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Abstract

We present the max-margin latent Dirichlet allocation, a max-margin variant of su-
pervised topic models, for image classification and annotation. Our model for image
classification (called MMLDAY) integrates discriminative classification with generative
topic models. Our model for image annotation (called MMLDA¢) extends MMLDA® to
the case of multi-label problems, where each image can be associated with more than one
annotation terms. We derive efficient learning algorithms for both models and demon-
strate experimentally the advantages of our proposed models over other baseline meth-
ods.

1 Introduction

We consider the problem of image classification and image annotation. In particular, we
develop the max-margin latent Dirichlet allocation (MMLDA), a novel hierarchical model
integrating max-margin discriminative learning and generative topic models to address these
two tasks.

With the explosion of image data on the Internet and the availability of large-scale image
databases in the vision community (e.g. LabelMe [18], ImageNet [9]), automatically classi-
fying and annotating these large collections of images is becoming an important challenge.
The work in [2] learn to recognize people’s faces from face images and their associated
captions. There is also work [1] that treats object recognition as a machine translation task
and learns a model for the correspondence between image segments and annotation terms.
The work in [4] uses a similar idea and develops a probabilistic model for images and texts.
There is also work [13, 20] that combine image classification and annotation together.

Much work [1, 3, 4, 12, 13, 20, 21] in image classification and labeling uses topic mod-
els, which are a class of powerful tools originally proposed in text modeling and have gained
much popularity in computer vision recently. Examples of topic models include the proba-
bilistic latent semantic analysis (pLSI) [10], latent Dirichlet allocation (LDA) [7], correlated
topic models (CTM) [5], etc. Most topic models (e.g. LDA) are unsupervised, i.e. only
the words in the document collection are modeled. LDA assumes that each document is
a mixture of latent topics, and each topic defines a multinomial distribution over a given
vocabulary. The goal of topic models is to discover those topics underlying the document
collection to facilitate tasks like browsing, searching, etc. Unsupervised topic models have
also been used in many computer vision applications. One example is to automatically dis-
cover object classes from image collections [17].
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There has been work on applying topic models to construct features for classification.
The hope is that those topics discovered by topic models can be fed to a classifier like SVM.
Unfortunately, the SVM trained in this two-stage fashion typically performs worse than the
one trained directly based on the original features (e.g. histogram of word counts in text
analysis) [7]. This is mainly because the topic discovery and classification are disconnected
in this approach. The topics discovered by topic models are not necessarily the ones useful
for classification. To address this issue, several supervised variants of topic models have
been proposed, including the supervised LDA (sLDA) [6] and the discriminative LDA (Dis-
cLDA) [11]. The goal of these models is to learn topic models by considering the class label
in the training process, so the latent topics discovered by the models are directly tied to clas-
sification tasks. Recently, Zhu et al. [22] propose a max-margin variant of supervised topic
models called the maximum entropy discriminative latent Dirichlet allocation (MedLDA).
MedLDA integrates the max-margin learning principle with topic models, which results in
topic representations arguably more suitable for classification tasks.

Despite the success of topic models in visual recognition, we believe there is something
important missing. Almost all the above-mentioned topic models in computer vision as-
sume the “bag-of-words” image representation, i.e. an image is represented by a collection
of un-ordered feature descriptors computed from small local patches. Although the “bag-
of-words” representation has been proven successful, other more holistic image representa-
tions (e.g. GIST [16]) have been shown to be powerful in many applications too. As we will
demonstrate in the experiments, models that exploit both types of feature representations
work better than the ones based only on bag-of-words.

In this paper, we propose the max-margin latent Dirichlet allocation (MMLDA), a vari-
ant of MedLDA. We introduce two different versions of MMLDA, called MMLDA€ for
image classification, and MMLDA? for image annotation. MMLDA® is based on MedLDA.
The main difference is that MedLDA only uses the latent topics as the feature vector for clas-
sification, while MMLDAC® uses latent topics together with any other image features. This
extension allows MMLDAC¢ to make use of image features (e.g. GIST) that cannot be easily
represented as bag-of-words. MMLDA¢ is an extension of MMLDA€ for image annotation.
In image annotation, the goal is to choose a set of annotation terms (also called fags) to
describe an image. Since an image can be associated with more than one tag, image classifi-
cation is a multi-label classification. In MMLDAY, various tags are implicitly coupled by the
latent topics defined in the model. Training MMLDA¢ results in topic representations that
are suitable for predicting those tags.

