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Abstract

We present a new method for classification with struc-
tured latent variables. Our model is formulated using the
max-margin formalism in the discriminative learning liter-
ature. We propose an efficient learning algorithm based on
the cutting plane method and decomposed dual optimiza-
tion. We apply our model to the problem of recognizing
human actions from video sequences, where we model a hu-
man action as a global root template and a constellation
of several “parts”. We show that our model outperforms
another similar method that uses hidden conditional ran-
dom fields, and is comparable to other state-of-the-art ap-
proaches. More importantly, our proposed work is quite
general and can potentially be applied in a wide variety of
vision problems that involve various complex, interdepen-
dent latent structures.

1. Introduction

Many problems in computer vision can be formulated
asclassification with structured latent variables. Consider
the following three vision tasks. (1)Pedestrian detection:
it can be formulated as a binary classification problem that
classifies an image patchx to be +1 (pedestrian) or -1(non-
pedestrian). The locations of the body parts can be consid-
ered as latent variables in this case, since most of the ex-
isting training datasets for pedestrian detection do not pro-
vide this information. These latent variables are alsostruc-
tured– e.g., the location of the torso imposes certain con-
straints on the possible locations of other parts. Previous
approaches [11, 30] usually use a tree-structured model to
model these constraints. (2)Object recognition: this prob-
lem is to assign a class label to an image that contains the
object of interest. If we consider the figure/ground labeling
of pixels of the image as latent variables, object recognition
is also a problem of classification with latent variables. The
latent variables are also structured, typically represented by
a grid-structured graph. (3)Object identification: given two
images, the task is to decide whether these are two images

of the same object or not. If an image is represented by a
set of patches found by interest point operators, one partic-
ular way to solve this problem is to first find the correspon-
dence between patches in the two images, then learn a bi-
nary classifier based on the result of the correspondence [2].
Of course, the correspondence information is “latent” – not
available in the training data, and “structured” – assuming
one patch in one image matches to one or zero patches in
the other image, this creates a combinatorial structure [29].

One simplified approach to solve the above-mentioned
problems is to ignore the latent structures, and treat them
as standard classification problems, e.g., Dalal& Triggs [8]
in the case of pedestrian detection. However, there is ev-
idence [11, 24, 30, 32] showing that incorporating latent
structures into the system can improve the performance.

In this paper, we propose a max-margin learning frame-
work for training classifiers with structured latent vari-
ables. We introduce an efficient learning algorithm based
on the cutting plane method and decomposed dual opti-
mization. We apply our proposed model to recognize hu-
man actions from video sequences, where we model a
person by a root template and a constellation of several
“parts”. Our model is closely related to a recent work [32]
on part-based human action recognition using hidden con-
ditional random fields (HCRF) [24]. The main differ-
ence between our approach and the approach in [32] is
that our approach uses a max-margin criterion for train-
ing. We call our approach theMax-Margin Hidden Con-
ditional Random Field (MMHCRF).We show experimen-
tally that the MMHCRF achieves better performance than
the HCRF. More importantly, the max-margin learning al-
lows us to deal with more complex latent structures (e.g.,
matching/correspondence mentioned before).

This paper represents our first step towards solving the
general problem of classification with structured latent vari-
ables using the max-margin framework. Here we only con-
sider latent structures that form a tree-structured model,and
we restrict ourselves to the application domain of human ac-
tion recognition. But the proposed framework is quite gen-
eral and can be applied in other domains that involve highly



complex latent structures.

2. Previous Work

The problem of action recognition has been approached
in many ways in the literature. A lot of approaches use
interest-points and bag-of-words representations [9, 17,22].
There are also methods based on global templates [10]. In-
spired by part-based models for object recognition (e.g.,[11,
12]), recent work has applied similar part-based models for
actions [14, 21, 32].

