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Abstract

We propose a discriminative latent model for annotating images with unaligned
object-level textual annotations. Instead of using the bag-of-words image repre-
sentation currently popular in the computer vision community, our model explic-
itly captures more intricate relationships underlying visual and textual informa-
tion. In particular, we model the mapping that translates image regions to anno-
tations. This mapping allows us to relate image regions to their corresponding
annotation terms. We also model the overall scene label as latent information.
This allows us to cluster test images. Our training data consist of images and their
associated annotations. But we do not have access to the ground-truth region-
to-annotation mapping or the overall scene label. We develop a novel variant of
the latent SVM framework to model them as latent variables. Our experimental
results demonstrate the effectiveness of the proposed model compared with other
baseline methods.

1 Introduction

Image understanding is a central problem in computer visionthat has been extensively studied in
the forms of various types of tasks. Some previous work focuses on classifying an image with
a single label [6]. Others go beyond single labels and assigna list of annotations to an image
[1, 10, 21]. Recently, efforts have been made to combine various tasks (i.e. classification, annotation,
segmentation, etc) together to achieve a more complete understanding of an image [11, 12]. In this
paper, we consider the problem of image understanding with unaligned textual annotations. In
particular, we focus on the scenario where the annotations represent the names of the objects present
in an image. The input to our learning algorithm is a set of images with unaligned textual annotations
(object names). Our goal is to learn a model to predict the annotation (i.e. object names) for a new
image. As a by-product, our model also roughly localizes theimage regions corresponding to the
annotation, see Fig. 1. The main contribution of this paper is the development of a model that
incorporates this object annotation to image region correspondence in a discriminative framework.

In the computer vision literature, there has been a lot of work on exploiting images and their associ-
ated textual information. Barnard et al. [1] predict words associated with whole images or regions
by learning a joint distribution of image regions and words.Berg et al. [3] learn to name faces ap-
pearing in news pictures by learning a probabilistic model of face appearances, names, and textual
contexts. Wang et al. [21] use a learned bag-of-words topic model to simultaneously classify and
annotate images. Loeff et al. [13] discover scenes by exploiting the correlation between images
and their annotations. Some recent work towards total sceneunderstanding [11, 12] tries to build
sophisticated generative models that jointly perform several tasks, e.g. scene classification, object
recognition, image annotation, and image segmentation.

∗Work done while the author was with Simon Fraser University.
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Figure 1: Our goal is to learn a model using images and their associatedunaligned textual object annotations
(a) as the training data. Given a new image (b), we can use the model to predict its textual annotations and
roughly localize image regions corresponding to each of theannotation terms (c).

Most of the previous work uses fairly crude “bag-of-words” models, treating image features (ex-
tracted from either segmented regions or local interest points) and textual annotations as unordered
entities and looking at their co-occurrence statistics. Very little work explicitly models more detailed
relationships between image regions and annotations that are obvious to humans. For example, if
an image is over-segmented into a large number of segments, each segment typically only corre-
sponds to at most one object. However, most of the previous work ignores this constraint and allows
an image region being used as evidence to explain different objects mentioned by the annotations.
In this paper, we present a discriminative latent model thatcaptures image regions, textual annota-
tions, mappings between visual and textual information, and overall scene labels in a more explicit
manner. Some work [1, 3] tries to incorporate the mapping information into a generative model.
However due to the limitation of the machine learning tools used in those work, they did not prop-
erly enforce the aforementioned constraint on how image regions are mapped to annotations. There
is also work [2] on augmenting training data with this mapping information, but it is unclear how it
can be generalized on test data. With the recent advancementin learning with complex structured
data [7, 18, 21, 25], we believe now it is the time for us to revisit this line of ideas and examine other
modeling tools.

The work by Socher et al. [17] is the most relevant to ours. In that work, they learn to annotate
and segment images by mapping image regions and textual words to a latent meaning space using
context and adjective features. There are important distinctions between our work and [17]. First of
all, the input to [17] is a set of images (a handful of which aremanually labeled) ofa single sport
category, and a collection of news articles for that sport. The news articles are generic for that sport,
and the images are not the news photographs directly associated with those news articles. Although
they have experimented on applying their model on image collections with mixed sport categories,
their method seems to work better with single sport categorytraining. In contrast, the input to our
learning problem is a set of images from several sport categories, together with theirassociated
textual annotations. We treat the sport category as a latent variable (we call it thescene label) and
implicitly infer it during learning.

