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Abstract

In this paper we consider the problem of describing the
action being performed by human figures in still images.
We will attack this problem using an unsupervised learning
approach, attempting to discover the set of action classes
present in a large collection of training images. These ac-
tion classes will then be used to label test images. Our ap-
proach uses the coarse shape of the human figures to match
pairs of images. The distance between a pair of images is
computed using a linear programming relaxation technique.
This is a computationally expensive process, and we employ
a fast pruning method to enable its use on a large collection
of images. Spectral clustering is then performed using the
resulting distances. We present clustering and image label-
ing results on a variety of datasets.

1. Introduction

Does a single image convey an action? Consider the
images in Figure 1. Even though only a single image is
available, an action is conveyed. Motion is definitely an im-
portant cue for action recognition, but even in still images
it is possible to discern actions. Moreover, many actions
(such as standing or sitting) are defined by a static body
pose, rather than a particular motion pattern. Hence, static
pose is an essential component of action recognition. In
this paper we will attempt to address this problem of action
recognition from still images.

The datasets which we use for our experiments are still
frames from figure skating video sequences, and collections
of sports news photographs (baseball and basketball) col-
lected from the Internet. We will assume that each image
contains human figure(s) performing some action. These
are certainly challenging datasets, particularly the sports
news photographs. A major challenge is that real-world
datasets of this variety contain a substantial amount of
“noise”, in the form of unrepeated or unusual actions. One

Figure 1. Examples of still images from our datasets. Even though
only a single image is available, it is still possible to perceive an
action being performed.

of the goals of this work is to try to discover what actions
are present in a particular dataset. To this end we will first
phrase the problem of action recognition as an unsupervised
learning problem, attempting to summarize the actions in a
dataset. We will do this by clustering images into groups
with people in similar body poses.

The main cue which we will try to exploit is the overall
shape of the human figure(s) present in an image. We will
represent shape as a collection of edges points, obtained via
Canny edge detection. We will use shape in order to have
a method which is less sensitive to the clothing worn by
different people.

At the heart of our method is a technique for deformable
matching of the edges of a pair of images, which will be
used to measure the distance between images. This method
is based upon a linear programming relaxation technique.
Even though it is effective, applying it to large collections of
images is computationally intractable. As such, we employ
a method for fast pruning which will quickly narrow down
the search to a shortlist of images which are likely to be
similar. The deformable matching is applied only to these
shortlisted images. Once we have obtained a sparse matrix
of distances between pairs of images, we will apply spectral
clustering to obtain our action classes.



Given these clusters of actions which can be discerned
using static body pose, we will manually assign them la-
bels. Prototypes from these clusters can then be used to
classify new images according to these labels. We perform
a quantitative evaluation of our method by measuring accu-
racy of this labeling relative to a control of random labels.
Promising results are shown on challenging datasets.

The structure of this paper is as follows. In Section 2
we review previous work. Section 3 gives an overview of
our approach. Sections 4, 5, and 6 describe the pruning, de-
formable matching, and clustering respectively. We show
clustering and image labeling results in Section 7, and con-
clude in Section 8.

2. Previous Work

The problem of activity recognition has received a large
amount of attention from the computer vision community.
Shah and Jain [15] provide a review of this body of work.
Much of this work is focussed on analyzing patterns of mo-
tion. For example, Cutler and Davis [5], and Polana and
Nelson [13] detect and classify periodic motions. Little and
Boyd [10] perform gait recognition by analyzing the peri-
odic structure of optical flow patterns. Rao et al. [14] de-
scribe a view-invariant representation for 2D trajectories of
tracked skin blobs. An incremental learning procedure is
used to automatically build a vocabulary of actions. Moore
et al. [11] use context provided by object detection to aid in
activity recognition.

Bobick and Davis [3] develop a representation known as
“Temporal Templates” that captures both motion and shape,
represented as evolving silhouettes. However, the extraction
of these silhouettes is based on background subtraction and
would not be applicable for this problem.

Our method considers the shape of the human figure,
represented as a collection of edges. Other similar work
includes Gavrila and Philomin [7], who consider pedestrian
images, and compare them by Chamfer matching on edge
maps. They present a method for automatically construct-
ing a hierarchy of pedestrian shapes, for the end goal of ef-
ficient detection. Sullivan and Carlsson [18] perform action
recognition by matching test images to labelled keyframes,
using “order structure” to compare the shape of extracted
edges.