Our work is closely related to the hidden conditional
random field (HCRF) model [24]. The HCRF was origi-
nally proposed for object recognition. The basic idea is to
model an object as a constellation of “parts” conditioned
on local observations found by an interest point operator.
For each object class, the probability of assigning part la-
bels to local features is modeled by a conditional random
field (CRF) [16]. The parameters of a HCRF model are
learned by maximizing the conditional likelihood of the
training data. HCRFs have also been applied to part-based
human action recognition [32]. The limitation of HCRFs
is that the training involves summing over all the possi-
ble labelings of the latent variables. If the latent variables
form certain graph structures (e.g. trees, graphs of low tree-
width), this summation can be done analytically. For la-
tent structures of general graph topology, HCRFs have to
resort to various approximations (e.g. loopy belief prop-
agation, mean-field variational methods, etc.) for train-
ing. For even more complicated structures (e.g. match-
ing/correspondence), it is not even clear how to approxi-
mate the computation. Compared with HCRFs, our model
can handle a much wider range of latent structures. This is
in analog to the advantage of the max-margin Markov net-
work (M3N) [28, 29] over the CRF in the structured-output
learning literature.

Another closely related work is the latent
SVM (LSVM) [11]. The LSVM is proposed for ob-
ject detection (binary classification). It models an object
as a global coarse template covering an entire object and
several higher resolution part templates. The positions
of the root template and the parts are latent in LSVMs.
LSVMs learn the model parameters using a max-margin
discriminative training method. Our work is different
from LSVMs in several directions. First of all, our model
directly handles multi-class classification. Unfortunately,
unlike LSVMs, the resultant optimization problem is not
in a standard form that can be solved by off-the-shelf
SVM solvers (e.g., SVMLight). We propose an efficient
algorithm based on the cutting-plane method and the
decomposed dual optimization. Our learning algorithm is
intuitive and easy to implement. It is also quite general
– one only needs to change a small component of the
algorithm in order to handle different latent structures. The

potential functions and parametrization of our model are
also significantly different from those used in LSVMs. In
our model, a hidden variable corresponds to a “part label”,
while in LSVMs, a hidden variable corresponds to the
location of a part. The parts in our model can have a variety
of constraints, while in the model used in LSVMs, the parts
only have constraints with respect to a root filter.

3. Model

Our approach uses motion features based on optical
flows (Sec. 3.1). A frame in a video is represented by a
global motion feature extracted from the whole frame and
a set of salient local patches. Our model consists of a root
filter and a constellation of several hidden parts. The root
filter models the compatibility of the action label and the
global motion feature of the whole frame. A hidden part as-
signs a latent “part label” to a local patch. Intuitively, those
“part labels” correspond to local motion patterns that are
useful for discriminating different actions. Figure 1 shows
some sample frames and the learned hidden part labels. The
constraints among the patches are captured by pairwise po-
tential functions defined in the model (Sec. 3.2).

3.1. Motion Feature

Similar to [32], we use the optical flow feature in Efros et
al. [10]. This motion descriptor has been shown to perform
reliably with noisy image sequences, and has been applied
in various tasks, such as action classification, motion syn-
thesis, etc.

To calculate the motion descriptor, we first need to track
and stabilize people in a video sequence. Any tracking or
human detection algorithm can be used, since the motion
descriptor is very robust to jitters introduced by the tracking.
Given a stabilized video sequence in which the person of in-
terest appears in the center of the field of view, we compute
the optical flow of each frame using the Lucas-Kanade [20]
algorithm. The optical flow vector fieldF is then split into
two scalar fieldsFx andFy, corresponding to thex andy
components ofF . Fx andFy are further half-wave rec-
tified into four non-negative channelsF+

x , F−
x , F+

y , F−
y ,

so thatFx = F+
x − F−

x andFy = F+
y − F−

y . These
four non-negative channels are then blurred with a Gaus-
sian kernel and normalized to obtain the final four channels
Fb+x ,Fb−x ,Fb+y ,Fb−y .

