
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL., NO. 1

Hidden Part Models for Human Action
Recognition: Probabilistic vs. Max-Margin
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Abstract—We present a discriminative part-based approach for human action recognition from video sequences using motion features.
Our model is based on the recently proposed hidden conditional random field (HCRF) for object recognition. Similar to HCRF for
object recognition, we model a human action by a flexible constellation of parts conditioned on image observations. Different from
object recognition, our model combines both large-scale global features and local patch features to distinguish various actions. Our
experimental results show that our model is comparable to other state-of-the-art approaches in action recognition. In particular, our
experimental results demonstrate that combining large-scale global features and local patch features performs significantly better than
directly applying HCRF on local patches alone. We also propose an alternative for learning the parameters of an HCRF model in a max-
margin framework. We call this method the max-margin hidden conditional random field (MMHCRF). We demonstrate that MMHCRF
outperforms HCRF in human action recognition. In addition, MMHCRF can handle a much broader range of complex hidden structures
arising in various problems in computer vision.

Index Terms—Human action recognition, part-based model, discriminative learning, max-margin, hidden conditional random field
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1 INTRODUCTION

A good image representation is the key to the solution
of many recognition problems in computer vision. In
the literature, there has been a lot of work on designing
good image representations (i.e. features). Different im-
age features typically capture different aspects of image
statistics. Some features (e.g. GIST [1]) capture the global
scene of a image, while others (e.g. SIFT [2]) capture the
image statistics of local patches.

A primary goal of this work is to address the fol-
lowing question: is there a principled way to combine
both large scale and local patch features? This is an
important question in many visual recognition problems.
The work in [3] has shown the benefit of combining
large scale features and local patch features for object
detection. In this paper, we apply the same intuition to
the problem of recognizing human actions from video
sequences. In particular, we represent a human action by
combining large-scale template features and part-based
local features in a principled way, see Fig. 1.

Recognizing human actions from videos is a task of
obvious scientific and practical importance. In this paper,
we consider the problem of recognizing human actions
from video sequences on a frame-by-frame basis. We
develop a discriminatively trained hidden part model
to represent human actions. Our model is inspired by
the hidden conditional random field (HCRF) model [4]
in object recognition.
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Fig. 1. High-level overview of our model: a human action
is represented by the combination of large-scale template
feature (we use optical flow in this work) and a collection
of local “parts”. Our goal is to unify both features in a
principled way for action recognition.

In object recognition, there are three major represen-
tations: global template (rigid, e.g. [5], or deformable,
e.g. [6]), bag-of-words [7], and part-based [3], [8]. All
three representations have been shown to be effective
on certain object recognition tasks. In particular, recent
work [3] has shown that part-based models outperform
global templates and bag-of-words on challenging object
recognition tasks.

A lot of the ideas used in object recognition can
also be found in action recognition. For example, there
is work [9] that treats actions as space-time shapes
and reduces the problem of action recognition to 3D
object recognition. In action recognition, both global
template [10] and bag-of-words models [11]–[14] have
been shown to be effective on certain tasks. Although
conceptually appealing and promising, the merit of part-
based models has not yet been widely recognized in
action recognition. One goal of this work is to address
this issue, and to show the benefits of combining large-
scale global template features and part models based on
local patches.
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A major contribution of this work is that we combine
the flexibility of part-based approaches with the global
perspectives of large-scale template features in a dis-
criminative model for action recognition. We show that
the combination of part-based and large-scale template
features improves the final results.

Another contribution of this paper is to introduce a
new learning method for training HCRF models based
on the max-margin criterion. The new learning method,
which we call the Max-Margin Hidden Conditional Ran-
dom Field(MMHCRF), is based on the idea of latent
SVM (LSVM) in [3]. The advantage of MMHCRF is
that the model can be solved efficiently for a large
variety of complex hidden structures. The difference
between our approach and LSVM is that we directly
deal with multi-class classification, while LSVM in [3]
only deals with binary classification. It turns out the
multi-class case cannot be easily solved using the off-
the-shelf SVM solver, unlike LSVM. Instead, we develop
our own optimization technique for solving our problem.
Furthermore, we directly compare probabilistic vs. max-
margin learning criteria on identical models. We provide
both experimental and theoretical evidences for the ef-
fectiveness of the max-margin learning.

Previous versions of this paper are published in [15]
and [16]. The rest of this paper is organized as follows.
Section 2 reviews previous work. Section 3 introduces
our hidden part model for human action recognition,
based on the hidden conditional random field. Section 3
also gives the details of learning and inference in HCRF.
Section 4 presents a new approach called the Max Margin
Hidden Conditional Random Field (MMHCRF) for learning
the parameters in the hidden part model proposed in
Section 3. In Section 5, we give a detailed analysis and
comparison of HCRF and MMHCRF from a theoretical
point of view. We present our experimental results on
two benchmark datasets in Sec. 6 and conclude in Sec. 7.

2 RELATED WORK

A lot of work has been done in recognizing actions
from video sequences. Much of this work is focused
on analyzing patterns of motion. For example, Cutler &
Davis [17], and Polana & Nelson [18] detect and classify
periodic motions. Little & Boyd [19] analyze the periodic
structure of optical flow patterns for gait recognition.
Rao et al. [20] describe a view-invariant representation
for 2D trajectories of tracked skin blobs. There is also
work using both motion and shape cues. For example,
Bobick & Davis [21] use a representation known as
“temporal templates” to capture both motion and shape,
represented as evolving silhouettes. Nowozin et al. [13]
find discriminative subsequences in videos for action
recognition. Jhuang et al. [22] develop a biologically
inspired system for action recognition.

Recently space-time interest points [23] were intro-
duced into the action recognition community [14]. Most
of the approaches use bag-of-words representation to

model the space-time interest points [11], [12], [14]. This
representation suffers the same drawbacks as their 2D
analogies in object recognition, i.e., spatial information
is ignored. There is also some recent work [24] that tries
to combine space-time interest points with a generative
model similar to the constellation model [25] in object
recognition.

Our work is partly inspired by a recent work in
part-based event detection [26]. In that work, template
matching is combined with a pictorial structure model
to detect and localize actions in crowded videos. One
limitation of that work is that one has to manually
specify the parts. Unlike Ke et al. [26], the parts in our
model are initialized automatically.

Our work is also related to discriminative learning
methods in machine learning, in particular, learning with
structured outputs [27]–[30] and latent variables [3], [4].

3 HIDDEN CONDITIONAL RANDOM FIELDS
FOR HUMAN ACTIONS

Our part-based representation for human actions is in-
spired by the hidden conditional random field model [4],
which was originally proposed for object recognition and
has also been applied in sequence labeling. Objects are
modeled as flexible constellations of parts conditioned
on the appearances of local patches found by interest
point operators. The probability of the assignment of
parts to local features is modeled by a conditional ran-
dom field (CRF) [27]. The advantage of the HCRF is
that it relaxes the conditional independence assumption
commonly used in the bag-of-words approaches of object
recognition. In standard bag-of-words approaches, all
the local patches in an image are independently of each
other given the class label. This assumption is somewhat
restrictive. The HCRF relaxes this assumption by allow-
ing nearby patches to interact with each other.