The idea of attempting to discover the set of action
classes from a large collection of images is motivated by the
work of Sivic et al. [17] and Fergus et al. [6] who attempt to
discover object classes from collections of images.

For action recognition, in addition to the aforementioned
work of Rao et al. [14], Hoey [8] presents a method for un-
supervised learning of HMMs of facial expressions. Zhong
et al. [20] cluster segments of long video sequences by look-
ing at co-occurrences of patterns of motion and appear-
ance. Xiang and Gong [19] automatically discover activ-

ity classes from video sequences, modelled using a variant
of HMMs. Boiman and Irani [4] explain a video sequence
using patches from a database, declare non-matching com-
ponents to be unusual.

This work is also motivated by that of Berg et al. [2],
who detect faces in a large collection of news photographs,
and learn a mapping of names to faces, based on the names
contained in the associated captions. Some of our datasets
are also collections of news photographs. One might hy-
pothesize that the action verb contained in the caption cor-
responds to the action of the person in the image. Unfor-
tunately, we found this not to be the case. The caption fre-
quently refers to events at a coarser level of detail. For ex-
ample, a caption of “The New York Yankeesbeatthe Los
Angeles Dodgers”, does not indicate the presence of any
beating occurring in the actual image.

3. Approach

We will attempt to take a large collection of still im-
ages and form clusters corresponding to people in similar
body poses. Spectral clustering [16] will be used to com-
pute these clusters. In spectral clustering, withn images an
n-by-n affinity matrix W is constructed, whereWij stores
the affinity, or similarity between imagesi andj.

We desire a measure of affinity which will place a high
value on images of people in similar poses, and a low value
on those in dissimilar poses. As such, we will define a dis-
tance measure based on a deformable template matching
cost between a pair of images. We will then turn this dis-
tance into an affinity in the usual fashion, passing it through
an exponential.

The deformable template matching algorithm we use ex-
tracts a set of sample points from the edges in the images,
and tries to find an optimal assignment between these sam-
ple points in the two images. The distance for matching
one image to another is defined as a sum of two terms. The
first measures similarity between matched landmarks, and
the second measures relative spatial deformation between
pairs of landmarks. This matching problem is an instance
of an Integer Linear Programming (ILP) problem, which we
solve via relaxation to Linear Programming (LP) and iter-
atively making convex the original nonconvex first term of
the cost function within the current trust region, as done by
Jiang et al. [9].

This LP relaxation technique is very efficient, and our
implementation solves for the matching between a pair of
images in approximately 2-3 seconds. However, if we need
to build a 4000-by-4000 affinity matrix, it is intractable to
run this technique to compare every pair of images. Instead,
for each of ourn images, we will run a fast pruning method
to reduce the set of candidate matches down to a shortlist of
manageable size.

The fast pruning method we use is the representative



shape contexts algorithm [12], which uses the shape con-
text descriptor of Belongie et al. [1]. The shape context is a
large scale shape descriptor, and is useful for capturing the
coarse shape of objects. This coarse shape cue is adept at
capturing the rough overall body pose of the people in an
image. When constructing a shortlist of candidate matches,
this is the type of information we require.

There are definitely issues with using shape contexts in
this fashion. Since they are large scale descriptors, shape
contexts will be affected by background clutter. Also, for
reasons of efficiency, the representative shape contexts al-
gorithm disregards spatial structure, and simply attempts
to match individual shape contexts. We will be willing to
make these two sacrifices in order to have an efficient prun-
ing method. The deformable template matching algorithm
will attempt to remedy mistakes made by the shape context-
based pruning algorithm. It will use a larger set of differ-
ent, local scale descriptors, and will measure deformation
of spatial structure.

In the following sections we describe the details of the
pruning, deformable matching, and clustering algorithms.

4. Fast Pruning using Shape Contexts

The deformable matching process mentioned above is
computationally expensive. With a large set of images (our
datasets contain 1000s of images), performing an exhaus-
tive comparison between every pair of images is not fea-
sible. Instead, for each image we use an efficient pruning
algorithm to compute a shortlist of promising candidates.
Each image will only be compared to its small set of candi-
dates using the expensive deformable matching process.