2 Background

Our proposed models are based on the supervised latent Dirichlet allocation (sSLDA) [6]
and the maximum entropy discrimination latent Dirichlet allocation (MedLDA) [22]. In this
section, we give a brief introduction to these two models.

Suppose we are given a collection 2 of M documents 2 = {w;, w2, ..., Wy }. Each docu-
ment w is a collection of words w = (w1, wy, ...,wy ). For each of presentation, we also write
w as wy.y from now on. A document is also associated with a response variable y. Since
we focus on classification, the response variable y is a discrete value from a finite label set
yev.

Let K be the number of topics, and V be the size of the vocabulary. Let f be a K x V
matrix where each row B is a distribution over the V words. For classification problems,
sLDA assumes the following generative process of a document w and its response variable

y:

1. Draw topic proportions 0|o ~ Dir()
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2. For each word w,

(a) Draw topic assignment z,|6 ~ Mult(6)
(b) Draw word wy|z,, B1:x ~ Mult(f;,)

3. Draw response variable y|zi.y,1,06% ~ GLM(1 'Z,62), where 2= + ¥, z,

where GLM(Z, 17, 0) denotes a generalize linear model.

In sLDA, the parameters (, 8,7, 0?) are estimated by maximizing the joint likelihood
p(y, 2|a,B,n,0%), where y is the vector of response variables for all the documents in
2. Since directly maximizing the joint likelihood is intractable, SLDA maximizes its lower
bound. Given a document wy.y and its response variable y, it can be shown that:

logp(w,yla, B,1,0%) > Z(q) = Ellog p(6,2.1,y, W) + 7 (q) (D

The expectation IE[-] in Eq. 1 is taken with respect to a variational distribution ¢(0,z|y,¢),
which is used to approximate the posterior p(8,z|a, 8,62%,y,w). 7 (q) is the entropy of the
distribution ¢g. SLDA maximizes this lower bound .Z(q).

InsLDA, ¢(6,z|7, ¢) is assumed to has a fully factorized form ¢(0,z1.5|Y, §1:8) = q(0]7)
1Y, ¢(zn|9x), where Y is a K-dimensional Dirichlet parameter vector and each ¢, parametrizes
a multinomial distribution over K elements.

Recently, max-margin based learning methods have gained much popularity in the com-
puter vision community due to their superior performance in a variety of tasks. Examples
include support vector machines (SVM) for standard classification problems, and structural
SVMs for structured output problems. It is therefore desirable to combine topic models with
max-margin learning.

The first attempt of integrating max-margin learning and topic models is the work of
maximum entropy discrimination latent Dirichlet application (MedLDA) [22]. For classifi-
cation with |#/| possible classes, given the latent topic assignment z;.y, MedLDA assumes
a linear discriminative function in the form of F(y,z;.y,n) = n)TZ, where 7 = %ZZV:I Zp as
in sSLDA, 1, is a class-specific K-dimensional vector associated with class y and 7 is the
concatenation of 1, for all y € %/, If we assume a normal prior .#"(0,/) on the parameter 7,
MedLDA can be written in the following form (please refer to [22] for the details):

1 D
min  —Z(q)+=||n||*+C . st Vd,y: >0 (2a)
,0.8,1.& (@) 2”"” dz=:1 S v
Ny, ElZ4] =0, E[Z4] > A(y,y4) — &4 (2b)

where Z; denotes the random variable corresponding to Z in the d-th document, and the ex-
pectation [E[Z,] is taken with respect to the variational distribution g(-). Without the term
—Z(q) in Eq. 2, the optimization problem in Eq. 2 simply defines a multi-class SVM [8]
with [E(Z,) being the feature vector, &; being the slack variable associated with each docu-
ment. A(y,y,) is a loss function indicating the cost of misclassifying y, to be y. In classi-
fication problem, we typically use the 0-1 lose, i.e. A(y,ys) = 1 if y # y4, and A(y,y4) =0
otherwise.