Similarly, local patches can also be used to distinguish
actions. Figure. 6(a) shows some examples of human
motion and the local patches that can be used to dis-
tinguish them. A bag-of-words representation can be
used to model these local patches for action recognition.
However, it suffers from the same restriction of condi-
tional independence assumption that ignores the spatial
structures of the parts. In this work, we use similar ideas
to model the constellation of these local patches in order
to alleviate this restriction.

There are also some important differences between
objects and actions. For objects, local patches could carry
enough information for recognition. But for actions, we
believe local patches are not sufficiently informative. In
our approach, we modify the HCRF model to combine
local patches and large-scale global features. The large-
scale global features are represented by a root model that
takes the frame as a whole. Another important difference
with [4] is that we use the learned root model to find
discriminative local patches, rather than using a generic
interest-point operator.
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3.1 Motion Features

Our model is built upon the optical flow features in [10].
This motion descriptor has been shown to perform reli-
ably with noisy image sequences, and has been applied
in various tasks, such as action classification, motion
synthesis, etc.

To calculate the motion descriptor, we first need to
track and stabilize the persons in a video sequence. Any
reasonable tracking or human detection algorithm can
be used, since the motion descriptor we use is very
robust to jitters introduced by the tracking. Given a
stabilized video sequence in which the person of interest
appears in the center of the field of view, we compute the
optical flow at each frame using the Lucas-Kanade [31]
algorithm. The optical flow vector field F is then split
into two scalar fields Fx and Fy , corresponding to the
x and y components of F . Fx and Fy are further half-
wave rectified into four non-negative channels F+

x , F−
x ,

F+
y , F−

y , so that Fx = F+
x − F−

x and Fy = F+
y − F−

y .
These four non-negative channels are then blurred with
a Gaussian kernel and normalized to obtain the final four
channels Fb+x ,Fb−x ,Fb+y ,Fb−y (see Fig. 2).

3.2 Hidden Part Model

Now we describe how we model a frame I in a video
sequence. Let x be the motion feature of this frame, and
y be the corresponding class label of this frame, ranging
over a finite label alphabet Y . Our task is to learn a
mapping from x to y. We assume each image I contains
a set of salient patches {I1, I2, ..., Im}. we will describe
how to find these salient patches in Sec. 3.3. Our training
set consists of labeled images 〈x(t), y(t)〉 (as a notation
convention, we use superscripts in brackets to index
training images and subscripts to index patches) for

t = 1, 2, ..., N , where y(t) ∈ Y and x
(t) = (x

(t)
1 , x

(t)
2 ..., x

(t)
m ).

x
(t)
i = x

(t)(I
(t)
i ) is the feature vector extracted from the

global motion feature x
(t) at the location of the patch

I
(t)
i . For each image I = {I1, I2, ..., Im}, we assume

there exists a vector of hidden “part” variables h =
{h1, h2, ..., hm}, where each hi takes values from a finite
set H of possible parts. Intuitively, each hi assigns a part
label to the patch Ii, where i = 1, 2, ...,m. For example,
for the action “waving-two-hands”, these parts may be
used to characterize the movement patterns of the left
and right arms. The values of h are not observed in the
training set, and will become the hidden variables of the
model.

We assume there are certain constraints between some
pairs of (hj , hk). For example, in the case of “waving-
two-hands”, two patches hj and hk at the left hand might
have the constraint that they tend to have the same part
label, since both of them are characterized by the move-
ment of the left hand. If we consider hi(i = 1, 2, ...,m) to
be vertices in a graph G = (E ,V), the constraint between
hj and hk is denoted by an edge (j, k) ∈ E . See Fig. 3
for an illustration of our model. Note that the graph

structure can be different for different images. We will
describe how to find the graph structure E in Sec. 3.3.

y

x

hkhi

xi

xj

xk

hj

φ(·)

ϕ(·)
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Fig. 3. Illustration of the model. Each circle corresponds
to a variable, and each square corresponds to a factor in
the model.

Given the motion feature x of an image I , its cor-
responding class label y, and part labels h, a hidden
conditional random field is defined as

p(y,h|x; θ) =
exp(θ⊤ · Φ(x,h, y))

∑

ŷ∈Y

∑

ĥ∈Hm exp(θ⊤ · Φ(x, ĥ, ŷ))

where θ is the model parameter, and Φ(y,h,x) is a
feature vector depending on the motion feature x, the
class label y, and the part labels h. We use Hm to denote
the set of all the possible labelings of m hidden parts. It
follows that

p(y|x; θ) =
∑

h∈Hm

p(y,h|x; θ)

=

∑

h∈Hm exp(θ⊤ · Φ(x,h, y))
∑

ŷ∈Y

∑

h∈Hm exp(θ⊤ · Φ(x,h, ŷ))

We assume θ⊤ · Φ(y,h,x) has the following form:

θ⊤ · Φ(h,x, y) =
∑

j∈V

α⊤ · φ(xj , hj) +
∑

j∈V

β⊤ · ϕ(y, hj)

+
∑

(j,k)∈E

γ⊤ · ψ(y, hj, hk) + η⊤ · ω(y,x) (1)

where φ(·) and ϕ(·) are feature vectors depending on
unary hj’s, ψ(·) is a feature vector depending on pairs
of (hj , hk), ω(·) is a feature vector that does not depend
on the values of hidden variables. The details of these
feature vectors are described in the following.

Unary potential α⊤ ·φ(xj , hj) : This potential function
models the compatibility between xj and the part label
hj , i.e., how likely the patch xj is labeled as part hj . It
is parametrized as

α⊤ · φ(xj , hj) =
∑

c∈H

α⊤
c · 1{hj=c} · [f

a(xj) f
s(xj)] (2)

where we use [fa(xj) f
s(xj)] to denote the concate-

nation of two vectors fa(xj) and fs(xj). f
a(xj) is a

feature vector describing the appearance of the patch
xj . In our case, fa(xj) is simply the concatenation of
four channels of the motion features at patch xj , i.e.,
fa(xj) = [Fb+x (xj) Fb

−
x (xj) Fb

+
y (xj) Fb

−
y (xj)]. f

s(xj) is
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(a) (b) (c) (d) (e)

Fig. 2. Construction of the motion descriptor. (a) original image; (b) optical flow; (c) x and y components of optical
flow vectors Fx, Fy ; (d) half-wave rectification of x and y components to obtain 4 separate channels F+

x , F
−
x , F

+
y , F

−
y ;

(e) final blurry motion descriptors Fb+x , F b
−
x , F b

+
y , F b

−
y .

a feature vector describing the spatial location of the
patch xj . We discretize the whole image locations into l

bins, and fs(xj) is a length l vector of all zeros with a
single one for the bin occupied by xj . The parameter αc

can be interpreted as the measurement of compatibility
between feature vector [fa(xj) f

s(xj)] and the part label
hj = c. The parameter α is simply the concatenation of
αc for all c ∈ H.

Unary potential β⊤ · ϕ(y, hj) : This potential function
models the compatibility between class label y and part
label hj , i.e., how likely an image with class label y
contains a patch with part label hj . It is parametrized
as

β⊤ · ϕ(y, hj) =
∑

a∈Y

∑

b∈H

βa,b · 1{y=a} · 1{hj=b} (3)

where βa,b indicates the compatibility between y = a and
hj = b.