In particular, we use therepresentative shape contexts
pruning algorithm [12] to construct this shortlist of candi-
dates. This method relies on the descriptive power of just a
few shape contexts. Given a pair of images of very different
human figures, such as a baseball pitcher throwing a ball,
and a batter swinging, none of the shape contexts from the
pitcher will have good matches on the batter – it is immedi-
ately obvious that they are different shapes. The representa-
tive shape contexts pruning algorithm uses this intuition to
efficiently construct a shortlist of candidate matches.

In concrete terms, the pruning process proceeds in the
following manner. For each imagei, we precompute a
large numbers (about 500) of shape contexts{SC

j
i : j =

1, 2, . . . , s}. When constructing a shortlist for imagei, we
only use a small subset of these shape contexts, of sizer

(r ≈ 5 − 10 in experiments), called representative shape
contexts (RSCs). To decide on the location of theser

RSCs we randomly selectr sample points from the edges
of the image via a rejection sampling method that spreads
the points over the entire image. To compute the distance
between imagei and another imagej, we find the best
matches for each of ther RSCs from imagei, using the

(a)

(b) (c)

Figure 2. Example of representative shape context method. (a)
Shows image from which 5 representative shape context (RSC)
locations (numbered in red) have been chosen. (b) and (c) show
best matches for each of the RSCs from (a). Images (b) and (c)
have similardS distances from (a). Note that spatial structure is
not preserved in image (b).

entire set of shape contexts for imagej.
We take the bestk of theser matches, denoted by the set

G, and the distance between imagesi andj is then:

dS(i, j) =
1

k

∑

u∈G

min
v

dSC(SCu
i , SCv

j ) (1)

wheredSC(·, ·) denotes the distance between a pair of shape
contexts.

We determine the shortlist by sorting these distances
dS(·, ·). Figure 3 shows some examples of shortlists re-
trieved via RSC pruning. Some of the images on the short-
list are of human figures in a similar pose to that of the query
image. Note that many of the errors are caused by the lack
of spatial structure when using RSC pruning, along with
background clutter corrupting the shape contexts. The sub-
sequent deformable matching stage will attempt to refine
this shortlist, using spatial structure and more local features.
Figure 2 illustrates an example of RSC matching.

5. Deformable Matching

The deformable template matching algorithm we use ex-
tracts a set of sample points from the edges in two images,
and tries to find an optimal matching of sample points in
one image to those in the other. The distance from one im-
age to another is the minimum, over all possible matchings,
of the energy functionE below. The energy function is de-
fined as a sum of two terms. The first measures similarity
between matched sample points, and the second measures
relative spatial deformation between pairs of sample points.
Note that this distance is not symmetric.

min
f

E :
∑

s∈S

c(s, fs) +
∑

{p,q}∈N

λp,q||(fp − p)− (fq − p)||

(2)



(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 3. Example shortlists. Column (a) shows query image,columns (b-i) columns show shortlist of candidate matches from represen-
tative shape context pruning. For baseball images, these are the first 8 entries of the shortlist. In the figure skating images, every second
shortlist image is shown since there is much redundancy due to temporal structure. In our experiments a shortlist of length 50 is kept for
each image. Human figures in poses similar to that in the queryimage are retrieved, along with some incorrect images. Examples such as
row 4 are common, and illustrate the difficulties in our datasets.

In this optimization problem,fs is the matched point in
the target image for feature points on a template; The cost
of matching feature points with target feature pointfs is de-
noted asc(s, fs). The second term in the objective function
is a regularity term, used to smooth the matching vectors for
neighbor feature points.λp,q are coefficients to control the
weight of the smoothness term. The norm|| · || is theL1

norm.
In our experiments, we first convert the binary edge maps

into gray-scale images by distance transformation.c(s, fs)
is measured by taking a small9 × 9 patch of pixels around
each feature point, and calculating the normalized sum of
absolute value distance between two patches.

The connectivity pattern among template sample points,
N , is the set of edges in the Delaunay triangulation of these
sample points. The weighting parameterλp,q is fixed at 0.8
for all pairs.