3.2. Hidden Part Model

Let I be a frame in a video sequence. We assumeI

contains a set of salient patches{I1, I2, ..., Im}. Let x be
the feature vector extracted from the frameI, andy ∈ Y
be a class label, with discrete domainY. We assumex
has the form ofx = (s0, s1, ..., sm), wheres0 is the mo-
tion feature vector extracted from the whole frame, and



si(i = 1, 2, ...,m) is the motion feature vector extracted
from the patchIi. We assumeI is associated with a vec-
tor of hidden variables of the formh = (z1, z2, ..., zm),
where zi takes values from a discrete setH of possible
“part” labels. Intuitively,zi assigns a “part label” to the
patchIi, where a “part label” corresponds to certain mo-
tion patterns distinctive of certain actions. For example,
one “part label” might corresponds to the “moving down”
pattern commonly observed in “bending” action, another
“part label” might correspond to the motion pattern distinc-
tive of “hand-waving” action. See Figure 1 for examples
of learned part labels. In our model, there are certain con-
straints between some pairs of(zj , zk). We use an undi-
rected graphG = (V , E) to represent(z1, z2, ..., zm), where
a vertexvi ∈ V corresponds to the part labelzi, and an
edge(vj , vk) ∈ E corresponds to the constraint betweenzj

andzk. Similar to HCRFs [24, 32],E is assumed to form a
tree. The tree structure is obtained by running a minimum
spanning tree algorithm over the salient patches.

The 〈x, y〉 pair is scored by a function of the form
fw(x, y) = maxhw

⊤Φ(x, h, y). Herew is a vector of
model parameters andh are the latent variables. The ex-
amplex is classified according toy∗ = argmaxy fw(x, y).
The model parametersw have four componentsw =
{w0, w1, w2, w3}, andw⊤Φ(x, h, y) is defined as:

w⊤Φ(x, h, y) = w⊤
0 · φ0(y, s0) +

∑

j∈V

w⊤
1 · φ1(sj , zj)

+
∑

j∈V

w⊤
2 · φ2(y, zj) +

∑

(j,k)∈E

w⊤
3 · φ3(y, zj, zk) (1)

The forms of these potential functions and the
parametrization are identical to those in [32].w⊤

0 φ0(y, s0)
is a root filter that models the compatibility of the class la-
bely and the large-scale global feature of the whole image.
It is parametrized asw⊤

0 φ0(y, s0) =
∑

a∈Y w
⊤
0a · 1(y =

a) · g(s0), whereg(s0) is the concatenation of the motion
featuresFb+x , Fb−x , Fb+y , Fb−y from the patchs0 (i.e., the
whole image),w0a can be interpreted as a root filter that
measures the compatibility of the class labela and the mo-
tion vectorg(s0), w0 is a simply the concatenation ofw0a

for ∀a ∈ Y. Similarly,w⊤
1 φ1(sj , zj) =

∑

c∈Hw
⊤
1c ·1(zj =

c) · g(sj) measures the compatibility of the feature vector
g(sj) extracted from thej-th patch and a hidden part label
zj for the j-th patch.w⊤

2 φ2(y, zj) =
∑

a∈Y

∑

b∈H w2ab ·
1(y = a) · 1(zj = b) measures the compatibility of the
class labely and a hidden part labelzj for the j-the patch.
w⊤

3 φ3(y, zj, zk) =
∑

a∈Y

∑

b∈H

∑

c∈Hw3abc · 1(y =
a) · 1(zj = b) · 1(zk = c) measures the compatibility of
a class labely and a pair of hidden part labels(zj , zk) for a
pair of(j, k)-th patches. These constraints defined on edges
capture the intuition that patches with certain hidden partla-
bels tend to appear together for certain actions.

bend jack jump

pjump run side

walk wave1 wave2
Figure 1. Visualization of the learned parts. Patches are colored
according to their most likely part labels. Interesting observations
can be made. For example, the parts colored in red, yellow and
green seem to be distinctive of “bend” “pjump” and “wave” ac-
tions, respectively. We can also observe the “sharing of parts”
among different actions. For example, the parts colored in blue
and light blue are shared by “walk” “run” “jack” actions.

4. Learning

Our learning method is inspired by the success of max-
margin methods in machine learning [1, 7, 11, 28]. Given a
learned model, the classification is achieved by first finding
the best labeling of the hidden parts for each action, then
picking the action label with the highest score. The learn-
ing algorithm aims to set the model parameters so that the
scores of correct action labels on the training data are higher
than the scores of incorrect action labels by a large margin.

