yi)

It is easy to see that (5) and (6) are equivalent, and all the
constraints in (6) are linear. Unfortunately, the optimiza
tion problem in (6) involves an exponential number of con-
straints — for each exampie and each possible labeling
there are exponentially many possil/s.

We would like to perform optimization over a much
smaller set of constraints. One solution is to use a cutting
plane algorithm similar to that used in structured SVMs [1]
and CRFs [27]. In a nutshell, the algorithm starts with
no constraints (which corresponds to a relaxed version of
(6)), then iteratively finds the “most violated” constraint
and adds those constraints. It can be shown that this algo-
rithm computes arbitrarily close approximation to the érig
nal problem of (6) by evaluating only a polynomial number
of constraints.

More importantly, the optimization problem in (6) has
certain properties that allow us to find and add constraints
in an efficient way. For a fixed example and a possible
labely, defineh; , as follows:

hiay = arg m}?X qu)(xia ha y)

Consider the following two set of constraints for the, v)
pair:

w' (23, hiy,y) —w' B(wi, iy, i)

<& =4y, 1) (7)
qu)(xia ha y) - qu)(xia hi,yi ’ yz)
< gi - 5(3/1 yi)7 Vh (8)

Itis easy to see that within a local neighborhoodo{7)
and (8) define the same set of constraints, i.e., (7) implies
(8) and vice versa. This suggests that for a fiked y) pair,
we only need to consider the constraint involving, .



Putting everything together, we learn the model parame-
terw by iterating the following two steps.

1. Fixingw, &, optimize the latent variablefor each pair
(x;,y) of an example:; and a possible labeling

hi, = arg m}?wa(I)(xi, h,y)

2. Fixingh;,, Vi, Yy, optimizew, ¢ by solving the fol-
lowing optimization problem:

1 2
sllulf + €6

st w ®(wy, hiy,y) —

min
w,§
w' (2, hiy,, i)
Vi, Yy 9)

Step 1 in the above algorithm can be efficiently solved
for certain structured (Sec. 4.4). Step 2 involves solving a
quadratic program witlV x || constraints.

The optimizationin (9) is very similar to the primal prob-
lem of a standard multi-class SVM [7]. In fact/if , is the
same for differeny’s, it is just a standard SVM and we can
use an off-the-shelf SVM solver to optimize (9). Unfortu-
nately, the fact that; , can vary with differenty’s means

Let us definex as the concatenation §fv; , : Vi Yy},
so the length ofv is N x |)|. DefineA as a vector of the
same length. Théi, y)-th entry of Ais 1 if y # y;, and O
otherwise. Then (10) can be written as:

1
max o' A— §OLTKOL
> iy =C,
y

ai,y Z 07

Vi

Vi, Yy (11)

Note the matrix/K in (11) only depends on the dot-
product between feature vectors of differént, y) pairs.

So our model has a very intuitive and interesting interpreta
tion — it defines a particular kernel function that respelets t
latent structures.

Itis easy to show that the optimization problemin (10) is
concave, so we can find its global optimum. But the number
of variables isN x |)|, whereN is the number of training
examples, an@)| is the size of all possible class labels. So
it is infeasible to use a generic QP solver to optimize it.

Instead, we decompose the optimization problem of (10)
and solve a serie of smaller QPs. This is similar to the se-
guential minimal optimization (SMO) used in SVM [7, 23]
and M?N [28]. The basic idea of this algorithm is to choose

that we cannot directly use standard SVM packages. Weall the{«; , : Vy € Y} for a particular training example;

instead develop our own optimization algorithm.

4.3. Dual Optimization

In analog to classical SVMs, it is helpful to solve
the problem in (9) by examining its dual. To simplify
the notation, let us defin@(z;,y) = ®(x;, hiy,y) —

O (x4, hiy,, yi). Thenthe dual problem of (9) can be written
as follows:

max Z ZO‘Z,U y yz
Z Qi gy = C, Vi
Y

Yy

||Zzaw 70y)

s.t.