2 Model

We propose a discriminative latent model that jointly captures the relationships between image seg-
ments, textual annotations, region-text correspondence,and overall image visual scene labels. Of
course, only the image segments and textual annotations areobserved on training data. All the other
information (e.g. scene labels, the mapping between regions and annotations) are treated as latent
variables in the model. A graphical illustration of our model is shown in Fig. 2.

The input to our learning module is a set of〈x,y〉 pairs wherex denotes an image, andy denotes the
annotation associated with this image. We partition the image intoR regions using the segmentation
algorithm in [8], i.e.x = [x1, x2, ..., xR]. For each image regionxi, we extract four types of visual
features (see [14]): shape, texture, color, and location. Each of these feature types is vector quantized
to obtain codewords for this feature type. Following [17], we use 20, 25, 40, 8 codewords for each
of the four feature types, respectively. In the end, each region xi is represented as a 4-dimensional
vectorxi = (xi1, xi2, xi3, xi4), where eachxic is the corresponding codeword of thec-th feature
type for this region.

The annotationy of an image is represented as a binary vectory = (y1, y2, ..., yV ), whereV is the
total number of possible annotation terms. As a terminological convention, we use “annotation” to
denote the vectory and “annotation term” to denote each componentyj of the vector. An annotation
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Figure 2: Graphical illustration of our model. An input image is segmented into several regions. The annotation
of the image is represented as a 0-1 vector indicating the presence/absence of each possible annotation term.
Our model captures the unobserved mapping that translate image regions to annotation terms associated with
the image (e.g. horse, athlete). For annotation terms not associated with the image (e.g. car, dog), there are no
mapped image regions. Our model also captures relationshipbetween the unobserved scene label (e.g. polo)
and image regions/annotations.

termyj is “active” (yj = 1) if it is associated with this image, and is “inactive” (yj = 0) otherwise.
We further assume the number of regions of an image is larger than or equal to the number of active
annotation terms for an image, i.e.R ≥

∑V
j=1 yj . In this work, we assume there are no visually

irrelevant annotation terms (e.g. “wind”), and there are noannotation terms (e.g. “people” and
“athlete”) of an image that refer to the same concept. These can be achieved by pre-processing the
annotation terms with Wordnet (see [17]).

Given an imagex and its annotationy, we assume there is an underlying unobserved many-to-one
mapping which translatesR image regions to each of the active annotation terms. We restrict the
mapping to have the following conditions: (i) each image region is mapped to at most one anno-
tation term. This condition will ensure that an image regionis not used to explain two different
annotations; (ii) an active annotation term has one or more image regions mapped to it. This con-
dition will make sure that if an annotation term (say “building”) is assigned to an image, there is
at least one image region supporting this annotation term; (iii) an inactive annotation term has no
image regions mapped to it. This condition will guarantee there are no image regions supporting an
inactive annotation term.

More formally, we introduce a matrixz = {zij : 1 ≤ i ≤ R, 1 ≤ j ≤ V } defined in the following
to represent this mapping for an image withR regions:

zij =

{

1 if the i-th image region is mapped to thej-th annotation term
0 otherwise (1)

We useY to denote the domain of all possible assignments ofy. For a fixed annotationy, we use
Z(y) to denote the set of all possible many-to-one mappings that satisfy the conditions (i,ii,iii). It is
easy to verify that anyz ∈ Z(y) can be represented using the following three sets of constraints:

∑

j

zij ≤ 1, ∀i; max
i
zij = yj , ∀j; zij ∈ {0, 1}, ∀i, ∀j (2)

For a given image, we also assume a discrete unobserved “scene” label s which takes its value
between 1 andS. We introduce the scene label to capture the fact that the annotations of images are
typically well clustered according to their underlying scenes. For example, an image of a “sailing”
scene tends to have annotation terms like “athlete”, “sailboat”, “water”, etc. However, it is not quite
simple to define the vocabulary to label scenes [13]. In our work, we treat the scene label as a latent
variable (hence we do not need its ground-truth label or evena vocabulary for defining it) and let
the learning algorithm automatically figure out what constitutes a scene. As we will demonstrate
in the experiment, the “scenes” learned by our model on a collection of sport images do match our
intuitions, e.g. they roughly correspond to different sport categories in the data.

