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Abstract

We propose a discriminative latent model for annotatinggesawith unaligned
object-level textual annotations. Instead of using the-diagyords image repre-
sentation currently popular in the computer vision comrtyjmiur model explic-

itly captures more intricate relationships underlyinguakand textual informa-
tion. In particular, we model the mapping that translateagmregions to anno-
tations. This mapping allows us to relate image regions &ir ttorresponding
annotation terms. We also model the overall scene labeltaestlanformation.

This allows us to cluster testimages. Our training dataisbp$images and their
associated annotations. But we do not have access to thedytouth region-

to-annotation mapping or the overall scene label. We devaloovel variant of
the latent SVM framework to model them as latent variablear €perimental

results demonstrate the effectiveness of the proposedlrmod®ared with other
baseline methods.

1 Introduction

Image understanding is a central problem in computer vittah has been extensively studied in
the forms of various types of tasks. Some previous work fesum classifying an image with
a single label [6]. Others go beyond single labels and assitjst of annotations to an image
[1, 10, 21]. Recently, efforts have been made to combin®uariasks (i.e. classification, annotation,
segmentation, etc) together to achieve a more completerstadding of an image [11, 12]. In this
paper, we consider the problem of image understanding witidigned textual annotations. In
particular, we focus on the scenario where the annotatepresent the names of the objects present
in animage. The input to our learning algorithm is a set ofgewmwith unaligned textual annotations
(object names). Our goal is to learn a model to predict thetation (i.e. object names) for a new
image. As a by-product, our model also roughly localizesithage regions corresponding to the
annotation, see Fig. 1. The main contribution of this papeihe development of a model that
incorporates this object annotation to image region cpwadence in a discriminative framework.

In the computer vision literature, there has been a lot okvaor exploiting images and their associ-
ated textual information. Barnard et al. [1] predict wordsa@ciated with whole images or regions
by learning a joint distribution of image regions and worBerg et al. [3] learn to name faces ap-
pearing in news pictures by learning a probabilistic moddhoe appearances, names, and textual
contexts. Wang et al. [21] use a learned bag-of-words togidehto simultaneously classify and
annotate images. Loeff et al. [13] discover scenes by etipipthe correlation between images
and their annotations. Some recent work towards total snaderstanding [11, 12] tries to build
sophisticated generative models that jointly perform ssviasks, e.g. scene classification, object
recognition, image annotation, and image segmentation.

*Work done while the author was with Simon Fraser University.
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Figure 1: Our goal is to learn a model using images and their associatatigned textual object annotations
(a) as the training data. Given a new image (b), we can use tuInto predict its textual annotations and
roughly localize image regions corresponding to each oftireotation terms (c).

Most of the previous work uses fairly crude “bag-of-wordsbdels, treating image features (ex-
tracted from either segmented regions or local interesitgpand textual annotations as unordered
entities and looking at their co-occurrence statisticsyVigtle work explicitly models more detailed
relationships between image regions and annotations thaikavious to humans. For example, if
an image is over-segmented into a large number of segmeatl, segment typically only corre-
sponds to at most one object. However, most of the previouk ignores this constraint and allows
an image region being used as evidence to explain diffefgietts mentioned by the annotations.
In this paper, we present a discriminative latent model tlagtures image regions, textual annota-
tions, mappings between visual and textual informatiod, @rerall scene labels in a more explicit
manner. Some work [1, 3] tries to incorporate the mappingrmiation into a generative model.
However due to the limitation of the machine learning toaediin those work, they did not prop-
erly enforce the aforementioned constraint on how imag®regare mapped to annotations. There
is also work [2] on augmenting training data with this maggpimformation, but it is unclear how it
can be generalized on test data. With the recent advancemieatrning with complex structured
data [7, 18, 21, 25], we believe now it is the time for us to sé\this line of ideas and examine other
modeling tools.