4.1. Max-Margin HCRF

A max-margin hidden conditional random
field (MMHCRF) is defined as follows. Recall that
an〈x, y〉 pair is scored by a function of the form:

fw(x, y) = max
h

w⊤Φ(x, h, y) (2)

wherew is the model parameter andh is a vector of hid-
den variables. In this paper, we consider the case in which
h = (z1, z2, ..., zm) forms a tree-structured undirected
graphical model, but our proposed model is a rather general
framework and can be applied to a wide variety of struc-
tures. We will briefly discuss them in Sec. 4.4. Similar to
latent SVMs, MMHCRFs are instances of the general class
of energy-based models [18].



Let D = (〈x1, y1〉, 〈x2, y2〉, ..., 〈xN , yN〉) be a set of
labeled training examples. The goal of learning is to learn
the model parameterw, so that for a new examplex, we can
classifyx to be classy∗ if y∗ = arg maxy f(x, y).

In analogy to classical SVMs, we would like to train
w from labeled examplesD by solving the following op-
timization problem:

min
w,ξ

1

2
||w||2 + C

∑

i

ξi

s.t. fw(xi, y) − fw(xi, yi) ≤ ξi − 1, ∀i, ∀y 6= yi

ξi ≥ 0, ∀i (3)

whereC is the trade-off parameter similar to that in SVMs,
andξi is the slack variable for thei-the training example to
handle the case of soft margin.

The optimization problem in (3) is equivalent to the fol-
lowing optimization problem:

min
w,ξ

1

2
||w||2 + C

∑

i

ξi

s.t. max
h

w⊤Φ(xi, h, y) − max
h′

w⊤Φ(xi, h
′, yi)

≤ ξi − δ(y, yi), ∀i, ∀y

where δ(y, yi) =

{

1 if y 6= yi

0 otherwise
(4)

4.2. Semi-Convexity and Primal Optimization

Similar to LSVMs, MMHCRFs have the property of
semi-convexity. Note thatfw(x, y) is a maximum of a set of
functions, each of which is linear inw, sofw(x) is convex
inw. If we restrict the domain ofh′ in (4) to a single choice,
the optimization problem of (4) becomes convex [4]. This
is in analog to restricting the domain of the latent variables
for the positive examples to a single choice in LSVMs [11].
But here we are dealing with multi-class classification, our
“positive examples” are those〈xi, y〉 pairs wherey = yi.

We can compute a local optimum of (4) using a coordi-
nate descent algorithm similar to LSVMs [11]:

1. Holdingw, ξ fixed, optimize the latent variablesh′ for
the〈xi, yi〉 pair:

hi,yi
= arg max

h′

w⊤Φ(xi, h
′, yi)

2. Holdinghi,yi
fixed, optimizew, ξ by solving the fol-

lowing optimization problem:

min
w,ξ

1

2
||w||2 + C

∑

i

ξi

s.t. max
h

w⊤Φ(xi, h, y) − w⊤Φ(xi, hi,yi
, yi)

≤ ξi − δ(y, yi), ∀i, ∀y (5)

It can be shown that both steps always improve or maintain
the objective [11].

The optimization problem in Step 1 can be solved ef-
ficiently for certain structures ofh′ (see Sec. 4.4 for de-
tails). The optimization problem in Step 2 involves solv-
ing a quadratic program (QP) with piecewise linear con-
straints. Although it is possible to solve it directly using
barrier methods [4], we will not be able to take advantage of
existing highly optimized solvers (e.g., CPLEX) which only
accept linear constraints. It is desirable to convert (5) into a
standard quadratic program with only linear constraints.

One possible way to convert (5) into a standard QP is to
solve the following convex optimization problem:

min
w,ξ

1

2
||w||2 + C

∑

i

ξi

s.t. w⊤Φ(xi, h, y) − w⊤Φ(xi, hi,yi
, yi)

≤ ξi − δ(y, yi), ∀i, ∀h, ∀y (6)

It is easy to see that (5) and (6) are equivalent, and all the
constraints in (6) are linear. Unfortunately, the optimiza-
tion problem in (6) involves an exponential number of con-
straints – for each examplexi and each possible labelingy,
there are exponentially many possibleh’s.