Inspired by the latent SVM [7, 25], we measure the compatibility between an imagex and an
annotationy using the following scoring function:

fθ(x,y) = max
s∈S

max
z∈Z(y)

θ⊤ · Φ(x,y, z, s) (3)

whereθ are the model parameters andΦ(x,y, z, s) is a feature vector defined onx, y, z ands. The
model parameters have three partsθ = {α, β, γ}, andθ⊤ · Φ(x,y, z, s) is defined as:

θ⊤ · Φ(x,y, z, s) = α⊤φ(x, z) + β⊤ψ(x, s) + γ⊤ϕ(y, s) (4)
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The details of each of the terms in (4) are described in the following.

Region-Annotation Matching Potential α⊤φ(x, z): This potential function measures the com-
patibility of mapping image regions to their correspondingannotation terms. Recall an image re-
gion xi consists of codewords from four different feature typesxi = (xi1, xi2, xi3, xi4). Let Nc

(c = 1, 2, 3, 4) denotes the number of codewords of feature typec. The parametersα consist of four
componentsα = {αc}4

c=1 corresponding to each of the four feature types. Eachαc is a matrix of
sizeNc × V , where an entryαc

w,j can be interpreted as the compatibility between the codewordw
(1 ≤ w ≤ Nc) of feature typec and the annotation termj (1 ≤ j ≤ V ). The potential function is
written as:

α⊤φ(x, z) =
4

∑

c=1

R
∑

i=1

V
∑

j=1

αc
xic,j · zij =

4
∑

c=1

R
∑

i=1

Nc
∑

w=1

V
∑

j=1

αc
w,j · 1(xic = w) · zij (5)

where1(·) is the indicator function. Note that the definition of this potential function does not
involvey sincey is implicitly determined byz, i.e. yj = maxi zij .

Image-Scene Potential β⊤ψ(x, s): This potential function measures the compatibility between an
imagex and a scene labels. Similarly, the parametersβ consist of four partsβ = {βc}4

c=1 corre-
sponding to the four feature types, where an entryβc

w,s is the compatibility between the codeword
w of typec and the scene labels. This potential function is written as:

β⊤ψ(x, s) =
4

∑

c=1

R
∑

i=1

βc
xic,s =

4
∑

c=1

R
∑

i=1

Nc
∑

w=1

S
∑

t=1

βc
w,t · 1(xic = w) · 1(s = t) (6)

Annotation-Scene Potential γ⊤ϕ(y, s): This potential function measures the compatibility be-
tween an annotationy and a scene labels. The parametersγ consist ofS componentsγ = {γt}St=1
corresponding to each of the scene label. Each componentγt is aV × 2 matrix, whereγt

j,1 is the
compatibility of settingyj = 1 for the scene labelt, andγt

j,0 is the compatibility of settingyj = 0
for the scene labelt. This potential function is written as:

γ⊤ϕ(y, s) =
V

∑

j=1

γs
j,yj

=
V

∑

j=1

S
∑

t=1

(

γt
j,0 · 1(yj = 0) · 1(s = t) + γt

j,1 · 1(yj = 1) · 1(s = t)
)

(7a)

=

V
∑

j=1

S
∑

t=1

(

γt
j,0 · (1 − yj) · 1(s = t) + γt

j,1 · yj · 1(s = t)
)

(7b)

The equivalence of (7a) and (7b) is due to1(yj = 0) ≡ 1− yj and1(yj = 1) ≡ yj for yj ∈ {0, 1},
which are easy to verify.

3 Inference

Given the model parametersθ = {α, β, γ}, the inference problem is to find the best annotationy
∗

for a new imagex, i.e. y
∗ = arg maxy fθ(x,y). The inference requires solving the following

optimization problem:

max
y∈Y

fθ(x,y) = max
s∈S

max
y∈Y

max
z∈Z(y)

θ⊤Φ(x,y, z, s) (8)

Since we can enumerate all the possible values of the scene label s, the main difficulty of solving
(8) is the inner maximization overy andz for a fixeds, i.e.:

max
y∈Y

max
z∈Z(y)

θ⊤Φ(x,y, z, s) (9)