The work by Socher et al. [17] is the most relevant to ours. hit wwork, they learn to annotate
and segment images by mapping image regions and textuabwo latent meaning space using
context and adjective features. There are important distins between our work and [17]. First of
all, the input to [17] is a set of images (a handful of which ar@nually labeled) o& single sport
category, and a collection of news articles for that sport. The newislas are generic for that sport,
and the images are not the news photographs directly agsdeigth those news articles. Although
they have experimented on applying their model on imagectiins with mixed sport categories,
their method seems to work better with single sport categraiping. In contrast, the input to our
learning problem is a set of images from several sport caiegjotogether with theiassociated
textual annotations. We treat the sport category as a latent variable (we cdikistene label) and
implicitly infer it during learning.

2 Modd

We propose a discriminative latent model that jointly cagsithe relationships between image seg-
ments, textual annotations, region-text correspondesag overall image visual scene labels. Of
course, only the image segments and textual annotatiordbaszved on training data. All the other
information (e.g. scene labels, the mapping between regiod annotations) are treated as latent
variables in the model. A graphical illustration of our moédeshown in Fig. 2.

The input to our learning module is a set(af y) pairs wherex denotes an image, agddenotes the
annotation associated with this image. We partition thegieriato R regions using the segmentation
algorithmin [8], i.e.x = [z1, 2, ..., xg|. FOr each image regian;, we extract four types of visual
features (see [14]): shape, texture, color, and locati@ch®f these feature types is vector quantized
to obtain codewords for this feature type. Following [17% use 20, 25, 40, 8 codewords for each
of the four feature types, respectively. In the end, eacloreg; is represented as a 4-dimensional
vectorz; = (a1, xi2, i3, i4), Where each,. is the corresponding codeword of theh feature
type for this region.

The annotatiory of an image is represented as a binary vegtes (y1,y2, ..., yv ), whereV is the
total number of possible annotation terms. As a termin@algionvention, we use “annotation” to
denote the vectgy and “annotation term” to denote each compongruf the vector. An annotation
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Figure 2: Graphical illustration of our model. An inputimage is segn®eal into several regions. The annotation
of the image is represented as a 0-1 vector indicating theepi/absence of each possible annotation term.
Our model captures the unobserved mapping that translatgamegions to annotation terms associated with
the image (e.g. horse, athlete). For annotation terms socéged with the image (e.g. car, dog), there are no
mapped image regions. Our model also captures relationstipeen the unobserved scene label (e.g. polo)
and image regions/annotations.

termy; is “active” (y; = 1) if it is associated with this image, and is “inactive/;(= 0) otherwise.
We further assume the number of regions of an image is lahgeror equal to the number of active
annotation terms for an image, i.& > Z;/:l y;. In this work, we assume there are no visually
irrelevant annotation terms (e.g. “wind”), and there areammotation terms (e.g. “people” and
“athlete”) of an image that refer to the same concept. Thasebe achieved by pre-processing the
annotation terms with Wordnet (see [17]).

Given an imagex and its annotatioy, we assume there is an underlying unobserved many-to-one
mapping which translateB image regions to each of the active annotation terms. Weaette
mapping to have the following conditions: (i) each imageioags mapped to at most one anno-
tation term. This condition will ensure that an image regi®mot used to explain two different
annotations; (ii) an active annotation term has one or moege regions mapped to it. This con-
dition will make sure that if an annotation term (say “builgf) is assigned to an image, there is
at least one image region supporting this annotation teiijpa( inactive annotation term has no
image regions mapped to it. This condition will guarantesréhare no image regions supporting an
inactive annotation term.

More formally, we introduce a matrix = {z;; : 1 <i < R,1 < j < V} defined in the following
to represent this mapping for an image wittregions:

~_ | 1 ifthei-thimage region is mapped to theh annotation term (1)
%5 =91 0 otherwise

We use) to denote the domain of all possible assignmentg.ofFor a fixed annotatiogr, we use
Z(y) to denote the set of all possible many-to-one mappings &tisfs the conditions (i,ii,jiii). Itis
easy to verify that any € Z(y) can be represented using the following three sets of canttra

Dz <1, Vi max zi; = yj, VJ; zij €{0,1}, Vi, Vj )
J

For a given image, we also assume a discrete unobservede”sizrel s which takes its value
between 1 an&. We introduce the scene label to capture the fact that thetations of images are
typically well clustered according to their underlying ses. For example, an image of a “sailing”
scene tends to have annotation terms like “athlete”, “saifh “water”, etc. However, it is not quite
simple to define the vocabulary to label scenes [13]. In oukywwe treat the scene label as a latent
variable (hence we do not need its ground-truth label or eveacabulary for defining it) and let
the learning algorithm automatically figure out what coigéis a scene. As we will demonstrate
in the experiment, the “scenes” learned by our model on @&ctdn of sport images do match our
intuitions, e.g. they roughly correspond to different s@tegories in the data.