The rationale of MedLDA is that we want to find a distribution on latent topic represen-
tation Z; for the d-th document and a model distribution g which satisfy: (1) the expectation
of latent topic representation IE[Z,] tends to produce a good classifier (in the typical max-
margin sense) when used as feature vectors; (2) the model distribution explains the data well,
i.e. by minimizing — % (g). MedLDA uses the generative part (i.e. —%(q)) of the model as
a regularization to the max-margin discriminative learning. Without this regularization, the
max-margin learning is not sensible since we can arbitrarily assign latent topics to perfectly
separate the training data.
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3 Max-Margin LDA

In this section, we introduce the max-margin LDA. Our model extends MedLDA to make it
more suitable for vision tasks.

First, the feature vector used for classification in MedLLDA is constructed only from
the latent topic representation IE(Z;) of the document. However, for many vision appli-
cations, the raw feature representations (e.g. bag-of-words histogram on vector-quantized
local patches) usually already give very good performance (see the results in Sec. 4), there
is no reason to ignore the raw features when learning a classifier. More importantly, the fea-
ture vector based on latent topics implicitly assumes a bag-of-words image representation.
When local features (e.g. SIFT [15] descriptors computed from interest points) are used, it
is relatively straightforward to represent an image as a bag of words. But for many image
classification problems, global image features (e.g. GIST [16]) can be effective too. It is
not clear how to use GIST features in the bag-of-words representation, hence we cannot use
MedLDA together with GIST features. In Sec. 3.1, we present a variant of MMLDA for im-
age classification (we call it MMLDA®). The advantage of MMLDAC is that it can be used
together with any feature representations.

Second, MedLDA is only for standard classification problems, where each data instance
is associated with a single class label. When it comes to image annotation, MedLDA cannot
be directly applied, since each image can be associated with multiple annotation terms. In
Sec. 3.2, we propose a model called MMLDA¢“ to address those multi-label classification
problems arising in image annotation.

3.1 MMLDAC

In this section, we present the MMLDA® model for image classification problems. We use
x to denote an image. We use w to denote the bag-of-words representation of x, e.g. w can
be obtained by vector-quantization of SIFT descriptors. The topic assignment of the words
in the document is denoted by z. We assume a linear discriminative function of the form
F(y,z,w,x,n) = nny(z,w,x). Note the definition of F(-) is similar to that in MedLDA.
In fact, if we assume f(z,w,x) =7 = %):f;’:l Zn, We can recover F(-) in MedLDA. So the
definition of F(-) in MMLDA is a strict generalization of that in MedLDA. One important
thing to remember is that since z is not observed, f(z,w,x) is actually a random vector
implicitly defined by the distribution on Z.

We assume f(z,w,X) is a concatenation of two sub-vectors f(z,w,x) = cat(Z;g(w,x)),
where g(w,x) is a vector defined on w and x, 7 is defined as 7 = %Zﬁ:’zl Z, similar to SLDA
and MedLDA, cat(a;b) denotes the concatenation of two vectors a and b. Notice that we
do not have any assumption on the form of g(w,x), it can be any feature vector extracted
from the image, e.g. histogram of words, GIST descriptors, or both. Similarly, we assume
7y is also a concatenation of two sub-vectors 1, = cat({y; ), so that 11yT f(z,w,x) = CyTZ—&—
vyT g(w,x). Fig. 1 (a) shows a graphical illustration of MMLDAC. Similar to MedLDA, we
learn the model parameter by solving an optimization problem as follows:

1 D
min _ —ZL(q)+=A|n|P+1 Y &, stvd,y: & >0 (3a)
g,0.8.n.€ 2 d=1
(), = 1, E[f(Za, Wa, Xa)] = A(y,ya) — (3b)

A minor difference from MedLDA is that, we have used two regularization parameters A and
T (instead of one parameter C in MedLDA) in Eq.3 to allow more flexibility in terms of the
relative contribution of each term.
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Figure 1: Graphical illustrations of (left) MMLDAC for image classification; (right) MMLDA¢“ for
image annotation. The variables enclosed by the dashed line are involved in the max-margin component
of the model.