We would like to perform optimization over a much
smaller set of constraints. One solution is to use a cutting
plane algorithm similar to that used in structured SVMs [1]
and CRFs [27]. In a nutshell, the algorithm starts with
no constraints (which corresponds to a relaxed version of
(6)), then iteratively finds the “most violated” constraints
and adds those constraints. It can be shown that this algo-
rithm computes arbitrarily close approximation to the origi-
nal problem of (6) by evaluating only a polynomial number
of constraints.

More importantly, the optimization problem in (6) has
certain properties that allow us to find and add constraints
in an efficient way. For a fixed examplexi and a possible
labely, definehi,y as follows:

hi,y = arg max
h

w⊤Φ(xi, h, y)

Consider the following two set of constraints for the〈xi, y〉
pair:

w⊤Φ(xi, hi,y, y) − w⊤Φ(xi, hi,yi
, yi)

≤ ξi − δ(y, yi) (7)

w⊤Φ(xi, h, y) − w⊤Φ(xi, hi,yi
, yi)

≤ ξi − δ(y, yi), ∀h (8)

It is easy to see that within a local neighborhood ofw, (7)
and (8) define the same set of constraints, i.e., (7) implies
(8) and vice versa. This suggests that for a fixed〈xi, y〉 pair,
we only need to consider the constraint involvinghi,y.



Putting everything together, we learn the model parame-
terw by iterating the following two steps.

1. Fixingw, ξ, optimize the latent variableh for each pair
〈xi, y〉 of an examplexi and a possible labelingy:

hi,y = arg max
h

w⊤Φ(xi, h, y)

2. Fixinghi,y ∀i, ∀y, optimizew, ξ by solving the fol-
lowing optimization problem:

min
w,ξ

1

2
||w||2 + C

∑

i

ξi

s.t. w⊤Φ(xi, hi,y, y) − w⊤Φ(xi, hi,yi
, yi)

≤ ξi − δ(y, yi), ∀i, ∀y (9)

Step 1 in the above algorithm can be efficiently solved
for certain structuredh (Sec. 4.4). Step 2 involves solving a
quadratic program withN × |Y| constraints.

The optimization in (9) is very similar to the primal prob-
lem of a standard multi-class SVM [7]. In fact, ifhi,y is the
same for differenty’s, it is just a standard SVM and we can
use an off-the-shelf SVM solver to optimize (9). Unfortu-
nately, the fact thathi,y can vary with differenty’s means
that we cannot directly use standard SVM packages. We
instead develop our own optimization algorithm.

4.3. Dual Optimization

In analog to classical SVMs, it is helpful to solve
the problem in (9) by examining its dual. To simplify
the notation, let us defineΨ(xi, y) = Φ(xi, hi,y, y) −
Φ(xi, hi,yi

, yi). Then the dual problem of (9) can be written
as follows:

max
α

∑

i

∑

y

αi,yδ(y, yi) −
1

2
||

∑

i

∑

y

αi,yΨ(xi, y)||
2

s.t.
∑

y

αi,y = C, ∀i

αi,y ≥ 0, ∀i, ∀y (10)

The primal variablew can be obtained from the dual
variablesα as follows:

w = −
∑

i

∑

y

αi,yΨ(xi, y)

Note that (10) is quite similar to the dual form of stan-
dard multi-class SVMs. In fact, ifhi,y is a deterministic
function ofxi, (10) is just a standard dual form of SVMs.

Similar to classical SVMs, we can also obtain a kernel-
ized version of the algorithm by defining a kernel function
of sizeN × |Y| byN × |Y| in the following form:

K(i, y; j, y′) = Ψ(xi, y)
⊤Ψ(xj , y

′)

Let us defineα as the concatenation of{αi,y : ∀i ∀y},
so the length ofα is N × |Y|. Define∆ as a vector of the
same length. The(i, y)-th entry of∆ is 1 if y 6= yi, and 0
otherwise. Then (10) can be written as:

max
α

α⊤∆ −
1

2
α⊤Kα

s.t.
∑

y

αi,y = C, ∀i

αi,y ≥ 0, ∀i, ∀y (11)

Note the matrixK in (11) only depends on the dot-
product between feature vectors of different〈xi, y〉 pairs.
So our model has a very intuitive and interesting interpreta-
tion – it defines a particular kernel function that respects the
latent structures.