Pairwise potential γ⊤ · ψ(y, hj , hk): This pairwise po-
tential function models the compatibility between class
label y and a pair of part labels (hj , hk), i.e., how likely
an image with class label y contains a pair of patches
with part labels hj and hk, where (j, k) ∈ E corresponds
to an edge in the graph. It is parametrized as

γ⊤·ψ(y, hj, hk) =
∑

a∈Y

∑

b∈H

∑

c∈H

γa,b,c·1{y=a}·1{hj=b}·1{hk=c}

(4)
where γa,b,c indicates the compatibility of y = a, hj = b

and hk = c for the edge (j, k) ∈ E .
Root model η⊤ ·ω(y,x): The root model is a potential

function that models the compatibility of class label y
and the large-scale global feature of the whole image. It
is parametrized as

η⊤ · ω(y,x) =
∑

a∈Y

η⊤a · 1{y=a} · g(x) (5)

where g(x) is a feature vector describing the appearance
of the whole image. In our case, g(x) is the concatenation
of all the four channels of the motion features in the
image, i.e., g(x) = [Fb+x Fb−x Fb+y Fb−y ]. ηa can be inter-
preted as a root filter that measures the compatibility
between the appearance of an image g(x) and a class
label y = a. And η is simply the concatenation of ηa for
all a ∈ Y .

The parametrization of θ⊤ · Φ(y,h,x) is similar to
that used in object recognition [4]. But there are two
important differences. First of all, our definition of the
unary potential function φ(·) encodes both appearance
and spatial information of the patches. Secondly, we
have a potential function ω(·) describing the large scale
appearance of the whole image. The representation in
Quattoni et al. [4] only models local patches extracted
from the image. This may be appropriate for object
recognition. But for human action recognition, it is not
clear that local patches can be sufficiently informative.
We will demonstrate this experimentally in Sec. 6.

3.3 Learning and Inference

Let D = (〈x(1), y(1)〉, 〈x(2), y(2)〉, ..., 〈x(N), y(N)〉) be a set
of labeled training examples, the model parameters θ are
learned by maximizing the conditional log-likelihood on
the training images:

θ∗ = argmax
θ

L(θ) = argmax
θ

N
∑

t=1

Lt(θ)

= arg max
θ

N
∑

t=1

log p(y(t)|x(t); θ)

= arg max
θ

N
∑

t=1

log

(

∑

h

p(y(t),h|x(t); θ)

)

(6)

where Lt(θ) denotes the conditional log-likelihood of the
t-th training example, and L(θ) denotes the conditional
log-likelihood of the whole training set D. Different
from conditional random field (CRF) [27], the objective
function L(θ) of HCRF is not concave, due to the hidden
variables h. But we can still use gradient ascent to find
θ that is locally optimal. The gradient of the conditional
log-likelihood Lt(θ) with respect to the t-th training
image (x(t), y(t)) can be calculated as:

∂Lt(θ)

∂α
=

∑

j∈V

[

Ep(hj |y(t),x(t);θ)φ(x
(t)
j , hj)

−Ep(hj,y|x(t);θ)φ(x
(t)
j , hj)

]

∂Lt(θ)

∂β
=

∑

j∈V

[

Ep(hj |y(t),x(t);θ)ϕ(hj , y
(t))
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−Ep(hj ,y|x(t);θ)ϕ(hj , y)
]

∂Lt(θ)

∂γ
=

∑

(j,k)∈E

[

Ep(hj ,hk|y(t),x(t);θ)ψ(y(t), hj , hk)

−Ep(hj ,hk,y|x(t);θ)ψ(y, hj , hk)
]

∂Lt(θ)

∂η
= ω(y(t),x(t)) − Ep(y|x(t);θ)ω(y,x(t)) (7)

The expectations needed for computing the gradient can
be obtained by belief propagation [4].

3.4 Implementation Details

Now we describe several details about how the above
ideas are implemented.

Learning root filter η: Given a set of training images
〈x(t), y(t)〉, we firstly learn the root filter η by solving the
following optimization problem:

η∗ = argmax
η

N
∑

t=1

logLroot(y(t)|x(t); η)

= argmax
η

N
∑

t=1

log
exp

(

η⊤ · ω(y(t),x(t))
)

∑

y exp
(

η⊤ · ω(y,x(t))
) (8)

In other words, η∗ is learned by only considering the fea-
ture vector ω(·). This reduces the number of parameters
need to be considered initially. Similar tricks have been
used in [3], [32]. We then use η∗ as the starting point for
η in the gradient ascent (Eq. 7). Other parameters α, β,
γ are initialized randomly.

Patch initialization: We use a simple heuristic similar
to that used in [3] to initialize ten salient patches on
every training image from the root filter η∗ trained
above. For each training image I with class label a, we
apply the root filter ηa on I , then select an rectangle
region of size 5 × 5 in the image that has the most
positive energy. We zero out the weights in this region
and repeat until ten patches are selected. See Fig. 6(a) for
examples of the patches found in some images. The tree
G = (V , E) is formed by running a minimum spanning
tree algorithm over the ten patches.

Inference: During testing, we do not know the class
label of a given test image, so we cannot use the patch
initialization described above to initialize the patches,
since we do not know which root filter to use. In-
stead, we run root filters from all the classes on a test
image, then calculate the probabilities of all possible
instantiations of patches under our learned model, and
classify the image by picking the class label that gives
the maximum of the these probabilities.

4 MAX-MARGIN HIDDEN CONDITIONAL RAN-
DOM FIELDS

In this section, we present an alternative training method
for learning the model parameter θ. Our learning method
is inspired by the success of max-margin methods in
machine learning [3], [28], [30], [33]. Given a learned

model, the classification is achieved by first finding the
best labeling of the hidden parts for each action, then
picking the action label with the highest score. The
learning algorithm aims to set the model parameters so
that the scores of correct action labels on the training
data are higher than the scores of incorrect action labels
by a large margin. We call our approach Max-Margin
Hidden Conditional Random Fields (MMHCRF).

4.1 Model Formulation

We assume an 〈x, y〉 pair is scored by a function of the
form:

fθ(x, y) = max
h

θ⊤Φ(x,h, y) (9)

Similar to HCRF, θ is the model parameter and h is
a vector of hidden variables. Please refer to Sec. 3.2
for details description of θ⊤Φ(x,h, y). In this paper, we
consider the case in which h = (h1, h2, ..., hm) forms
a tree-structured undirected graphical model, but our
proposed model is a rather general framework and can
be applied to a wide variety of structures. We will
briefly discuss them in Sec. 4.4. Similar to latent SVMs,
MMHCRFs are instances of the general class of energy-
based models [34].

The goal of learning is to learn the model parameter
θ, so that for a new example x, we can classify x to be
class y∗ if y∗ = arg maxy f(x, y).

In analogy to classical SVMs, we would like to train
θ from labeled examples D by solving the following
optimization problem:

min
θ,ξ

1

2
||θ||2 + C

N
∑

t=1

ξ(t)

s.t. fθ(x
(t), y) − fθ(x

(t), y(t)) ≤ ξ(t) − 1, ∀t, ∀y 6= yt

ξ(t) ≥ 0, ∀t (10)

where C is the trade-off parameter similar to that in
SVMs, and ξ(t) is the slack variable for the t-th training
example to handle the case of soft margin.