The optimization in Eq. 3 is generally intractable. But we can use a co-ordinate descent
algorithm that iteratively optimizes over ¥, ¢, 1, o and 3. By writing the Lagrange of Eq. 3
and setting its derivative with respect to 7, ¢, 17, & and 3 to zero, we get a set of updating
rules similar to those in MedLDA.

Optimize over y: since the constraints in Eq. 3 do not involve 7, the updating rules
similar to MedLDA: ¥« ot + YN, ¢y,..

Optimize over ¢: For a document d and each word i, we set dL/d¢;; = 0 and get the
following updating rule:

oui < exp (Ellogol1] + Ellog plwalB))+ = X 1wi(0)(G,,~ ) @
y#)d

Note that each term in Eq. 4 is a K-dimensional vector. Eq. 4 without the last term exactly
corresponds to the updating rules of ¢;; in unsupervised LDA [7]. The updating rule is also
similar to that in MedLDA. The only difference is that for each 7n,, we only need a subset
of its elements (i.e. {y) in the updating equation. The Lagrange variables (1;(y) are obtained
when optimizing L over 1 (see below).

Optimize over f3: This optimization can be done via the following updating rules

N
Z Wan = W) Pank ®)

nMu

Optimize over ¢:: The optimization over & can be done using a Newton-Raphson itera-
tive method identical to that in unsupervised LDA [7].

Optimize over 11: When fixing all the other parameters, the optimization over 11 amounts
to solve the following optimization problem similar to a multi-class SVM [8]:

I I i
- — .t : >
min - [|n] +7Ld§§d, stVd,y: & >0 (6a)
(ny, = B (Za, Wa.Xa)] > A, ya) — & (6b)

When fixing the remaining parameters other than 1, we can easily get E[Z;] = & LYN  Gun-
Combining with the fact that g(w,x) is a fixed vector that does not depend on g(-), we can
get the following:

N
B (Zawaxa)] = cat (BfZa) g(w,x)) = cat( 3 Y. dug(wx)) )
n=1
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In summary, we simply compute a feature vector according to Eq. 7, then plug it into the
optimization problem in Eq. 6. When optimizing Eq. 6, we also need to keep track of the La-
grange dual variable p,(y) associated with each constraint, which are needed for computing
¢ for the next iteration. We use the SVM implementation in [8] to solve Eq. 6.

The algorithm of MMLDAC is very similar to MedLDA. The main difference is that the
SVM involved in the optimization over 1 can use richer feature representations, while the
SVM in MedLDA only uses features constructed from latent topics. As a result, the dual
variables (1,(y) obtained from solving Eq. 6 are different from those in MedLDA as well.
Since those dual variables are involved in the optimization of latent topics (see Eq. 4), the
latent topics discovered in MMLDA® will be different from those in MedLDA.

3.2 MMLDA¢“

Both MedLDA and MMLDAC are for standard classification problems, where each datum x
is associated with a single label y € %/ In this section, we introduce another model called
MMLDA¢? for the scenario where each x is associated with more than one label. An impor-
tant application of this scenario is image annotation. In image annotation, the goal is to use
a set of tags to describe a given image. This is not a standard classification problem because
an image can be associated with more than one tag, see examples in Fig. 2.

Let us assume an image annotation task with .7 possible tags. For a given image x, our
goal is to predict a .7 dimensional binary vector y = (y(l),y(z), ...,y<y)), where y) is 1 or
0 indicating the presence/absence of the ¢-th tag for this image. One simple solution is to
formulate image annotation as .7 binary classification problems, where a binary classifier is
learned separately to predict the presence/absence of each tag based on the image features.
During testing, we run .7 binary classifiers to independently predict whether each tag should
be chosen to describe an unseen image. The disadvantage of this approach is that those
& are learned independently of each other, but the annotations of an image are usually
correlated, e.g. annotation terms such as “car”, “road”, “sky” tend to appear together. There
are different ways to exploit the correlation among annotations. Our approach is inspired by
the hypothesis speculated in [14] that there exists a latent low-dimensional feature space that
are shared by classifiers for different tags. In [14], a low-rank matrix factorization approach
is used to exploit this low-dimensional space. In our work, we directly use the latent topics
as the low-dimensional space shared by tag classifiers.