It is easy to show that the optimization problem in (10) is
concave, so we can find its global optimum. But the number
of variables isN × |Y|, whereN is the number of training
examples, and|Y| is the size of all possible class labels. So
it is infeasible to use a generic QP solver to optimize it.

Instead, we decompose the optimization problem of (10)
and solve a serie of smaller QPs. This is similar to the se-
quential minimal optimization (SMO) used in SVM [7, 23]
and M3N [28]. The basic idea of this algorithm is to choose
all the{αi,y : ∀y ∈ Y} for a particular training examplexi

and fix all the other variables{αk,y′ : ∀k : k 6= i, ∀y′ ∈ Y}
that do not involvexi. Then instead of solving a QP involv-
ing all the variables{αi,y : ∀i, ∀y}, we can solve a much
smaller QP only involving{αi,y : ∀y}. The number of vari-
ables of this smaller QP is|Y|, which is much smaller than
N × |Y|.

First we write the objective of (10) in terms of{αi,y :
∀y} as follows:

L({αi,y : ∀y})

=
∑

y

αi,yδ(y, yi) −
1

2

[

||
∑

y

αi,yΨ(xi, y)||
2

+2
(

∑

y

αi,yΨ(xi, y)
)⊤(

∑

k:k 6=i

∑

y′

αk,y′Ψ(xk, y
′)
)

]

+other terms not involving{αi,y : ∀y}

The smaller QP corresponding to〈xi, yi〉 can be written
as follows:

max
αi,y :∀y

L({αi,y : ∀y})

s.t.
∑

y

αi,y = C

αi,y ≥ 0, ∀y (12)

Note
∑

k:k 6=i

∑

y′ αk,y′Ψ(xk, y
′) can be written as:

−w −
∑

y

αi,yΨ(xi, y)



So as long as we maintain (and keep updating) the global
parameterw and keep track ofαi,y andΨ(xi, y) for each
example〈xi, yi〉, we do not need to actually do the summa-
tion

∑

k:k 6=i

∑

y′ when optimizing (12). In addition, when
we solve the QP involvingαi,y for a fixed i, all the other
constraints involvingαk,y wherek 6= i are not affected.
This is not the case if we try to optimize the primal problem
in (9). If we try to optimize the primal variablew by only
considering the constraints involving thei-th examples, it
is possible that the neww obtained from the optimization
might violate the constraints imposed by other examples.
There is also work [6] showing that the dual optimization
has a better convergence rate.

4.4. Finding the Optimal h

The alternating coordinate descent algorithm for learn-
ing the model parameterw described in Sec. 4.2 assumes
we have an inference algorithm for finding the optimalh∗

for a fixed〈x, y〉 pair:

h∗ = arg max
h

w⊤Φ(x, h, y) (13)

In order to adopt our approach to problems involving dif-
ferent latent structures, this is the only component of the
algorithm that needs to be changed.

If h = (z1, z2, ..., zm) forms a tree-structured graphical
model, the inference problem in (13) can be solved exactly,
e.g., using the Viterbi dynamic programming algorithm for
trees. We can also solve it using standard linear program-
ming as follows [29, 31]. We introduce variablesµja to
denote the indicator1(zj = a) for all verticesj ∈ V and
their valuesa ∈ H. Similarly, we introduce variablesµjkab

to denote the indicator1(zj = a, zk = b) for all edges
(j, k) ∈ E and the values of their nodes,a ∈ H, b ∈ H. We
useψj(zj) to collectively represent the summation of all the
unary potential functions in (1) that involve the nodej ∈ V .
We useψjk(zj , zk) to collectively represent the summation
of all the pairwise potential functions in (1) that involve the
edgejk ∈ E . The problem of finding of optimalh∗ can
be formulated into the following linear programming (LP)
problem:

max
0≤µ≤1

∑

j∈V

∑

a∈H

µjaψj(a) +
∑

jk∈E

∑

a∈H

∑

b∈H

µjkabψjk(a, b)

s.t.
∑

a∈H

µja = 1, ∀j ∈ V

∑

a∈H

∑

b∈H

µjkab = 1, ∀jk ∈ E

∑

a∈H

µjkab = µkb, ∀jk ∈ E , ∀b ∈ H

∑

b∈H

µjkab = µja, ∀jk ∈ E , ∀a ∈ H (14)