The optimization problem in (10) is equivalent to the
following optimization problem:

min
θ,ξ

1

2
||θ||2 + C

N
∑

t=1

ξ(t)

s.t. max
h

θ⊤Φ(x(t),h, y) − max
h′

θ⊤Φ(x(t),h′, y(t))

≤ ξ(t) − δ(y, y(t)), ∀t, ∀y

where δ(y, y(t)) =

{

1 if y 6= y(t)

0 otherwise
(11)

An alternative to the formulation in Eq. 11 is to convert
the multi-class classification problem into several binary
classifications (e.g. one-against-all), then solve each of
them using LSVM. Although this alternative is simple
and powerful, it cannot capture correlations between dif-
ferent classes since those binary problems are indepen-
dent [33]. We will demonstrate experimentally (Sec. 6)
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that this alternative does not perform as well as our
proposed method.

4.2 Semi-Convexity and Primal Optimization

Similar to LSVMs, MMHCRFs have the property of semi-
convexity. Note that fθ(x, y) is a maximum of a set of
functions, each of which is linear in θ, so fθ(x, y) is
convex in θ. If we restrict the domain of h

′ in (11) to a
single choice, the optimization problem of (11) becomes
convex [35]. This is in analog to restricting the domain of
the latent variables for the positive examples to a single
choice in LSVMs [3]. But here we are dealing with multi-
class classification, our “positive examples” are those
〈x(t), y〉 pairs where y = y(t).

We can compute a local optimum of (11) using a
coordinate descent algorithm similar to LSVMs [3]:

1) Holding θ, ξ fixed, optimize the latent variables h
′

for the 〈x(t), y(t)〉 pair:

h
(t)

y(t) = argmax
h′

θ⊤Φ(x(t),h′, y(t))

2) Holding h
(t)

y(t) fixed, optimize θ, ξ by solving the
following optimization problem:

min
θ,ξ

1

2
||θ||2 + C

N
∑

t=1

ξ(t)

s.t. max
h

θ⊤Φ(x(t),h, y) − θ⊤Φ(x(t),h
(t)

y(t) , y
(t))

≤ ξ(t) − δ(y, y(t)), ∀t, ∀y (12)

It can be shown that both steps always improve or
maintain the objective [3].

The optimization problem in Step 1 can be solved
efficiently for certain structures of h

′ (see Sec. 4.4 for
details). The optimization problem in Step 2 involves
solving a quadratic program (QP) with piecewise linear
constraints. Although it is possible to solve it directly
using barrier methods [35], we will not be able to take
advantage of existing highly optimized solvers (e.g.,
CPLEX) which only accept linear constraints. It is desir-
able to convert (12) into a standard quadratic program
with only linear constraints.

One possible way to convert (12) into a standard QP
is to solve the following convex optimization problem:

min
θ,ξ

1

2
||θ||2 + C

N
∑

t=1

ξ(t)

s.t. θ⊤Φ(x(t),h, y) − θ⊤Φ(x(t),h
(t)

y(t) , y
(t))

≤ ξ(t) − δ(y, y(t)), ∀t, ∀h, ∀y (13)

It is easy to see that (12) and (13) are equivalent, and
all the constraints in (13) are linear. Unfortunately, the
optimization problem in (13) involves an exponential
number of constraints – for each example x

(t) and each
possible labeling y, there are exponentially many possi-
ble h’s.

We would like to perform optimization over a much
smaller set of constraints. One solution is to use a
cutting plane algorithm similar to that used in struc-
tured SVMs [30] and CRFs [36]. In a nutshell, the al-
gorithm starts with no constraints (which corresponds
to a relaxed version of (13)), then iteratively finds the
“most violated” constraints and adds those constraints.
It can be shown that this algorithm computes arbitrarily
close approximation to the original problem of (13) by
evaluating only a polynomial number of constraints.

More importantly, the optimization problem in (13)
has certain properties that allow us to find and add
constraints in an efficient way. For a fixed example x

(t)

and a possible label y, define h
(t)
y as follows:

h
(t)
y = argmax

h

θ⊤Φ(x(t),h, y)

Consider the following two set of constraints for the
〈x(t), y〉 pair:

θ⊤Φ(x(t),h(t)
y , y) − θ⊤Φ(x(t),h

(t)

y(t) , y
(t))

≤ ξ(t) − δ(y, y(t)) (14)

θ⊤Φ(x(t),h, y) − θ⊤Φ(x(t),h
(t)

y(t) , y
(t))

≤ ξ(t) − δ(y, y(t)), ∀h (15)

It is easy to see that within a local neighborhood of θ,
(14) and (15) define the same set of constraints, i.e., (14)
implies (15) and vice versa. This suggests that for a fixed
〈x(t), y〉 pair, we only need to consider the constraint

involving h
(t)
y .

Putting everything together, we learn the model pa-
rameter θ by iterating the following two steps.

1) Fixing θ, ξ, optimize the latent variable h for each
pair 〈x(t), y〉 of an example x

(t) and a possible
labeling y:

h
(t)
y = argmax

h

θ⊤Φ(x(t),h, y)

2) Fixing h
(t)
y ∀t, ∀y, optimize θ, ξ by solving the

following optimization problem:

min
θ,ξ

1

2
||θ||2 + C

N
∑

t=1

ξ(t)

s.t. θ⊤Φ(x(t),h(t)
y , y) − θ⊤Φ(x(t),h

(t)

y(t) , y
(t))

≤ ξ(t) − δ(y, y(t)), ∀t, ∀y (16)

Step 1 in the above algorithm can be efficiently solved
for certain structured h (Sec. 4.4). Step 2 involves solving
a quadratic program with N × |Y| constraints.

The optimization in (16) is very similar to the primal
problem of a standard multi-class SVM [33]. In fact, if

h
(t)
y is the same for different y’s, it is just a standard

SVM and we can use an off-the-shelf SVM solver to
optimize (16). Unfortunately, the fact that h

(t)
y can vary

with different y’s means that we cannot directly use
standard SVM packages. We instead develop our own
optimization algorithm.
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4.3 Dual Optimization

In analog to classical SVMs, it is helpful to solve the
problem in (16) by examining its dual. To simplify the

notation, let us define Ψ(x(t), y) = Φ(x(t),h
(t)
y , y) −

Φ(x(t),h
(t)

y(t) , y
(t)). Then the dual problem of (16) can be

written as follows:

max
α

N
∑

t=1

∑

y

αt,yδ(y, y
(t)) −

1

2
||

N
∑

t=1

∑

y

αt,yΨ(x(t), y)||2

s.t.
∑

y

αt,y = C, ∀t

αt,y ≥ 0, ∀t, ∀y (17)

The primal variable θ can be obtained from the dual
variables α as follows:

θ = −
N
∑

t=1

∑

y

αt,yΨ(x(t), y)

Note that (17) is quite similar to the dual form of

standard multi-class SVMs. In fact, if h
(t)
y is a determin-

istic function of x
(t), (17) is just a standard dual form of

SVMs.
Similar to classical SVMs, we can also obtain a ker-

nelized version of the algorithm by defining a kernel
function of size N × |Y| by N × |Y| in the following
form:

K(t, y; s, y′) = Ψ(x(t), y)⊤Ψ(x(s), y′)

Let us define α as the concatenation of {αt,y : ∀t ∀y},
so the length of α is N ×|Y|. Define ∆ as a vector of the
same length. The (t, y)-th entry of ∆ is 1 if y 6= y(t), and
0 otherwise. Then (17) can be written as:

max
α

α⊤∆ −
1

2
α⊤Kα

s.t.
∑

y

αt,y = C, ∀t

αt,y ≥ 0, ∀t, ∀y (18)

Note the matrix K in (18) only depends on the dot-
product between feature vectors of different 〈x(t), y〉
pairs. So our model has a very intuitive and interesting
interpretation – it defines a particular kernel function
that respects the latent structures.