In the following, we develop a method for solving (9) based onlinear program (LP) relaxation. To
formulate the problem as an LP, we first define the following:

aij =
4

∑

c=1

Nc
∑

w=1

αc
w,j1(xic = w), ∀i, ∀j bj = rs

j,1 − rs
j,0, ∀j (10)
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Then it is easy to verify that the optimization problem in (9)can be equivalently written as (the
constant in the objective not involvingy or z is omitted):

max
y,z

∑

i,j

aijzij +
∑

j

bjyj s.t.
∑

j

zij ≤ 1, max
i
zij = yj, zij ∈ {0, 1}, ∀i ∀j (11)

The optimization problem (11) is not convex. But we can relaxits constraints to make it an LP. First
we reformulate (11) as an integer linear program (ILP):

max
y,z

∑

i,j

aijzij +
∑

j

bjyj s.t.
∑

j

zij ≤ 1, zij ≤ yj ≤
∑

i

zij , zij ∈ {0, 1}, yj ∈ {0, 1}, ∀i ∀j (12)

It is easy to verify that (11) and (12) are equivalent. Of course, (12) still has the integral constraint
zij ∈ {0, 1}, which makes the optimization problem NP-hard. So we further relax the value ofzij

to a real value in the range of[0, 1].

Putting everything together, the LP relaxation of (11) can be written as:

max
y,z

∑

i,j

aijzij +
∑

j

bjyj s.t.
∑

j

zij ≤ 1, zij ≤ yj ≤
∑

i

zij , 0 ≤ zij ≤ 1, 0 ≤ yj ≤ 1, ∀i ∀j (13)

After solving (13) with any LP solver, we roundzij to the closest integer and obtainyj asyj =
maxi zij .

4 Learning

We now describe how to learn the model parametersθ from a set ofN training examples〈xn,yn〉
(n = 1, 2, ..., N ). Note that the training data only contain images and their annotations. We do not
have the ground-truth scene labels or the mappingz for any of the training images, so we have to
treat them as latent variables during learning.

We adopt the latent SVM (LSVM) framework [7, 25] for learning. LSVMs extend the popular
structural SVMs [18, 19] to handle latent variables during training. LSVMs and their variants have
been successfully applied in several computer vision applications, e.g. object detection [7, 20],
human action recognition [22, 16], human-object interaction [4], objects and attributes [23], human
poses and actions [24], group activity recognition [9], etc.

The latent SVM learns the model parametersθ by solving the following optimization problem:

min
θ

1

2
||θ||2 + C

N
∑

n=1

ξn s.t. fθ(x
n,yn) − fθ(x

n,y) ≥ ∆(y,yn) − ξn, ∀n, ∀y (14)

where∆(y,yn) is a loss function measuring the cost incurred by predictingy when the ground-
truth annotation isyn. We use a simple Hamming loss which decomposes as∆(y,yn) =
∑V

j=1 ℓ(yj, y
n
j ), whereℓ(yj , y

n
j ) is 1 if yj 6= yn

j and 0 otherwise. Note that our loss function
only involves the annotationy, because this is the only ground-truth label we have access to.

The problem in (14) can be equivalently written as an unconstrained problem:

min
θ

1

2
||θ||2 + C

N
∑

n=1

(Ln −Rn), where Ln = max
y

(

∆(y,yn) + fθ(x
n,y)

)

, Rn = fθ(x
n,yn) (15)

We use the non-convex bundle optimization in [5] to solve (15). In a nutshell, the algorithm itera-
tively builds an increasingly accurate piecewise quadratic approximation to the objective function.
During each iteration, a new linear cutting plane is found via a subgradient of the objective function
and added to the piecewise quadratic approximation. The keyof applying this algorithm to solve
(15) is computing the two subgradients∂θL

n and∂θR
n for a particularθ, which we describe in

detail below.

First we describe how to compute∂θL. Let (y∗, z∗, s∗) be the solution to the following optimization
problem (called loss-augmented inference in the structural SVM literature):

max
s

max
y

max
z∈Z(y)

∆(y,yn) + fθ(x
n,y) (16)
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Then it is easy to show that a subgradient∂θL
n can be calculated as∂θL

n = Φ(xn,y∗, z∗, s∗).
The loss-augmented inference problem in (16) is similar to the inference problem in (8), except for
an additional term∆(y,yn). We can modify the LP relaxation method in Sec. 3 to solve (16)for a
fixed s (and enumerates to get the final solution). First of all, it is easy to verify that ℓ(yj, y

n
j ) can

be re-formulated as:

ℓ(yj, y
n
j ) ≡

{

1 − yj if yn
j = 1

yj if yn
j = 0

(17)

Using (17), it is easy to show that if we re-definebj as below, the ILP in (12) will solve the loss-
augmented inference (16) for a fixeds:

bj =

{

γs
j,1 − γs

j,0 − 1 if yn
j = 1

γs
j,1 − γs

j,0 + 1 if yn
j = 0

(18)

Similarly, we can relax the problem to an LP using the same method in Sec. 3.