The energy optimization problem in Eq. 2 is nonlinear
and usually non-convex, which makes it difficult to solve in
this original form without a good initialization process. We

followed the convexification scheme of Jiang et al. [9] and
relax the problem into linear programming. To linearize the
first term, the following scheme is applied. A basisBs is se-
lected for the targets for each sites. Then the pointfs can be
represented as a linear combination of the target point basis
asfs =

∑
t∈Bs

ξs,t · t, whereξs,t are real-valued weighting
coefficients. The matching cost offs can then be approx-
imated by the linear combination of the cost of the basis
labeling costsc(s,

∑
t∈Bs

ξs,t · t) ≃
∑

t∈Bs

ξs,t · c(s, t).
We also further set constraintsξs,j ≥ 0 and

∑
j∈Bs

ξs,j = 1
for each sites. Apparently, ifξs,j are constrained to be 1 or
0, and the basis contains all the target points, the above rep-
resentation becomes exact. To linearize the regularity terms
in the nonlinear formulation we can represent a variable in
the absolute value term by the difference of two nonnegative
auxiliary variables and introduce the summation of the aux-
iliary variables into the objective function. If the problem
is properly formulated, when the linear programming prob-
lem is optimized the summation will approach the absolute
value of the free variable.



Based on this linearization process, a linear program-
ming approximation of the problem can be stated as

min LP :
∑

s∈S

∑

j∈Bs

c(s, j) · ξs,j +

∑

{p,q}∈N

λp,q

2∑

m=1

(f+
p,q,m + f−

p,q,m) (3)

s.t.
∑

j∈Bs

ξs,j = 1, ∀s ∈ S (4)

∑

j∈Bs

ξs,j · φm(j) = fs,m, ∀s ∈ S, m = 1, 2 (5)

fp,m − φm(p) − fq,m + φm(q) = f+
p,q,m − f−

p,q,m, (6)

∀ {p,q} ∈ N , m = 1, 2 (7)

ξs,j, f+
p,q,m, f−

p,q,m ≥ 0 (8)

wherefs = (fs,1, fs,2) and functionφm returns themth
component of its argument. When the linear program is op-
timized, we have eitherf+

p,q,m or f−
p,q,m will become zero,

and thus|fp,m−φm(p)−fq,m+φm(q)| = f+
p,q,m+f−

p,q,m.
The linear program in fact convexifies the matching cost

surfacec(s, t) for each sites. By fixing s, c(s, t) is a surface
with respect tot, and the surface is replaced by its lower
convex hull for each site implicitly by the linear program.
Because of this property, we can choose the most compact
basis setBs by using only the target points corresponding
to the vertices of the lower convex hull surface for eachs.
This number is usually much smaller than the whole target
set and enable more efficient searching. It is not difficult to
show that any basic feasible solution of the linear program
has at most 3 basic variables fromξ of each site. There-
fore, when using the simplex method, there will be at most
3 nonzero-weight basis targets for each site. This makes the
searching process efficient. To further refine the matching,
instead of using one step relaxation, we iteratively shrink
the the matching trust region and build new LP relaxations
in the smaller regions. In most cases, 3 to 4 iterations are
involved.

A standard simplex method is used to solve the LP prob-
lem. The estimate of the average complexity of successive
linear programming isO(|S| · |Q|1/2 · (log |Q| + log |S|)),
whereS is the template point set andQ is the target point
set. Experiments also confirm that the average complexity
of the proposed optimization scheme increases more slowly
with the size of target point set than other methods whose
average complexity is usually linear with respect to|Q|.

6. Clustering

We use spectral clustering [16] to cluster the images into
groups of similar body poses. Spectral clustering requires

an n-by-n affinity matrix, wheren is the number of im-
ages. Each entryWij is calculated ase−d2

ij/h, wheredij

is the distance from imagei to j obtained from the de-
formable matching in section 5. We notice thatdij might
not be available, anddij anddji may not be equal, so we

setWij ase−(
dij+dji

2
)2/h if both dij anddji are available,

ase−d2
ij/h(or e−d2

ji/h) if one of them is available, as 0 if
neither is available. Since we only compute the deformable
matching for an image to a shortlist of candidate images,
most of the entries inW are zeros. So we can use eigen-
solvers for sparse matrices to find its top eigenvectors.

7. Experimental Results

We applied our clustering algorithm to three datasets.
The first is a collection of images from six videos of differ-
ent figure skaters. These videos were automatically filtered,
frames with complicated backgrounds (consisting of a large
number of edges) were removed, resulting in a simplified
set of 1400 images. These images were further processed to
automatically remove background clutter. A Hough trans-
form was used to remove extended straight lines that typi-
cally correspond to the boards of the rink.

The second two datasets, of baseball and basketball
sports news images, consist of 4500 and 8500 images re-
spectively. These images were collected by querying the
captions of sports news photos for professional sports team
names. These datasets are significantly more challenging
than the figure skating set, containing substantial back-
ground clutter, and a wide range of content.