It is easy to show that the optimization problem in (17)
is concave, so we can find its global optimum. But the
number of variables is N × |Y|, where N is the number
of training examples, and |Y| is the size of all possible
class labels. So it is infeasible to use a generic QP solver
to optimize it.

Instead, we decompose the optimization problem of
(17) and solve a series of smaller QPs. This is similar
to the sequential minimal optimization (SMO) used in
SVM [33], [37] and M3N [28]. The basic idea of this
algorithm is to choose all the {αt,y : ∀y ∈ Y} for a
particular training example x

(t) and fix all the other
variables {αs,y′ : ∀s : s 6= t, ∀y′ ∈ Y} that do not

involve x
(t). Then instead of solving a QP involving all

the variables {αt,y : ∀t, ∀y}, we can solve a much smaller
QP only involving {αt,y : ∀y}. The number of variables
of this smaller QP is |Y|, which is much smaller than
N × |Y|.

First we write the objective of (17) in terms of {αt,y :
∀y} as follows:

L({αt,y : ∀y})

=
∑

y

αt,yδ(y, y
(t)) −

1

2

[

||
∑

y

αt,yΨ(x(t), y)||2

+2
(

∑

y

αt,yΨ(x(t), y)
)⊤( ∑

s:s6=t

∑

y′

αs,y′Ψ(x(s), y′)
)

]

+other terms not involving {αt,y : ∀y}

The smaller QP corresponding to 〈x(t), y(t)〉 can be
written as follows:

max
αt,y :∀y

L({αt,y : ∀y})

s.t.
∑

y

αt,y = C

αt,y ≥ 0, ∀y (19)

Note
∑

s:s6=t

∑

y′ αs,y′Ψ(x(s), y′) can be written as:

−θ −
∑

y

αt,yΨ(x(t), y)

So as long as we maintain (and keep updating) the global
parameter θ and keep track of αt,y and Ψ(x(t), y) for
each example 〈x(t), y(t)〉, we do not need to actually
do the summation

∑

s:s6=t

∑

y′ when optimizing (19). In
addition, when we solve the QP involving αt,y for a
fixed t, all the other constraints involving αs,y where
s 6= t are not affected. This is not the case if we try
to optimize the primal problem in (16). If we try to
optimize the primal variable θ by only considering the
constraints involving the t-th examples, it is possible
that the new θ obtained from the optimization might
violate the constraints imposed by other examples. There
is also work [38] showing that the dual optimization has
a better convergence rate.

4.4 Finding the Optimal h

The alternating coordinate descent algorithm for learn-
ing the model parameter θ described in Sec. 4.2 assumes
we have an inference algorithm for finding the optimal
h
∗ for a fixed 〈x, y〉 pair:

h
∗ = argmax

h

θ⊤Φ(x,h, y) (20)

In order to adopt our approach to problems involving
different latent structures, this is the only component of
the algorithm that needs to be changed.

If h = (h1, h2, ..., hm) forms a tree-structured graphical
model, the inference problem in (20) can be solved
exactly, e.g., using the Viterbi dynamic programming
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algorithm for trees. We can also solve it using standard
linear programming as follows [29], [39]. We introduce
variables µja to denote the indicator 1{hj=a} for all
vertices j ∈ V and their values a ∈ H. Similarly, we intro-
duce variables µjkab to denote the indicator 1{hj=a,hk=b}

for all edges (j, k) ∈ E and the values of their nodes,
a ∈ H, b ∈ H. We use τj(hj) to collectively represent
the summation of all the unary potential functions in
(1) that involve the node j ∈ V . We use τjk(hj , hk) to
collectively represent the summation of all the pairwise
potential functions in (1) that involve the edge (j, k) ∈ E .
The problem of finding of optimal h

∗ can be formulated
into the following linear programming (LP) problem:

max
0≤µ≤1

∑

j∈V

∑

a∈H

µjaτj(a) +
∑

(j,k)∈E

∑

a∈H

∑

b∈H

µjkabτjk(a, b)

s.t.
∑

a∈H

µja = 1, ∀j ∈ V

∑

a∈H

∑

b∈H

µjkab = 1, ∀(j, k) ∈ E

∑

a∈H

µjkab = µkb, ∀(j, k) ∈ E , ∀b ∈ H

∑

b∈H

µjkab = µja, ∀(j, k) ∈ E , ∀a ∈ H (21)

If the optimal solution of this LP is integral, we
can recover h

∗ from µ∗ very easily. It has been shown
that if E forms a forest, the optimal solution of this
LP is guaranteed to be integral [29], [39]. For general
graph topology, the optimal solution of this LP can be
fractional, which is not surprising, since the problem in
(20) is NP-hard for general graphs. Although the LP
formulation does not seem to be particularly advanta-
geous in the case of tree-structured models, since they
can be solved by Viterbi dynamic programming anyway,
the LP formulation provides a more general way of
approaching other structures (e.g., Markov networks
with sub-modular potentials, matching [29]).

5 DISCUSSION

HCRF and MMHCRF can be thought of as two different
approaches for solving the general problem of classi-
fication with structured latent variables. Many problems
in computer vision can be formulated in this general
problem setting. Consider the following three vision
tasks. (1) Pedestrian detection: it can be formulated as
a binary classification problem that classifies an image
patch x to be +1 (pedestrian) or 0 (non-pedestrian). The
locations of the body parts can be considered as latent
variables in this case, since most of the existing training
datasets for pedestrian detection do not provide this
information. These latent variables are also structured –
e.g., the location of the torso imposes certain constraints
on the possible locations of other parts. Previous ap-
proaches [3], [40] usually use a tree-structured model
to model these constraints. (2) Object recognition: this
problem is to assign a class label to an image if it contains

the object of interest. If we consider the figure/ground
labeling of pixels of the image as latent variables, object
recognition is also a problem of classification with latent
variables. The latent variables are also structured, typi-
cally represented by a grid-structured graph. (3) Object
identification: given two images, the task is to decide
whether these are two images of the same object or
not. If an image is represented by a set of patches
found by interest point operators, one particular way
to solve this problem is to first find the correspondence
between patches in the two images, then learn a binary
classifier based on the result of the correspondence [41].
Of course, the correspondence information is “latent” –
not available in the training data, and “structured” –
assuming one patch in one image matches to one or zero
patches in the other image, this creates a combinatorial
structure [29]. This general problem setting occurs in
other fields as well. For example, in natural language
processing, Cherry and Quick [42] use a similar idea for
sentence classification by considering the parse tree of a
sentence as the hidden variable. In bioinformatics, Yu &
Joachims [43] solve the motif finding problem in yeast
DNA by considering the positions of motifs as hidden
variables.