The primal variablew can be obtained from the dual
variablesx as follows:

- Z Z Oéi,y\Ij(Iia 1/)

Note that (10) is quite similar to the dual form of stan-
dard multi-class SVMs. In fact, ik, , is a deterministic
function ofz;, (10) is just a standard dual form of SVMs.

Similar to classical SVMs, we can also obtain a kernel-
ized version of the algorithm by defining a kernel function
of sizeN x |Y| by N x || in the following form:

K(i,y;5,9) = V(zs,y)  ¥(z;,9)

and fix all the other variable§y, ., : Vk : k # i,Vy' € V}
that do not involver;. Then instead of solving a QP involv-
ing all the variableg; ,, : Vi, Vy}, we can solve a much
smaller QP only involvind «; ,, : Vy}. The number of vari-
ables of this smaller QP i§/|, which is much smaller than
N x |Y.

First we write the objective of (10) in terms @t ,, :

Yy} as follows:

L({aiy : Vy})

_Zaz,u ) lHZaW (@i,
+2(Zai,y\11(xi,y)) ( Z Zak,y"y(ﬁk,y/))

kik#i '
+other terms not involvinga; , : Yy}

|

The smaller QP corresponding {@;, y;) can be written
as follows:

max
i,y VY

s.t.

L({aiy : Vy})

Z Qi gy = C
Y
oy >0, Yy (12)

Note >, ;. ; >, iy ¥(xk, y') can be written as:

—w— > iy (wi,y)
Yy



So as long as we maintain (and keep updating) the global

parameter and keep track ofy; , and ¥ (z;,y) for each
example(z;, y;), we do not need to actually do the summa-
tion ;.1 >-,, When optimizing (12). In addition, when
we solve the QP involvingy; ,, for a fixeds, all the other
constraints involvingyy, , wherek # i are not affected.
This is not the case if we try to optimize the primal problem
in (9). If we try to optimize the primal variable by only
considering the constraints involving thie¢h examples, it

is possible that the new obtained from the optimization
might violate the constraints imposed by other examples.
There is also work [6] showing that the dual optimization
has a better convergence rate.

4.4. Finding the Optimal

The alternating coordinate descent algorithm for learn-
ing the model parameter described in Sec. 4.2 assumes
we have an inference algorithm for finding the optimal
for a fixed(x, y) pair:

h* = arg max w' ®(z, h,y) (23)
In order to adopt our approach to problems involving dif-
ferent latent structures, this is the only component of the
algorithm that needs to be changed.

If h = (21,22, ..., zm) fOrms a tree-structured graphical

model, the inference problem in (13) can be solved exactly,
e.g., using the Viterbi dynamic programming algorithm for

trees. We can also solve it using standard linear program-

ming as follows [29, 31]. We introduce variablgs, to
denote the indicatot (z; = a) for all verticesj € V and
their values: € H. Similarly, we introduce variables;qp

to denote the indicatol (z; = a,z, = b) for all edges
(4, k) € € and the values of their nodesge H, b € H. We
usey;(z;) to collectively represent the summation of all the
unary potential functions in (1) that involve the ngde V.
We usey;i(z;, z1;) to collectively represent the summation
of all the pairwise potential functions in (1) that involveet
edgejk € £. The problem of finding of optimat* can
be formulated into the following linear programming (LP)
problem:

Ogljgl Z Z tjathj(a) + Z Z Z Wikab ¥k (a, b)
jeEV aeH JkeEE ae HbeH
st > pja=1, VjeV
acH
ST likae =1, Vike€
acH beH
Z Hjkab = pre, Vjk€E, Vb EH
aceH

Z Wjkab = Hja, Vik€E, VaeH (14)

beH

If the optimal solution of this LP is integral, we can re-
coverh* from p* very easily. It has been shown thatéif
forms a forest, the optimal solution of this LP is guaran-
teed to be integral [29, 31]. For general graph topology, the
optimal solution of this LP can be fractional, which is not
surprising, since the problem in (13) is NP-hard for gen-
eral graphs. Although the LP formulation does not seem to
be particularly advantageous in the case of tree-strudture
models, since they can be solved by Viterbi dynamic pro-
gramming anyway, the LP formulation provides a more
general way of approaching other structures (e.g., Markov
networks with sub-modular potentials, matching [29]).