Inspired by the latent SVM [7, 25], we measure the compéijbbletween an image and an
annotationy using the following scoring function:

fo(x,y) = max zren}:}(};) 0" - d(x,y,2,5) 3)

whered are the model parameters a@dx, y, z, s) is a feature vector defined og y, z ands. The
model parameters have three pdrts {a, 3,~}, andd " - ®(x,y, z, s) is defined as:

07 - ®(x,y,2,5) = a' o(x,2) + B (x,5) +7 (y,s) 4)



The details of each of the terms in (4) are described in tHevidhg.

Region-Annotation Matching Potential o " ¢(x,z): This potential function measures the com-
patibility of mapping image regions to their correspondarmotation terms. Recall an image re-
gion z; consists of codewords from four different feature types= (x;1, xi2, zi3, x4). Let N,
(c=1,2,3,4) denotes the number of codewords of feature typEhe parameters consist of four
componentsy = {a“}%_, corresponding to each of the four feature types. Eaths a matrix of
size N, x V, where an entryy;, ; can be interpreted as the compatibility between the codgwor
(1 <w < N,) of feature type: and the annotation termh(1 < j < V). The potential function is
written as:

Ne

4 R V i R v
:ZZZ%W %:ZZ Zaw (w5 = w) - 245 %)

c=11i=1 j=1 c=1i=1 w=1 j=1

where1(-) is the indicator function. Note that the definition of thistguatial function does not
involve y sincey is implicitly determined by, i.e. y; = max; z;;.

Image-Scene Potential 57+ (x, s): This potential function measures the compatibility betwar
imagex and a scene labal Simllarly, the parameters consist of four parts} = {B°}2_, corre-
sponding to the four feature types, where an epify, is the compatibility between the codeword
w of typec and the scene label This potential function is written as:

4 4 R N

ﬂ—r Zzﬁrwe ZZZZﬂU}f .’L'w:’U})]l(S:t) (6)

c=11i=1 c=1i=1 w=1t=1

Annotation-Scene Potential v ¢(y, s): This potential function measures the compatibility be-
tween an annotatioyp and a scene label The parameters consist ofS components = {7 [
corresponding to each of the scene label. Each comporidstal’ x 2 matrix, wherew 1isthe

compatibility of settingy; = 1 for the scene label and%}0 is the compatibility of settingij =0
for the scene labél This potential function is written as:

|4 v S
9= Y2200, = 03 (ko 1y =015 = 1) 428,105, = 1)+ 15 = ) 2
7j=1 j=1t=1

v S
=33 (o (=) M =0+ 71wy - T(s = 1)) (7b)

j=1t=1

The equivalence of (7a) and (7b) is dueltg; = 0) = 1 —y; andl(y, = 1) = y; fory; € {0,1},
which are easy to verify.

3 Inference

Given the model parametefis= {«, 3, v}, the inference problem is to find the best annotagién
for a new imagex, i.e. y* = argmaxy fo(x,y). The inference requires solving the following
optimization problem:

max fp(x,y) = maxmax max 0 ®(x,y,z,s 8
yeyfe( y) = may mas me (%,y,2,5) (8)

Since we can enumerate all the possible values of the schakslahe main difficulty of solving
(8) is the inner maximization over andz for a fixeds, i.e.:

K A 9
VIR, P Py ©

In the following, we develop a method for solving (9) basedinear program (LP) relaxation. To
formulate the problem as an LP, we first define the following:

4 c
=> > ol M(wie = w), Vi, Vj by =1y =130, V) (10)

c=1w=1



Then it is easy to verify that the optimization problem in (@n be equivalently written as (the
constant in the objective not involvingor z is omitted):

max Zaijzz'j + ijyj s.t. ZZU <1, max zij = yj, Zij € {0,1}, Vi ¥y (11)
] J J
The optimization problem (11) is not convex. But we can rélaxonstraints to make it an LP. First
we reformulate (11) as an integer linear program (ILP):

ijzij + ) bjy; st i <1, 25 <y < iy 2ij €10,1}, y; € {0,1}, Vi V5 (12
It is easy to verify that (11) and (12) are equivalent. Of sa(12) still has the integral constraint

zi; € {0, 1}, which makes the optimization problem NP-hard. So we furtbakax the value of;;
to a real value in the range @f, 1].

Putting everything together, the LP relaxation of (11) camwlitten as:

H;azxz aijzij + ijyj s.t.Zzij S 1, Zij S yj S Z:Zij, O S Zij S 1, 0 S yj S 1, V’L Vj (13)

.3 J J

After solving (13) with any LP solver, we round; to the closest integer and obtajn asy; =
max; ZU

4 Learning

We now describe how to learn the model paramefdrsm a set ofN training examplegx™, y™)

(n =1,2,...,N). Note that the training data only contain images and thaictations. We do not
have the ground-truth scene lakebr the mapping for any of the training images, so we have to
treat them as latent variables during learning.

We adopt the latent SVM (LSVM) framework [7, 25] for learning-SVMs extend the popular
structural SVMs [18, 19] to handle latent variables durirgygting. LSVMs and their variants have
been successfully applied in several computer vision agfins, e.g. object detection [7, 20],
human action recognition [22, 16], human-object intemt{é], objects and attributes [23], human
poses and actions [24], group activity recognition [9], etc

The latent SVM learns the model parametetsy solving the following optimization problem:
1 N
min g [|0]F +C Y &n st fo(x"y") — fo(x"y) > Ay, y") — &, Yo, ¥y (19)
n=1

whereA(y,y™) is a loss function measuring the cost incurred by predicginghen the ground-
truth annotation isy”. We use a simple Hamming loss which decomposeg\ég, y") =
Z;;l U(yj,y7), wherel(y;,y7) is 1 if y; # y7 and O otherwise. Note that our loss function
only involves the annotatiopn, because this is the only ground-truth label we have acoess t

The problem in (14) can be equivalently written as an uncairstd problem:
N
: 1 2 n n n n n n n n
min —||6|| +CZ(£ —R"), where L = max (A(y,y )+ fo(x ,y)), R" = fo(x™,y") (15)
6 2 n=1 Y

We use the non-convex bundle optimization in [5] to solve)(16 a nutshell, the algorithm itera-
tively builds an increasingly accurate piecewise quadm@piproximation to the objective function.
During each iteration, a new linear cutting plane is fouredlarsubgradient of the objective function
and added to the piecewise quadratic approximation. Theokeypplying this algorithm to solve
(15) is computing the two subgradieridgL™ and 9y R™ for a particulard, which we describe in
detail below.

First we describe how to computieL. Let (y*, z*, s*) be the solution to the following optimization
problem (called loss-augmented inference in the struc8Va literature):

maxmax max A(y,y")+ fo(x",y) (16)
s Yy zeZ(y)



Then it is easy to show that a subgradi@pt™ can be calculated a% L" = & (x™,y*, z*, s*).
The loss-augmented inference problem in (16) is similah&inference problem in (8), except for
an additional term\(y, y™). We can modify the LP relaxation method in Sec. 3 to solve {a63
fixed s (and enumerate to get the final solution). First of all, it is easy to verifyat((y;, y7) can
be re-formulated as:
o | 1=y ifyt=1

g(ijyj) = { y; if yjn =0 (17)
Using (17), it is easy to show that if we re-defieas below, the ILP in (12) will solve the loss-
augmented inference (16) for a fixed

Vi1 —v0— 1 ifyp=1
b, = ?Sr ?s’ . gl 18
’ { Vi~ v+l ity =0 (18)

Similarly, we can relax the problem to an LP using the saméotkin Sec. 3.