One simplified approach to solve the above-mentioned
problems is to ignore the latent structures, and treat
them as standard classification problems, e.g., Dalal &
Triggs [5] in the case of pedestrian detection. However,
there is evidence [3], [4], [15], [40] showing that incorpo-
rating latent structures into the system can improve the
performance.

Learning with latent structures has a long history
in machine learning. In visual recognition, probabilistic
latent semantic analysis (pLSA) [44] and latent Dirichlet
allocation (LDA) [45] are representative examples of
generative classification models with latent variables
that have been widely used. As far as we know, how-
ever, there has only been some recent effort [3], [4],
[15], [16], [43], [46] on incorporating latent variables
into discriminative models. It is widely believed in the
machine learning literature that discriminative methods
typically outperform generative methods1 (e.g. [27]), so
it is desirable to develop discriminative methods with
structured latent variables.

MMHCRFs are closely related to HCRFs. The main
difference lies in their different learning criteria – max-
imizing the margin in MMHCRFs, and maximizing the
conditional likelihood in HCRFs. As a result, the learning
algorithms for MMHCRFs and HCRFs involve solving
two different types of inference problems – maximizing
over h, versus summing over h. In the following, we
compare and analyze these two approaches from both
computational and modeling perspectives, and argue
why MMHCRFs are preferred over HCRFs in many
applications.

1. We acknowledge that this view is not unchallenged, e.g. [47].
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5.1 Computational Perspective

HCRFs and MMHCRFs share some commonality in
terms of their learning algorithms. Both are iterative
methods. During each iteration, both of them require
solving an inference on each training example. Since the
learning objectives of both learning algorithms are non-
convex, both of them can only find local minimum. The
computational complexity of both learning algorithms
involve three factors: (1) the number of iterations; (2)
the number of training examples; (3) the computation
needed on each example during an iteration. Of course,
the number of training examples remains the same in
both algorithms. If we assume both algorithms take the
same number of iterations, the main difference in the
computational complexity of these two algorithms comes
from the third factor, i.e. the computation needed on
each example during an iteration. This complexity is
mainly dominated by the run time of the inference algo-
rithm for each algorithm – summing over h in HCRFs,
and maximizing over h in MMHCRFs. In other words,
the computational complexity of the learning problem
for either HCRFs or MMHCRFs is determined by the
complexity of the corresponding inference problem. So
in order to understand the difference between HCRFs
and MMHCRFs in terms of their learning algorithm
complexity, we only need to focus on the complexity of
their inference algorithms.

From the computational perspective, if h has a tree
structure and |H| is relatively small, both inference prob-
lems (max vs. sum) can be solved exactly, using dynamic
programming and belief propagation, respectively. But
the inference problem (maximization) in MMHCRFs can
deal with a much wider range of latent structures. Here
are a few examples [29] (although these problems are
not addressed in this paper) in computer vision:

• Binary Markov networks with sub-modular po-
tentials, commonly encountered in figure/ground
segmentation [48]. MMHCRFs can use LP [29] or
graph-cut [48] to solve the inference problem. For
HCRFs, the inference problem can only be solved
approximately, e.g., using loopy BP or mean-field
variational methods.

• Matching/correspondence (see the object identifica-
tion example mentioned above, or the examples in
[29]). The inference of this structure can be solved
by MMHCRFs using LP [29], [49]. It is not clear how
HCRFs can be used in this situation, since it requires
summing over all the possible matchings.

• Tree-structures, but each node in h can have a
large number of possible labels (e.g., all the pos-
sible pixel locations in an image), i.e., |H| is big.
If the pairwise potentials have certain properties,
distance transform [8] can be applied in MMHCRFs
to solve the inference problem. This is essentially
what has been done in [3]. This inference problem
for HCRFs can be solved using convolution. But
distance transform (O(|H|)) is more efficient than

convolution (O(|H| log |H|)).

5.2 Modeling Perspective

From the modeling perspective, we believe MMHCRFs
are better suited for classification than HCRFs. This is be-
cause HCRFs require summing over exponentially many
h’s. In order to maximize the conditional likelihoods,
the learning algorithm of HCRFs has to try very hard
to push the probabilities of many “wrong” labellings of
h’s to be close to zero. But in MMHCRFs, the learning
algorithm only needs to push apart the “correct” labeling
and its next best competitor. Conceptually, the modeling
criterion of MMHCRFs is easier to achieve and more
relevant to classification than that of HCRFs. In the
following, we give a detailed analysis of the differences
between HCRFs and MMHCRFs in order to gain the
insights.
Max-margin vs. log-likelihood: The first differ-
ence between MMHCRFs and HCRFs lie in their dif-
ferent training criteria, i.e., maximizing the margin
in MMHCRFs, and maximizing the conditional log-
likelihood in HCRFs. Here we explain why max-margin
is a better training criterion using a synthetic classifi-
cation problem illustrated in Table 1. To simplify the
discussion, we assume a regular classification prob-
lem (without hidden structures). We assume three pos-
sible class labels, i.e. Y = {1, 2, 3}. For simplicity, let us
assume there is only one datum x in the training dataset,
and the ground-truth label for x is Y = 2. Suppose
we have two choices of model parameters θ(1) and θ(2).
The conditional probabilities p(Y |x; θ(1)) and p(Y |x; θ(2))
are shown in the two rows in Table 1. If we choose
the model parameter by maximizing the conditional
probability on the training data, we will choose θ(1)

over θ(2), since p(Y = 2|x; θ(1)) > p(Y = 2|x; θ(2)).
But the problem with θ(1) is that x will be classified
as Y = 3 if we use θ(1) as the model parameter, since
p(Y = 3|x; θ(1)) > p(Y = 2|x; θ(1)).

Let us use y∗ to denote the ground-truth label of x,
and y′ to denote the “best competitor” of y∗. If we define
yopt = arg maxy p(Y = y|x; θ), y′ can be formally defined
as follows:

y′ =

{

yopt if y∗ 6= yopt

arg maxy:y 6=y∗ p(Y = y|x; θ) if y∗ = yopt

If we define margin(θ) = p(Y = y∗|x; θ) − p(Y =
y′|x; θ), we can see that margin(θ(2)) = 0.45−0.43 = 0.02
and margin(θ(1)) = 0.48 − 0.5 = −0.02. So the max-
margin criterion will choose θ(2) over θ(1). If we use θ(2)

as the model parameter to classify x, we will get the
correct label Y = 2.

This simple example shows that the max-margin train-
ing criterion is more closely related to the classification
problem we are trying to solve in the first place.
Maximization vs. summation: Another difference be-
tween the MMHCRF and the HCRF is that the former
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TABLE 1
A toy example illustrating why the learning criterion of

MMHCRF (i.e., maximizing the margin) is more relevant
to classification than that of HCRF (i.e., maximizing the
log-likelihood). We assume a classification problem with

three class labels (i.e., Y = {1, 2, 3}) and one training
datum. The table shows the conditional probability
p(Y |x; θ(1)) and p(Y |x; θ(2)) where Y = 1, 2, 3 for two

choices of model parameters θ(1) and θ(2).