If the optimal solution of this LP is integral, we can re-
coverh∗ from µ∗ very easily. It has been shown that ifE
forms a forest, the optimal solution of this LP is guaran-
teed to be integral [29, 31]. For general graph topology, the
optimal solution of this LP can be fractional, which is not
surprising, since the problem in (13) is NP-hard for gen-
eral graphs. Although the LP formulation does not seem to
be particularly advantageous in the case of tree-structured
models, since they can be solved by Viterbi dynamic pro-
gramming anyway, the LP formulation provides a more
general way of approaching other structures (e.g., Markov
networks with sub-modular potentials, matching [29]).

4.5. Comparison with HCRF

MMHCRFs are closely related to HCRFs. The main dif-
ference lies in their different learning criteria – maximizing
the margin in MMHCRFs, and maximizing the conditional
likelihood in HCRFs. As a result, the learning algorithms
for MMHCRFs and HCRFs involve solving two different
types of inference problems – maximizing overh, versus
summing overh.

From the computational perspective, ifh has a tree
structure and|H| is relatively small, both inference prob-
lems (max vs. sum) can be solved exactly, using dynamic
programming and belief propagation, respectively. But the
inference problem (maximization) in MMHCRFs can deal
with a much wider range of latent structures. Here are a few
examples [29] (although these problems are not addressed
in this paper) in computer vision:

• Binary Markov networks with sub-modular poten-
tials, commonly encountered in figure/ground segmen-
tation [15]. MMHCRFs can use LP [29] or graph-
cut [15] to solve the inference problem. For HCRFs,
the inference problem can only be solved approxi-
mately, e.g., using loopy BP or mean-field variational
methods.

• Matching/correspondence. The inference of this struc-
ture can be solved by MMHCRFs using LP [25, 29]. It
is not clear how HCRFs can be used in this situation,
since it requires summing over all the possible match-
ings.

• Tree-structures, but each node inh can have a large
number of possible labels (e.g., all the possible pixel
locations in an image), i.e.,|H| is big. If the pair-
wise potentials have certain properties, distance trans-
form [12] can be applied in MMHCRFs to solve
the inference problem. This is essentially what has
been done in [11]. This inference problem for
HCRFs can be solved using convolution. But dis-
tance transform (O(|H|)) is more efficient than con-
volution (O(|H| log |H|)).



Ideas similar to MMHCRFs have also been applied to
model complex hidden structures arising in other fields,
e.g., parse tree structures in natural language processing[5],
and motif positions in bioinformatics [33].

From the modeling perspective, we believe MMHCRFs
are better suited for classification than HCRFs. This is be-
cause HCRFs require summing over exponentially many
h’s. In order to maximize the conditional likelihoods, the
learning algorithm of HCRFs has to try very hard to push
the probabilities of many “wrong” labelings ofh’s to be
close to zero. But in MMHCRFs, the learning algorithm
only needs to push apart the “correct” labeling and its next
best competitor. Conceptually, the modeling criterion of
MMHCRFs is easier to achieve than that of HCRFs. A more
rigorous analysis of these two different learning criteriawill
be an interesting and important future work.

5. Experiments

We test our algorithm on two widely used benchmark
datasets: the Weizmann human action dataset [3] and
the KTH human motion dataset [26]. Performance on
these benchmarks is saturating – state-of-the-art approaches
achieve near-perfect results. We show our method outper-
forms the HCRF model [32] and is comparable to other
state-of-the-art approaches. In order to do a fair compari-
son with [32], we use the same split of training/testing data.
We also use the same patch initialization technique in [32]
to find ten salient patches in each image. We setC = 1 for
MMHCRF in all the experiments.

Weizmann dataset: The Weizmann human action
dataset contains 83 video sequences showing nine dif-
ferent people, each performing nine different actions:
running, walking, jumping-jack, jumping-forward-on-two-
legs, jumping-in-place-on-two-legs, galloping-sideways,
waving-two-hands, waving-one-hand, bending. Similar to
[32], we learn our model with different sizes of possible
part labels,|H| = 6, 10, 20. During testing, our model per-
forms per-frame classification, then obtains the class label
for the video by majority voting.