Now we describe how to compute∂θR. Let (z⋆, s⋆) be the solution to the following optimization
problem: maxs maxz∈Z(yn) fθ(x

n,yn). Then it can be shown that a subgradient∂θR
n can be

calculated as∂θR
n = Φ(xn,yn, z⋆, s⋆). For a fixeds, it is easy to show that the maximization over

z can be solved by the following ILP:

max
z

∑

i,j

aijzij , s.t.
∑

j

zij = yn
j , ∀i; zij ∈ {0, 1}, ∀i ∀j (19)

Similarly, we can solve (19) via LP relaxation by replacing the integral constraintzij ∈ {0, 1} with
a linear constraint0 ≤ zij ≤ 1.

5 Experiments

We test our model on the UIUC sport dataset [11]. It contains images collected from eight sport
classes: badminton, bocce, croquet, polo, rock climbing, rowing, sailing and snowboarding. Each
image is annotated with a set of tags denoting the objects in it. We remove annotation terms occur-
ring fewer than three times. We randomly choose half of the data as the test set. From the other half,
we randomly select 50 images from each class to form the validation set. The remaining data are
used as the training set.

We feed the training images and associated annotations (butnot the ground-truth sport category
labels) to our learning algorithm and set the number of latent scene labels to be eight (i.e. the
number of sport classes). We initialize the parameters of our model as follows. First we cluster the
training images into eight cluster using the following method. For each training image, we construct
a feature vector from the visual information of the image itself and the textual information of its
annotation. The visual information is simply the concatenation of visual word counts from all the
regions in the image (normalized between 0 and 1), i.e. the dimensionality of the visual feature is
∑C

c=1Nc. The textual information is the 0-1 vector of the annotation, i.e. the dimensionality isV .
We then run k-means clustering based on the combined visual and textual features to cluster training
images into eight clusters. We use the cluster membership ofeach training image as the initial
guess of the scene labels (which we callpseudo-scene label). We then initialize the parameters
β by examining the co-occurrence counts of visual words and pseudo-scene labels on the training
data. Similarly, we initialize the parametersγ by the co-occurrence counts of annotation terms and
pseudo-scene labels. The parametersα are initialized by the co-occurrence counts of visual words
and annotation terms with the mapping constraints ignored.

We compare our model with a baseline method which is a set of linear SVMs separately trained
for predicting the 0/1 output of each annotation term based on the feature vector from the visual
information. Following [21], we use the F-measure to measure the annotation performance. The
comparison is shown in Table 1(a). Our model outperforms thebaseline SVM method. We also list
the published result of [22] in the table. However, it is important to remember that it is not directly
comparable to other numbers in Table 1(a), since [22] uses different image features and different
subsets of the dataset unspecified in the paper. We visualizesome results on the test data in Fig. 5.

The scene labelss produced by our model for the test images can be considered asa clustering of
the scenes in those images. We can measure the quality of the scene clustering by comparing with
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Figure 3: Visualization ofγ parameters. Each plot corresponds to a scene labels, we show the weights of top
five components ofγs

j,1 of all j ∈ {1..V } (y-axis) and the corresponding annotation terms (x-axis).

athlete ceiling floor grass rowboat sailboat sky sun tree water

Figure 4: Visualization of the “position” components of theα parameters for some annotation terms. Bright
areas correspond to high values.

the ground-truth scene labels (i.e. sport categories) of the test images. For comparison, we consider
three baseline algorithms. The first baseline algorithm is to run k-means clustering on the test data
based on the visual features. However the comparison to thisbaseline algorithm is not completely
fair, since the baseline does not exploit any information from the annotations on the training data.
So we define other two baseline algorithms that use this extrainformation.