Y = 1 Y = 2 Y = 3

θ = θ
(1) 0.02 0.48 0.5

θ = θ(2) 0.12 0.45 0.43

requires maximizing over h’s, while the latter requires
summing over h’s. In addition to computational issues
mentioned above, the summation over all the possible
h’s in HCRFs may cause other problems as well. To
make the discussion more concrete, let us consider the
pedestrian detection setting in [3]. In this setting, x is an
image patch, y is a binary class label +1 or 0 to indicate
whether the image patch x is a pedestrian or not. The
hidden variable h represents the locations of body parts.
Recall that HCRFs need to compute the summation of
all possible h’s in the following form:

p(y|x; θ) =
∑

h

p(y,h|x; θ) (22)

The intuition behind Eq. 22 is that a correct labeling of h

will have a higher value of probability p(y,h|x; θ), while
an incorrect labeling of h will have a lower value. Hence
correct part locations will contribute more to p(y|x; θ) in
Eq. 22.

However, this is not necessarily the case. In an image,
there are exponentially many possible placements of
part locations. That means h has exponentially many
possible configurations. But only a very small number of
those configurations are “correct” ones, i.e. the ones that
roughly correspond to correct locations of body parts.
Ideally, a good model will put high probabilities on
those “correct” h’s and lower probabilities (close to 0)
on “incorrect” ones. An incorrect h only carries a small
probability, but since there are exponentially many of
them, the summation in Eq. 22 can still be dominated
by those incorrect h’s. This surprising effect is exactly
the opposite of what we have expected the model to
behave. This surprising effect is partly due to the high
dimensionality of the latent variable h. Many counter-
intuitive properties of high dimensional spaces have also
been observed in statistics and machine learning.

We would like to emphasize that we do not mean
to discredit HCRFs. In fact, we believe HCRFs have
their own advantages. The main merit of HCRFs lies
in their rigorous probabilistic semantics. A probabilis-
tic model has two major advantages compared with
non-probabilistic alternatives (e.g., energy-based models
like MMHCRFs). First of all, it is usually intuitive and
straightforward to incorporate prior knowledge within
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Fig. 4. Confusion matrices of classification results (per-
frame and per-video) of HCRFs on the Weizmann
dataset. Rows are ground truths, and columns are pre-
dictions.

a probabilistic model, e.g. by choosing appropriate prior
distributions, or by building hierarchical probabilistic
models. Secondly, in addition to predicting the best
labels, a probabilistic model also provides posterior
probabilities and confidence scores of its predictions.
This might be valuable for certain scenarios, e.g. in
building cascades of classifiers. HCRFs and MMHCRFs
are simply two different ways of solving problems. They
both have their own advantages and limitations. Which
approach to use depends on the specific problem at
hand.

6 EXPERIMENTS

We test our algorithm on two publicly available datasets
that have been widely used in action recognition: Weiz-
mann human action dataset [9], and KTH human motion
dataset [14]. Performance on these benchmarks is satu-
rating – state-of-the-art approaches achieve near-perfect
results. We show our method achieves results compara-
ble to the state-of-the-art, and more importantly that our
extended HCRF model significantly outperforms a direct
application of the original HCRF model [4].

Weizmann dataset: The Weizmann human action
dataset contains 83 video sequences showing nine differ-
ent people, each performing nine different actions: run-
ning, walking, jumping jack, jumping forward on two
legs, jumping in place on two legs, galloping sideways,
waving two hands, waving one hand, bending. We track
and stabilize the figures using the background subtrac-
tion masks that come with this dataset. See Figure 6(a)
for sample frames of this dataset.

We randomly choose videos of five subjects as training
set, and the videos in the remaining four subjects as
test set. We learn three HCRF models with different
sizes of possible part labels, |H| = 6, 10, 20. Our model
classifies every frame in a video sequence (i.e., per-frame
classification), but we can also obtain the class label
for the whole video sequence by the majority voting of
the labels of its frames (i.e., per-video classification). We
show the confusion matrices of HCRFs and MMHCRFs
with |H| = 10 for both per-frame and per-video classifi-
cation in Fig. 4 and Fig. 5.
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Fig. 5. Confusion matrices of classification results of
MMHCRFs on Weizmann dataset.

TABLE 2
Comparison of two baseline systems with our

approach(HCRF and MMHCRF) on the Weizmann and
KTH datasets.

method
Weizmann KTH

per-frame per-video per-frame per-video

root model 0.7470 0.8889 0.5377 0.7339
local HCRF

|H|=6 0.5722 0.5556 0.4749 0.5607
|H|=10 0.6656 0.6944 0.4452 0.5814
|H|=20 0.6383 0.6111 0.4282 0.5504
HCRF
|H|=6 0.8682 0.9167 0.6633 0.7855
|H|=10 0.9029 0.9722 0.6698 0.8760
|H|=20 0.8557 0.9444 0.6444 0.7512

MMHCRF
|H|=6 0.8996 0.9722 0.7064 0.8475
|H|=10 0.9311 1.0000 0.7853 0.9251
|H|=20 0.8891 0.9722 0.7486 0.8966

We compare our system to two baseline methods.
The first baseline (root model) only uses the root filter
η⊤ · ω(y,x), which is simply a discriminative version
of Efros et al. [10]. The second baseline (local HCRF)
is a direct application of the original HCRF model [4].
It is similar to our model, but without the root filter
η⊤ · ω(y,x), i.e., local HCRF only uses the root filter
to initialize the salient patches, but does not use it
in the final model. The comparative results are shown
in Table 2. Our approach significantly outperforms the
two baseline methods. We also compare our results(with
|H| = 10) with previous work in Table 3. Note [9]
classifies space-time cubes. It is not clear how it can be
compared with other methods that classify frames or
videos. Our result is significantly better than [24], and
comparable to [22]. Although we accept the fact that
the comparison is not completely fair, since [24] does
not use any tracking or background subtraction.

TABLE 3
Comparison of classification accuracy with previous work

on the Weizmann dataset.

per-frame per-video per-cube

MMHCRF 0.9311 1 N/A
HCRF 0.9029 0.9722 N/A

Jhuang et al. [22] N/A 0.988 N/A
Niebles & Fei-Fei [24] 0.55 0.728 N/A

Blank et al. [9] N/A N/A 0.9964
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Fig. 7. Confusion matrices of classification results of
HCRFs on the KTH dataset.

0.91 0.00 0.01 0.02 0.03 0.03

0.00 0.97 0.02 0.01 0.01 0.00

0.00 0.01 0.96 0.00 0.01 0.01

0.02 0.00 0.01 0.53 0.28 0.17

0.02 0.01 0.03 0.28 0.55 0.12

0.02 0.00 0.02 0.11 0.05 0.80

box

handclap

handwave

jog

run

walk
box handclap

handwave

jog run walk

0.97 0.00 0.02 0.02 0.00 0.00

0.00 1.00 0.00 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00

0.00 0.00 0.00 0.78 0.17 0.05

0.02 0.00 0.00 0.14 0.81 0.03

0.00 0.00 0.00 0.01 0.00 0.99

box

handclap

handwave

jog

run

walk
box handclap

handwave

jog run walk

(a) per-frame (b) per-video

Fig. 8. Confusion matrices of classification results of
MMHCRFs on the KTH dataset.

We visualize the parts by HCRFs in Fig. 6(a). Each
patch is represented by a color that corresponds to the
most likely part label of that patch. We also visualize
the root filters applied on these images in Fig. 6(b). The
visualization on MMHCRFs is similar, it is omitted due
to space constraints.