We assume the classifier for the #-th tag is a binary linear SVM taking the feature vector
defined in Eq. 7 as its input feature. We use n(*) to denote the parameter of this SVM
classifier. Accordingly, n(’ ) has two sub-parts corresponding to vector obtained via latent
topics IE(Z;), and the vector obtained via g(w,x). The training data are in the form of
{xa4,y4}5_,, where the label y, is a .7 dimensional binary vector y; = (yfil) , yéz) by yfiy)),
and yg) =0or 1. We use A%(y,y4) to denote the loss incurred by predicting y while the
ground-truth annotation is y;. We assume A(y,y,) decomposes into the summation of .7

per-tag losses as A%(y,yq) = ):,Zl A(y(”,y((;)), where yf;) denotes the ground-truth label for

the ¢-th tag for document d, y) denotes an arbitrary label for the ¢-th tag. The loss A(y(’ ), y((;))

is the 0-1 loss.
Then we can formulate the multi-label image annotation using the following optimization
problem:

) 1 T D 7
min —X(q)—l—leHn(’)Hz—f—rZ Zéa(f), s.t. Vd,t,y" éa(f) >0 (8a)
0,:0,8,1m,8 2 = d=11=1
T i T _
N BU Zawaxa)l =) Bl Zawaxa)] = 807 57) &) (8b)
d
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Fig. 1 (b) shows a graphical illustration of MMLDA“. We use the same iterative method
in MMLDA® to optimize Eq. 8. Optimizing Eq. 8 with respect to ¥, B, o leads to updating
rules identical to those in MMLDAC. The only differences are in the optimization over ¢ and
n.

Optimize over 1: when fixing the remaining parameters, the optimization over 1 can
be performed separately for each tag t € {1,2,...,.7}. For a fixed 7, we need to solve the
following optimization problem:

1 D
min  =A|nY|2+7 (t), s.t. Vd,y": " >0 (9a)
I 'z
T _ T -
Ny B Zawarxa)] =) Bl Zawaxa) 2 A0V, yi) - &) (9b)
d

Eq. 9 is equivalent to a binary SVM and can be solved using the same technique in [8].
Optimize over ¢: the main difference between MMLDA? and MMLDAC® lies in the
optimization over ¢.

yd Y

g
T
¢d,~°<exp( [log 6|7] + Eflog p(wail B)] NZZ —C%)) (10)
=1,
We can compare Eq. 10 with Eq. 4 to see the difference. The first two terms in Eq. 4
and Eq. 10 come from the unsupervised LDA. The third term in Eq. 4 biases ¢;; towards
a distribution that favors a more accurate classification. The third term in Eq. 10, on the

other hand, biases ¢,; towards more accurate annotations for all the possible tags (notice the
summation over all ¢ in Eq. 10).

4 Experiments

We test our models on two real-world datasets containing both class labels and annotations:
a subset from LabelMe [18], and the UIUC sport dataset [12]. Both datasets have been
used in [20]. The LabelMe dataset contains images of 8 different scene categories: “coast”,
“forest”, “highway”, “inside city”, “mountain”, “open country”, “street” and “tall building”.
Similar to [20], we remove annotation terms occurring fewer than 3 times. On average there
are about six annotation terms per image in the LabelMe dataset. We randomly choose half
of the data as the test set. From the other half, we randomly select 50 images from each class
to form the validation set. The remaining data are used as the training set. The UIUC sport
dataset contains 8 sport classes: “badminton”, “bocce”, “croquet”, “polo”, “rock climbing”,

rowmg”, “salhng and “snowboarding”. On average there are about seven annotation terms
per image in this dataset. We split the dataset into training, validation, and test sets in a way
similar to LabelMe.

Following [20], we extract the 128-dimensional SIFT [15] descriptors densely selected
on a sliding grid. Those SIFT descriptors are clustered to form the codebook. We report
results using the codebook of size 250. We have tried other codebook sizes and the results
are similar.