Now we describe how to computgR. Let (z*, s*) be the solution to the following optimization
problem: max, max,c z(y») fo(x",y™). Then it can be shown that a subgradiépR™ can be
calculated agyR"™ = &(x™,y", z*, s*). For afixeds, it is easy to show that the maximization over
z can be solved by the following ILP:

max Zaijzij, s.t. Zzij =yi, Vi; zy €{0,1}, Vi Vj (19)
65 J

Similarly, we can solve (19) via LP relaxation by replacihg integral constrain;; € {0, 1} with
a linear constraind < z;; < 1.

5 Experiments

We test our model on the UIUC sport dataset [11]. It containages collected from eight sport
classes: badminton, bocce, croquet, polo, rock climbioging, sailing and snowboarding. Each
image is annotated with a set of tags denoting the objects We remove annotation terms occur-
ring fewer than three times. We randomly choose half of tha da the test set. From the other half,
we randomly select 50 images from each class to form theattid set. The remaining data are
used as the training set.

We feed the training images and associated annotationsnfiiuhe ground-truth sport category
labels) to our learning algorithm and set the number of laseene labels to be eight (i.e. the
number of sport classes). We initialize the parameters ofrmdel as follows. First we cluster the
training images into eight cluster using the following n@thFor each training image, we construct
a feature vector from the visual information of the imagelfiteind the textual information of its
annotation. The visual information is simply the concatemeaof visual word counts from all the
regions in the image (normalized between 0 and 1), i.e. theedsionality of the visual feature is
Zle N.. The textual information is the 0-1 vector of the annotation the dimensionality i$.

We then run k-means clustering based on the combined viaddkatual features to cluster training
images into eight clusters. We use the cluster membershgaoi training image as the initial
guess of the scene label(which we callpseudo-scene label). We then initialize the parameters
(£ by examining the co-occurrence counts of visual words ardigis-scene labels on the training
data. Similarly, we initialize the parameteydy the co-occurrence counts of annotation terms and
pseudo-scene labels. The parameteese initialized by the co-occurrence counts of visual words
and annotation terms with the mapping constraints ignored.

We compare our model with a baseline method which is a senhehli SVMs separately trained
for predicting the 0/1 output of each annotation term basedhe feature vector from the visual
information. Following [21], we use the F-measure to meaghe annotation performance. The
comparison is shown in Table 1(a). Our model outperformbtiEeline SVM method. We also list
the published result of [22] in the table. However, it is imjaoit to remember that it is not directly
comparable to other numbers in Table 1(a), since [22] udésreint image features and different
subsets of the dataset unspecified in the paper. We visisaline results on the test data in Fig. 5.

The scene labels produced by our model for the test images can be consideradhstering of
the scenes in those images. We can measure the quality of¢he slustering by comparing with



Sy Pase

1f@ e

|| F I =
Dty 'fJ/ YO Vs

"”e// oo, ”@/ ‘9’6/ ey "’éy O ‘9’/7/@ a//‘%/ ’e@

| | T Ill__ l!l_ !!,
Ocy O///bbeo;oe%lx 7ee  Car O‘ngg/egl’ 7ee axefa/zb;é/ a%/ega/;, '°/a/,

Og, ¢

Figure 3: Visualization ofy parameters. Each plot corresponds to a scene klved show the weights of top
five components of;j; of all j € {1..V'} (y-axis) and the corresponding annotation terms (x-axis).
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Figure 4: Visualization of the “position” components of theparameters for some annotation terms. Bright
areas correspond to high values.

the ground-truth scene labels (i.e. sport categories)efdht images. For comparison, we consider
three baseline algorithms. The first baseline algorithno isih k-means clustering on the test data
based on the visual features. However the comparison td#ssline algorithm is not completely
fair, since the baseline does not exploit any informati@mfithe annotations on the training data.
So we define other two baseline algorithms that use this exfwamation.