The comparison with the HCRF model [32] is shown in
Table 1. Our model outperforms HCRF in all three cases.
The comparison with other approaches is summarized in Ta-
ble 2. We should emphasize that we do not attempt a direct
comparison, since Niebles& Fei-Fei [21] does not require
stabilization, and Blank et.al [3] uses a different measure-
ment (per-cube accuracy). We show the confusion matrix
of our approach with|H| = 10 for per-frame classification
in Fig. 2(a). The confusion matrix for per-video classifica-
tion is omitted, since it is just a perfect diagonal matrix.

KTH dataset: The KTH human motion dataset contains
six types of human actions: walking, jogging, running, box-
ing, hand waving and hand clapping. Again, we learn the
model with|H| = 6, 10, 20.

method |H|=6 |H|=10 |H|=20

HCRF
0.8682 0.9029 0.8557
0.9167 0.9722 0.9444

Our approach
0.8996 0.9311 0.8891
0.9722 1.0000 0.9722

Table 1. Comparison of our approach with the HCRF model [32]
on the Weizmann dataset. The first number in each cell is the
accuracy of per-frame classification. The second number is the
accuracy of per-video classification.

method per-frame per-video per-cube

Our method 0.9311 1.0000 N/A
Wang& Mori [32] 0.9029 0.9722 N/A
Jhuang et al. [13] N/A 0.9880 N/A

Niebles& Fei-Fei [21] 0.5500 0.7280 N/A
Blank et al. [3] N/A N/A 0.9964

Table 2. Comparison of classification accuracy with previous work
on the Weizmann dataset.

method |H|=6 |H|=10 |H|=20

HCRF
0.6633 0.6698 0.6444
0.7855 0.8760 0.7512

Our approach
0.7064 0.7853 0.7486
0.8475 0.9251 0.8966

Table 3. Comparison of our approach with the HCRF model on
the KTH dataset. The first number in each cell is the accuracy
of per-frame classification. The second number is the accuracy of
per-video classification.

method accuracy

Our method 0.9251
Liu & Shah [19] 0.9416
Jhuang et al. [13] 0.9170

Wang& Mori [32] 0.8760
Niebles et al. [22] 0.8150
Dollár et al. [9] 0.8117

Schuldt et al. [26] 0.7172
Table 4. Comparison of per-video classification accuracy with pre-
vious approaches on the KTH dataset.

The confusion matrices of our approach (with|H| = 10)
for both per-frame and per-video classification are shown
in Fig. 2(b,c). The comparison with the HCRF model is
summarized in Table 3. Again, our approach outperforms
the HCRF model.

The comparison with other approaches is summarized in
Table 4. Again, we would like to emphasize that this is
not a direct comparison, due to all sorts of variations of the
experiment setups in different methods listed in Table 4. We
only show the results to demonstrate that our approach is
comparable to other state-of-the-art methods.

6. Conclusion

We have presented the max-margin hidden conditional
random field – a learning framework for training multi-
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Figure 2. Confusion matrices of classification results on Weizmann and KTH dataset. The confusion matrix of per-video classification on
the Weizmann dataset is not shown, since it is simply a perfect diagonal matrix.

class classifiers with structured latent variables. We propose
an efficient learning algorithm based on the cutting plane
method and decomposed dual optimization. Our proposed
model is quite general and can be applied in a wide range of
latent structures, as long as we have an algorithm for solv-
ing the inference in Sec. 4.4. For a lot of vision applications,
this inference is easier than computing the summation over
all the latent variables, which is required by HCRF training.
Our experimental results show that the max-margin learn-
ing achieves better performance than the conditional likeli-
hood learning, which is consistent with similar findings in
the structured output learning literature [1, 28, 29].

As future work, we would like to apply our model in var-
ious vision problems that involve latent structures, and to
derive efficient approximation algorithms for general graph
structures, of which exact inference is intractable. We also
plan to further investigate the theoretical differences be-
tween the max-margin and the conditional likelihood learn-
ing criteria.
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