4.5. Comparison with HCRF

MMHCRFs are closely related to HCRFs. The main dif-
ference lies in their different learning criteria — maxirinig
the margin in MMHCRFs, and maximizing the conditional
likelihood in HCRFs. As a result, the learning algorithms
for MMHCRFs and HCRFs involve solving two different
types of inference problems — maximizing overversus
summing over.

From the computational perspective, if has a tree
structure and?| is relatively small, both inference prob-
lems (max vs. sum) can be solved exactly, using dynamic
programming and belief propagation, respectively. But the
inference problem (maximization) in MMHCRFs can deal
with a much wider range of latent structures. Here are a few
examples [29] (although these problems are not addressed
in this paper) in computer vision:

e Binary Markov networks with sub-modular poten-
tials, commonly encountered in figure/ground segmen-
tation [15]. MMHCRFs can use LP [29] or graph-
cut [15] to solve the inference problem. For HCRFs,
the inference problem can only be solved approxi-
mately, e.g., using loopy BP or mean-field variational
methods.

Matching/correspondence. The inference of this struc-
ture can be solved by MMHCRFs using LP [25, 29]. It
is not clear how HCRFs can be used in this situation,
since it requires summing over all the possible match-
ings.

Tree-structures, but each node’/incan have a large
number of possible labels (e.g., all the possible pixel
locations in an image), i.e|H| is big. If the pair-
wise potentials have certain properties, distance trans-
form [12] can be applied in MMHCRFs to solve
the inference problem. This is essentially what has
been done in [11]. This inference problem for
HCRFs can be solved using convolution. But dis-
tance transform@(|#|)) is more efficient than con-
volution (O(|H| log |H])).



Ideas similar to MMHCRFs have also been applied to | method [ [H[=6 [ [H[=10 ] [H]=20 ]

model complex hidden structures arising in other fields, HCRF 0.8682| 0.9029 | 0.8557
e.g., parse tree structures in natural language procel&ging 0.9167 | 0.9722 | 0.9444
and motif positions in bioinformatics [33]. Our approach 0.8996 | 0.9311 | 0.8891
From the modeling perspective, we believe MMHCRFs _ 0.9722| 1.0000 | 0.9722 |
Table 1. Comparison of our approach with the HCRF model [32]

are better suited for classification than HCRFs. This is be-
cause HCRFs require summing over exponentially many
h’s. In order to maximize the conditional likelihoods, the

learning algorithm of HCRFs has to try very hard to push

on the Weizmann dataset. The first number in each cell is the
accuracy of per-frame classification. The second numbehés t
accuracy of per-video classification.

the probabilities of many “wrong” labelings df's to be method [ per-frame] per-video | per-cube]
close to zero. But in MMHCREFs, the learning algorithm Our method 0.9311 1.0000 N/A
only needs to push apart the “correct” labeling and its next|  \yangg Mori [32] 09029 | 0.9722 N/A
best competitor. Conceptually, the modeling criterion of Jhuang et al. [13] N/A 0.9880 N/A
MMHCREFs is easier to achieve than that of HCRFs. Amore | Niebles& Fei-Fei[21]| 0.5500 | 0.7280 N/A
rigorous analysis of these two different learning critevid Blank et al. [3] N/A N/A 0.9964
be an interesting and important future work. Table 2. Comparison of classification accuracy with presiaork

on the Weizmann dataset.
5. Experiments |

method [ [H|=6 | [H[=10 | [H]=20 |

We test our algorithm on two widely used benchmark HCRF 0.6633 | 0.6698 | 0.6444
datasets: the Weizmann human action dataset [3] and 0.7855| 0.8760 | 0.7512
the KTH human motion dataset [26]. Performance on Our approach 0.7064 | 0.7853 | 0.7486
these benchmarks is saturating — state-of-the-art appesac 0.8475] 0.9251 | 0.8966