For the second baseline algorithm (which we callpseudo-label+SVM), we run k-means clustering
on both training and validation data. We use both visual features and textual features for the clus-
tering. After running k-means clustering, we assign apseudo-label to each image in the training
or validation set by its cluster membership. Then we train a multi-class SVM based on the visual
features of the training images and their pseudo-labels. The parameters of the SVM classifier are
chosen by validating on the validation images (visual features only) with their pseudo-labels. For a
test image, we use the trained SVM classifier to assign a pseudo-label based on the visual feature of
this image. The predicted pseudo-labels of test images serve as a clustering of those images.

For the third baseline algorithm (which we callpseudo-annotation+K-means), we first train separate
SVM classifiers to predict the annotation from the visual feature, using the ground-truth annotations
of the validation set to choose the free parameters in SVM classifiers. For a set of test images,
we use the trained SVM classifiers to predict their associated annotations (which we callpseudo-
annotations). Then we run k-means to cluster those test images based on both visual features and
textual features. The textual features are obtained from the pseudo-annotations.

We use the normalized mutual information (NMI) [15] to quantitatively measure the clustering re-
sults. LetΩ = {ω1, ω2, ..., ωK} be a set of clusters, andD = {d1, d2, ..., dK} be the set of ground-
truth categories. The NMI is defined asNMI(Ω,D) = I(Ω;D)

[H(Ω)+H(D)]/2 , whereI(·) andH(·) are the
mutual information and the entropy, respectively. The minimum of NMI is 0 if the cluster is random
with respect to the ground-truth. Higher NMIs means better clustering results. The comparison is
shown in Table 1(b). Our model outperforms other baseline methods on the scene clustering task.

We can visualize some of the parameters to get insights aboutthe learned model. For a particular
scene labels, the parameterγs

j,1 measures the compatibility of setting thej-th annotation term
active for the scene labels. We sort the annotation terms according toγs

j,1. In Fig 3, we visualize
the top five annotation terms for each of the eight possible values ofs. Intuitively, these eight scene
clusters obtained from our model seem to match well to the eight different sport categories of this
dataset. We also visualize the “position” (i.e.c = 4) components of theα parameters (Fig. 4) for
several annotation terms as follows. For a particular annotation termj, we find the most preferred
“position” visual wordw∗ for this annotation term byw∗ = argmaxw α

4
w,j . The cluster center of

the visual wordw∗ defines an8× 8 position mask of image locations (see [14]), which is visualized
in Fig. 4. We can see that the learnedα parameters make intuitive sense, e.g. “water” is preferredat
the bottom of the image, while “sky” is preferred at the top ofthe image.
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method F-measure
our approach 0.4552

SVM 0.4112
[21] 0.3500

method NMI
our approach 0.5295

pseudo-label + SVM 0.4134
pseudo-annotation + K-means0.3267

K-means 0.2227
(a) (b)

Table 1: Comparison of image annotation (a) and scene clustering (b). The number of clusters is set to be eight
for all methods. See the text for more descriptions.

Figure 5: (Best viewed in color) Results of annotation and segmentation on the UIUC sport dataset. Different
annotation terms are shown in different colors. Image regions mapped to an annotation term are overlayed with
the color corresponding to that annotation term.

6 Conclusion

We have presented a discriminatively trained latent model for capturing the relationships among
image regions, textual annotations, and overall scenes. Our ultimate goal is to achieve total scene
understanding from cheaply available Internet data. Although most previous work in scene under-
standing focuses on generative probabilistic models (e.g.[1, 3, 11, 12, 21]), this paper offers an
alternative path towards this goal via a discriminative framework. We believe discriminative meth-
ods offer a complementary advantage over generative ones. Certain relationships (e.g. the mapping
between images regions and annotation terms) are hard to model, hence largely ignored in the gen-
erative approaches. But those relationships are easy to incorporate in a max-margin discriminative
approach like ours.

In this work we have provided evidence that modeling these relationships can improve image an-
notation. Our work provides a general solution that can be broadly applied in other applications
involving mapping relationships, e.g. Youtube videos withannotations, movie clips with captions,
face detection with person names, etc. There are many open issues to address in future research:
(1) extending our model to handle a richer set of annotation terms (nouns, verbs, adjectives, etc) by
modifying the many-to-one correspondence assumption. (2)exploring the use of this model with
noisier annotation data (e.g. raw Flickr or YouTube tags); (3) exploiting the linguistic structure of
tags.
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