7.1. Clustering Results

We choose the number of clusters to be between 100 and
200, then sort the clusters based on the average distances to
their respective cluster centers and manually look through
the first 50 clusters. Sample images in some clusters being
found are shown in Figure 4, Figure 5, and Figure 6, where
each row corresponds to a cluster.

Qualitatively, the clustering results for the figure skating
dataset are quite good. The clusters in Figure 4 are typical,
and most clusters consist of people performing the same ac-
tion, with a few outliers.

The baseball and especially basketball datasets prove
substantially more challenging. Approximately 10-15 rea-
sonable clusters appear among the first 50 for each of these
datasets. There is enough repetition in the baseball images
so that clusters containing a single person performing ac-
tions such as throwing, swinging, and sliding are found.
The basketball images almost always contain multiple peo-
ple, and the actions are not as stereotyped as baseball, and
hence are difficult to cluster.

We also tried Chamfer matching instead of our de-
formable matching for the matching cost. Since Chamfer



matching cannot handle large deformation or background
clutter, usually there are almost no clear clusters, unlessall
the images in a cluster are almost identical.

In the next section, we attempt to use good clusters,
which are manually selected, to label new images. This will
give us a quantitative evaluation of how well our method is
working.

7.2. Image labeling

We also use the manually selected clusters for the task
of automatic image labeling. Firstly, we assign each cluster
a short text description. The figure skating clusters were
given the following 10 labels: face close-up picture, skates
with arms down, skates with one arm out, skater leans to his
right, skates with both arms out, skates on one leg, sit spin
leg to left of image, sit spin leg to right of image, camel spin
leg to left of image, camel spin leg to right of image.

The baseball clusters were given 7 labels: face close-up
picture, right-handed pitcher throws, right-handed pitcher
cocks his arm to throw, runner slides into base, team cele-
brates, batter swings, batter finished swinging.

The basketball clusters were given the following 8 labels:
a player goes for a lay-up above the defenders, a player goes
for a lay-up against a defender, a player goes for a jumpshot
while another one tries to block, a player goes for a lay-up
leaning to his right, a player drives past another, a player
has his shot blocked, a player leaps by his defender for a
shot, a player posts up.

For each new test image, we match it to one of the clus-
ters using k nearest neighbor method. Then the text descrip-
tion of that cluster is used to describe this new image. The
quality of the matching is measured by the ratio of the im-
ages in the cluster that match this test image. This gives us
a measure of confidence in each matching.

We sort the test images according to this quality of
matching to their respective clusters, and present these au-
tomatically selected top 100 test images to a set of naive
human subjects for evaluation. Examples of these selected
images and their labels are shown in Figure 7. The human
subjects are shown in advance the set of available captions
for the dataset, in addition to an “other” caption. The sub-
jects are then asked, for each image, whether the given cap-
tion is the best possible caption for the image. For a control,
we did the same thing by randomly assigning the text de-
scription to test images, and asking the human subjects for
their opinions on these randomly assigned labels.

Quantitative results of this labeling are presented in Fig-
ure 8. The x-axis shows the number of test images matched,
and the y-axis shows cumulative accuracy. For example, a
point (20,0.65) means that of the 20 images which our algo-
rithm automatically decides are the best matching 20 of our
test set, 65% of them are correctly labelled according to our
human observers.
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Figure 8. Quantitative results on image labeling.

Results are averaged across 4 trials of naive observers.
The labeling results of our algorithm are significantly above
chance performance, and achieve reasonable accuracy rates
for the high quality matching images. Performance defi-
nitely degrades as we move further into the lower quality
matching images.

This experiment suggests that our method has potential
as a method of labeling and summarizing the repetitive ac-
tions in a large collection of images, and could be effective
for image retrieval applications.

8. Conclusion

In this paper we have presented a method for discover-
ing classes of actions in collections of still images by clus-
tering images of people in similar body poses. We use
spectral clustering, which requires making pairwise com-
parisons between images. The technique for making these
pairwise comparisons is a deformable template matching
scheme which is computationally expensive. As such, we
employ a fast pruning method based on shape contexts to
speed up the search for similar images.

In experiments on three challenging datasets, we have
demonstrated that it is possible to extract some clusters of
repetitive actions. By no means do we claim to have a
method that can accurately label all images. However, we
believe we have made progress on the interesting and diffi-
cult problem of action recognition from a single image.
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