_Table 3. Comparison of our approach with the HCRF model on
the KTH dataset. The first number in each cell is the accuracy
of per-frame classification. The second number is the acguwht
per-video classification.

achieve near-perfect results. We show our method outper
forms the HCRF model [32] and is comparable to other
state-of-the-art approaches. In order to do a fair compari-
son with [32], we use the same split of training/testing data

We also use the same patch initialization technique in [32] | method [ accuracy |
to find ten _sallent patches_ in each image. We($et 1 for Our method 09251
MMHCREF in all the experiments. Liu & Shah [19] 0.9416
Weizmann dataset: The Weizmann human action Jhuang et al. [13]|| 0.9170
dataset contains 83 video sequences showing nine dif- Wang& Mori [32] 0.8760
ferent people, each performing nine different actions: Niebles et al. [22] || 0.8150
running, walking, jumping-jack, jumping-forward-on-two Dollar et al. [9] 0.8117
legs, jumping-in-place-on-two-legs, galloping-sideway Schuldt et al. [26] | 0.7172

waving-two-hands, waving-one-hand, bending. Similar to Table 4. Comparison of per-video classification accuradi yie-
[32], we learn our model with different sizes of possible Vious approaches on the KTH dataset.

part labels|H| = 6, 10, 20. During testing, our model per-

forms per-frame classification, then obtains the classllabe  Tnhe confusion matrices of our approach (wiit| = 10)

for the video by majority voting. _ ~ for both per-frame and per-video classification are shown
The comparison with the HCRF model [32] is shown in i, Fig. 2(b,c). The comparison with the HCRF model is

Table 1. Our model outperforms HCRF in all three cases. symmarized in Table 3. Again, our approach outperforms
The comparison with other approaches is summarized in Ta-the HCRE model.

ble 2. We should emphasize that we do not attempt a direct e comparison with other approaches is summarized in
comparison, since Niebles Fei-Fei [21] does not require  Tapje 4. Again, we would like to emphasize that this is

stabilization, and Blank et.al [3] uses a different measure ot a direct comparison, due to all sorts of variations of the
ment (per-cube accuracy). We show the confusion matrix eyperiment setups in different methods listed in Table 4. We

of our approach with{| = 10 for per-frame classification  onjy show the results to demonstrate that our approach is
in Fig. 2(a). The confusion matrix for per-video classifica- comparable to other state-of-the-art methods.
tion is omitted, since it is just a perfect diagonal matrix.

_ KTH dataset: The K_TH huma_n quon_dataset <_:onta|ns 6. Conclusion
six types of human actions: walking, jogging, running, box-
ing, hand waving and hand clapping. Again, we learn the  We have presented the max-margin hidden conditional
model with|H| = 6, 10, 20. random field — a learning framework for training multi-
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Figure 2. Confusion matrices of classification results onzwiann and KTH dataset. The confusion matrix of per-videssification on
the Weizmann dataset is not shown, since it is simply a pediagonal matrix.

class classifiers with structured latent variables. We psep
an efficient learning algorithm based on the cutting plane
method and decomposed dual optimization. Our proposeoﬂ?’]
model is quite general and can be applied in a wide range of[14]
latent structures, as long as we have an algorithm for solv-
ing the inference in Sec. 4.4. For a lot of vision applicasion
this inference is easier than computing the summation over
all the latent variables, which is required by HCRF training
Our experimental results show that the max-margin learn-
ing achieves better performance than the conditionalitikel [17]
hood learning, which is consistent with similar findings in [18]
the structured output learning literature [1, 28, 29].

As future work, we would like to apply our model in var-

[12]

[15]

[16]

[19]
ious vision problems that involve latent structures, and to
derive efficient approximation algorithms for general drap  [20]

structures, of which exact inference is intractable. We als
plan to further investigate the theoretical differences be [y
tween the max-margin and the conditional likelihood learn-

ing criteria. [22]
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