For the second baseline algorithm (which we gabudo-label+SVM), we run k-means clustering

on both training and validation data. We use both visualuiest and textual features for the clus-
tering. After running k-means clustering, we assigpsaudo-label to each image in the training

or validation set by its cluster membership. Then we trainutirclass SVM based on the visual
features of the training images and their pseudo-labelg parameters of the SVM classifier are
chosen by validating on the validation images (visual festwnly) with their pseudo-labels. For a
test image, we use the trained SVM classifier to assign a pske| based on the visual feature of
this image. The predicted pseudo-labels of test imageg sera clustering of those images.

For the third baseline algorithm (which we cpfeudo-annotation+ K-means), we first train separate
SVM classifiers to predict the annotation from the visuatdea, using the ground-truth annotations
of the validation set to choose the free parameters in SVMsdiars. For a set of test images,
we use the trained SVM classifiers to predict their assodiatenotations (which we catiseudo-
annotations). Then we run k-means to cluster those test images basedtbrvisoal features and
textual features. The textual features are obtained framp#eudo-annotations.

We use the normalized mutual information (NMI) [15] to qutatively measure the clustering re-
sults. LetQ = {wy,ws, ...,wk } be a set of clusters, addl = {d1, ds, ..., di } be the set of ground-

truth categories. The NMI is defined B&I(Q, D) = %, whereI(-) andH(-) are the
mutual information and the entropy, respectively. The mimin of NMI is O if the cluster is random
with respect to the ground-truth. Higher NMIs means betlestering results. The comparison is

shown in Table 1(b). Our model outperforms other baselinthods on the scene clustering task.

We can visualize some of the parameters to get insights ahedearned model. For a particular
scene labek, the parametery;; measures the compatibility of setting thieh annotation term
active for the scene labal We sort the annotation terms accordingyto . In Fig 3, we visualize
the top five annotation terms for each of the eight possibigegofs. Intuitively, these eight scene
clusters obtained from our model seem to match well to thibtelgferent sport categories of this
dataset. We also visualize the “position” (i€= 4) components of the: parameters (Fig. 4) for
several annotation terms as follows. For a particular aatiat termjy, we find the most preferred
“position” visual wordw* for this annotation term by* = argmax,, o .. The cluster center of
the visual wordw* defines ams x 8 position mask of image locations (see [14]), which is vigeal

in Fig. 4. We can see that the learnegarameters make intuitive sense, e.g. “water” is prefeated
the bottom of the image, while “sky” is preferred at the togted image.

7



[ _method | F-measure| | method | NMI ]

our approach 0.5295
Ourg{)/‘;;oa(:h 8'335122 pseudo-labgl +SVM 0.4134
121] 03500 pseudo-annotation + K-means0.3267
: K-means 0.2227
® ®)

Table 1: Comparison of image annotation (a) and scene clustering {i® number of clusters is set to be eight
for all methods. See the text for more descriptions.

Figure 5: (Best viewed in color) Results of annotation and segmentain the UIUC sport dataset. Different
annotation terms are shown in different colors. Image megimapped to an annotation term are overlayed with
the color corresponding to that annotation term.

6 Conclusion

We have presented a discriminatively trained latent modektépturing the relationships among
image regions, textual annotations, and overall scenes.ufmate goal is to achieve total scene
understanding from cheaply available Internet data. Altfftomost previous work in scene under-
standing focuses on generative probabilistic models (ELg3, 11, 12, 21]), this paper offers an
alternative path towards this goal via a discriminativerfeavork. We believe discriminative meth-
ods offer a complementary advantage over generative oreztai€ relationships (e.g. the mapping
between images regions and annotation terms) are hard teljehce largely ignored in the gen-
erative approaches. But those relationships are easy doparate in a max-margin discriminative
approach like ours.

In this work we have provided evidence that modeling thesiomships can improve image an-
notation. Our work provides a general solution that can madly applied in other applications
involving mapping relationships, e.g. Youtube videos vétinotations, movie clips with captions,
face detection with person names, etc. There are many opeasito address in future research:
(1) extending our model to handle a richer set of annotatoms$ (nouns, verbs, adjectives, etc) by
modifying the many-to-one correspondence assumptioneXgloring the use of this model with
noisier annotation data (e.g. raw Flickr or YouTube tag3);gxploiting the linguistic structure of
tags.
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