KTH dataset: The KTH human motion dataset con-
tains six types of human actions (walking, jogging,
running, boxing, hand waving and hand clapping) per-
formed several times by 25 subjects in four different sce-
narios: outdoors, outdoors with scale variation, outdoors
with different clothes and indoors. See Figure 9(a) for
sample frames. We first run an automatic preprocessing
step to track and stabilize the video sequences, so that
all the figures appear in the center of the field of view.

We split the videos roughly equally into training/test
sets. The confusion matrices (with |H| = 10) for both per-
frame and per-video classification are shown in Fig. 7
and Fig. 8. The comparison with the two baseline algo-
rithms is summarized in Table 2. Again, our approach
outperforms the two baselines systems.

The comparison with other approaches is summarized
in Table 4. We should emphasize that we do not attempt
a direct comparison, since different methods listed in
Table 4 have all sorts of variations in their experiments
(e.g., different split of training/test data, whether tempo-
ral smoothing is used, whether per-frame classification
can be performed, whether tracking/background sub-
traction is used, whether the whole dataset is used etc.),
which make it impossible to directly compare them. We
provide the results only to show that our approach is
comparable to the state-of-the-art. Similarly, we visualize
the learned parts on the KTH dataset in Fig. 9.

We perform additional diagnostic experiments to an-
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(a) (b)

Fig. 6. Visualization of the learned model on the Weizmann dataset: (a) Visualization of the learned parts. Patches are
colored according to their most likely part labels. Each color corresponds to a part label. Some interesting observations
can be made. For example, the part label represented by red seems to correspond to the “moving down” patterns
mostly observed in the “bending” action. The part label represented by green seems to correspond to the motion
patterns distinctive of “hand-waving” actions; (b) Visualization of root filters applied on these images. For each image
with class label c, we apply the root filter ηc. The results show the filter responses aggregated over four motion
descriptor channels. Bright areas correspond to positive energies, i.e., areas that are discriminative for this class. This
figure is best viewed in color with PDF magnification.

(a) (b)

Fig. 9. Visualization of the learned model on the KTH dataset: (a) Visualization of the learned parts; (b) Visualization
of root filters applied on these images. See the caption of Fig. 6 for detailed explanations. Similarly, we can make
some interesting observations. For example, parts colored in pink, red, and green are representative of “boxing”,
“handclapping” and “handwaving” actions, respectively. The part colored in light blue is shared among “jogging”,
“running” and “walking” actions. This figure is best viewed in color with PDF magnification.

swer the following questions regarding MMHCRFs.

With or without pairwise potentials? If we remove
the pairwise potentials γ⊤ψ(y, hj , hk) in the model, the
learning and inference will become easier, since each
part label can be independently assigned. One inter-
esting question is whether the pairwise potentials re-
ally help the recognition. To answer this question, we
run MMHCRFs without the pairwise potentials on both
Weizmann and KTH datasets. The results are shown
in Table 5 (“no pairwise”). Comparing with the results
in Table 2, we can see that MMHCRF models without

pairwise potentials do not perform as well as those with
pairwise potentials.

Multi-class or one-against-all? MMHCRFs directly
handle multi-class classification. An alternative is to
convert the multi-class problem into several binary clas-
sification problems (e.g. one-against-all). The disadvan-
tage of this alternative is discussed in [33]. Here we
demonstrate it experimentally in our application. For
a K-class classification problem, we convert it into K

binary classification (one-against-all) problems. Each bi-
nary classification problem is solved using the formula-
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TABLE 4
Comparison of per-video classification accuracy with

previous approaches on the KTH dataset.

methods accuracy

MMHCRF 0.9251
HCRF 0.8760

Liu & Shah [50] 0.9416
Jhuang et al. [22] 0.9170

Nowozin et al. [13] 0.8704
Niebles et al. [12] 0.8150
Dollár et al. [11] 0.8117

Schuldt et al. [14] 0.7172
Ke et al. [51] 0.6296

TABLE 5
Results of learning MMHCRF models without pairwise

potentials (“no pairwise”), and by converting the
multi-class problem into several binary classification

problems (“one-against-all”), then calibrating scores of
those binary classifiers by another SVM model

(“one-against-all + SVM”).

method
Weizmann KTH

per-frame per-video per-frame per-video

no pairwise
|H| = 6 0.8344 0.9062 0.6767 0.8527
|H| = 10 0.8414 0.9688 0.7005 0.8941
|H| = 20 0.8358 0.9688 0.6891 0.8734

one-against-all
|H| = 6 0.7525 0.8889 0.5171 0.6589
|H| = 10 0.7507 0.8611 0.5052 0.6589
|H| = 20 0.7447 0.8889 0.5052 0.6899

one-against-all
+ SVM
|H| = 6 0.8173 0.9444 0.5705 0.7209
|H| = 10 0.8460 0.9444 0.5610 0.7287
|H| = 20 0.8145 0.9444 0.5623 0.7442

tion of LSVMs in [3]. In the end, we get K binary LSVM
models. For a test image, we assign its class label by
choosing the corresponding LSVM model which gives
the highest score on this image. Similarly, we perform
per-frame classification and use majority voting to obtain
per-video classification. The results are shown in Ta-
ble 5 (“one-against-all”). We can see that the one-against-
all strategy does not perform as well as our proposed
method (see Table 2). We believe it is because those
binary classifiers are trained independently of each other,
and their scores are not calibrated to be comparable. To
test this hypothesis, we perform another method (called
“one-against-all + SVM”) in Table 5. We take the output
scores of K binary LSVM models and stack them into a
K-dimensional vector. Then we train a multi-class SVM
that takes this vector as its input and produces one of
the K class labels. This multi-class SVM will calibrate
the scores of different binary LSVM models. The results
show that this calibration step significantly improves the
performance of the one-against-all strategy. But the final
results are still worse than MMHCRFs. So in summary,
our experimental results show that the one-against-all
strategy does not perform as well as MMHCRFs.

7 CONCLUSION

We have presented discriminatively learned part models
for human action recognition. Our model combines both
large-scale features used in global templates and local
patch features used in bag-of-words models. Our exper-
imental results show that our model is quite effective
in recognizing actions. The results are comparable to
the state-of-the-art approaches. In particular, we show
that the combination of large-scale features and local
patch features performs significantly better than using
either of them alone. We also presented a new max-
margin learning method for learning the model parame-
ter. Our experimental results show that the max-margin
learning outperforms the probabilistic learning based
on maximizing conditional the log-likelihood of training
data. More importantly, the max-margin learning allows
us to deal with a large spectrum of different complex
structures.

We have also given a detailed theoretical analysis of
pros and cons of HCRFs and MMHCRFs in terms of both
computational and modeling perspectives. Our analysis
explains why the design choices of MMHCRFs (max-
margin instead of maximizing likelihood, maximizing
over h instead of summing over h) lead to better perfor-
mance in our experiments.

The applicability of the proposed models and learn-
ing algorithms goes beyond human action recognition.
In computer vision and in many other fields, we are
constantly dealing with data with rich, interdependent
structures. We believe our proposed work will pave
a new avenue to construct more powerful models for
handling various forms of latent structures.

Our proposed models are still very simple. As future
work, we would like to extend our models to handle
things like partial occlusion, viewpoint change, etc. We
also plan to investigate more robust features. These ex-
tensions will be necessary to make our models applicable
on more challenging videos.
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