Image classification: We compare the overall classification accuracies of our proposed
models with several baseline methods in Table 4. We have tried several different ways of
using our models, denoted as MMLDA, MMLDAC + GIST, MMLDA¢ + GIST and MMLDA¢
+ SIFT + GIST in Table 4. MMLDA® only uses the latent topic representation as the
feature vector. MMLDA+SIFT uses the concatenation of latent topic representation and
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| method | LabelMe [ UIUC sport |
sLDA 81.66 72.23
SVM+SIFT 79.54 72.74
SVM+GIST 79.63 72.61
SVM+SIFT+GIST 79.46 72.73
MMLDA¢ 81.74 74.65
MMLDAC‘+SIFT 84.53 76.05
MMLDA+GIST 86.05 82.17
MMLDAC+SIFT+GIST 86.73 83.06

Table 1: Image classification accuracies (%) on the LabelMe and UIUC sport datasets.

| method | LabelMe [ UIUC sport |
sLDA* 38.7 35.0
SVM+SIFT 46.25 45.75
SVM+GIST 45.98 45.35
SVM+SIFT+GIST 46.24 45.78
MMLDA“ 46.64 44.51
MMLDA“+SIFT 47.71 47.51
MMLDA%+GIST 47.19 50.61
MMLDA“+SIFT+GIST 47.94 52.49

Table 2: Image annotation results in terms of F-measure (%) on the LabelMe and UIUC sport datasets.
*The performance measurement of SLDA is taken from [20] and is not directly comparable to others
in the table.

the histogram of visual words as the feature vector. MMLDA+GIST uses the concatena-
tion of latent topic representation and the GIST descriptor as the feature vector. MMLDA¢
+SIFT+GIST uses the concatenation of all three vectors: latent topics, histogram of visual
words, GIST descriptors. For baseline methods, we compare with linear SVM trained with
various combinations of feature vectors (histogram of visual words, GIST). We also compare
with the SLDA model by running the code' of [20] on our dataset. We use the validation set
to set the free parameters in each method (e.g. the C parameter in SVM, or the number of
topics K in sLDA).

We can see that SLDA performs similarly with SVM. MMLDA® alone only performs
comparably to sSLDA and SVM. But when we combine MMLDA® with various raw fea-
tures (e.g. SIFT,GIST), the performance is much better.

Image Annotation: For image annotation, we compare various methods using the F-
measure in Table 2. The baseline method is a set of linear SVMs separately trained for
predicting the presence/absence of each annotation term. Since the code for image anno-
tation from [20] is not publicly available, we cannot run their method on our dataset. The
performance measurements of SLDA shown in Table 2 are the published results reported
in [20], it is important to remember that they are not directly comparable to other numbers
in the tables, since they use different subsets of the datasets.

We can see that our proposed methods outperform other baseline methods on both datasets.
Fig. 2 shows some examples of the annotations generated by MMLDA“+SIFT+GIST.

!Available at http: //www.cs.princeton.edu/~chongw/slda
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mountain, trees, sky,

car, mountain, road,

building, door, road,

mountain, trees, sky
trees

athlete, ball, grass,
mallet, plant, wicket

athlete,
floor, net, wall

audience,

sidewalk, sky

athlete, Dball,
lawn, mallet,
tree, wicket

grass,
plant,

Snowy mountain sky, trees sky, sidewalk, trees,
window
= T o e
field, mountain, sky, | building, car, road, | building occluded,

skyscraper occluded,
building, sky,

athlete, grass, horse,
mallet, tree

athlete, oar, rowboat,
tree, water

climber, plant, rock,
rope

sailing

athlete, sky,
boat, water

ski, skier, sky

Figure 2: Examples of image annotation. The first two rows are examples from the LabelMe dataset.

The last two rows are examples from the UIUC sport dataset.

5 Conclusion and Future Work

We have presented the max-margin latent Dirichlet allocation (MMLDA) that uses the max-
margin criterion to train topic models for image classification and annotation. Our experi-
mental results on two benchmark datasets show the promise of MMLDA. As future work, we
like to extend our model to perform image classification and annotation jointly. We also like
to improve our model by adapting more advanced inference algorithms recently proposed

for topic models, e.g. the collapsed variational inference [19].
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