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Abstract. We present an algorithm for automatically clustering tagged
videos. Collections of tagged videos are commonplace, however, it is not
trivial to discover video clusters therein. Direct methods that operate on
visual features ignore the regularly available, valuable source of tag in-
formation. Solely clustering videos on these tags is error-prone since the
tags are typically noisy. To address these problems, we develop a struc-
tured model that considers the interaction between visual features, video
tags and video clusters. We model tags from visual features, and correct
noisy tags by checking visual appearance consistency. In the end, videos
are clustered from the refined tags as well as the visual features. We
learn the clustering through a max-margin framework, and demonstrate
empirically that this algorithm can produce more accurate clustering re-
sults than baseline methods based on tags or visual features, or both.
Further, qualitative results verify that the clustering results can discover
sub-categories and more specific instances of a given video category.

1 Introduction

We have witnessed substantial progress in the acquisition and storage of videos.
For example, there are 100 hours of videos uploaded to YouTube every single
minute [1]. With this rapid increase in the scale of video collection, effective
and efficient video analysis techniques are increasingly in demand and crucial
for organization of this content.

Automatic clustering of videos is an essential means of video analysis. Clus-
tering has important uses – it can provide users with browsing capability, en-
abling exploration of the content of a video dataset. It can also provide sub-
categories, that can for instance be used to train specific detectors for different
sub-categories or otherwise provide a more detailed understanding of a topic.

To cluster videos, a straight-forward approach is to extract visual features
(e.g. HOG3D [2]) from video appearance, and then apply a standard clustering
algorithm. For instance, Wang et al. [3] cluster images strictly based on appear-
ance, and Niebles et al. [4] develop topic models based on video bag-of-words
approaches. However, these methods are generally limited in performance due
to the lack of semantics in low-level visual appearance.

To bridge the semantic gap, other approaches turn to semantic cues asso-
ciated with a video. Video tags are often considered for this purpose due to
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Fig. 1: Video tags provide rich information that can be used for discovering clus-
ters from unconstrained web videos. An algorithm for automatically clustering
videos with noisy tags is proposed that explicitly models tag label noise. The
proposed approach can be used to remove noisy tags or to add missing tags to
a video while finding clusters.

their easy accessibility. These tags range from user-generated content to video
captions to semantically meaningful attributes automatically produced by vi-
sion algorithms. Different from the low-level visual cues extracted from video
appearance, tags provide a complementary view of high-level video semantics.
There has been much work in recent years clustering tagged videos. For exam-
ple, Zeng et al. [5] utilize a learned model over text-based tags to cluster search
results. Schroff et al. [6] cluster videos by location based tags. Hsu et al. [7] build
hierarchical clustering using tags extracted from user-contributed comments.

Note that visual features and tags are two heterogeneous cues. It is intuitive
and beneficial to combine them into a single clustering framework. However,
implementing the “combination” is non-trivial. As revealed in our experiments,
simply concatenating the two features does not work well since it disregards the
hierarchical nature in between low-level visual features and high-level tag seman-
tics. Even a “hierarchical” model – for example, Zhou et al. [8] build tag models
from visual features and then use the resultant tag models to assist in clustering
– leads to sub-optimal performance. It is because this type of methods learn
tag models and clustering in two disjoint processes, and there is no interaction
among them. To address the problem, we develop a structured model that jointly
considers the interaction between visual features, video tags and video clusters
– tags are modeled beyond visual features, and video clusters are determined by
jointly examining the tags and visual features.

Another serious problem related to tagged video clustering is that tags are
always noisy – obtaining perfect, accurate tags is unlikely in any realistic setting.
Consider the examples of tagged videos in Fig. 1. Some tags relevant to the video
content are mentioned, while others are “false positives”, either irrelevant to the
content or not visually discernible. Further, tags are not mentioned with perfect
recall – if a tag is not present it does not mean the corresponding concept is not
in a video. See the tags highlighted in red in Figure 1 for an example. A recent
solution by Vahdat and Mori [9] suggests to “flip” a tag label by revealing the



Discovering Video Clusters from Visual Features and Noisy Tags 3

inconsistency of video appearance with other videos (from the same class) that
share the same tag. Note that this solution is tailored to supervised binary classi-
fication problems. However, our problem is unsupervised video clustering where
no video-level supervision is provided and there are always multiple clusters.
To handle tag noise in our settings, we propose to learn cluster-specific models
in a joint framework. Each model can actively select high-responding videos as
its cluster members. Videos from the same cluster are expected to have simi-
lar visual appearance and tags – we allow inconsistent tag labels to flip while
penalizing the number of changes.

To implement these ideas, we formulate a max-margin clustering framework
that utilizes the conjunction of visual features and explicit models of tag noise.
An alternating descent algorithm is developed to effectively solve the resultant
non-convex optimization problem. We show empirically that our method aids in
clustering, and outperforms approaches that are based strictly on text-based tags
or prediction of tags from visual data. Quantitative results show that the method
recovers more accurate clusters, and qualitative results further demonstrate the
ability to discover sub-categories among videos of a given type.

2 Previous Work

There exists a rich literature on video analysis. In this work, we focus on “un-
constrained” videos that are collected by users in a variety of acquisition en-
vironments. Specifically, we work on the TRECVID MED collection [10] which
provides a standard benchmark for unconstrained web video analysis.

Video analysis mainly includes the tasks of video clustering, video retrieval
and video recognition. We have reviewed various video clustering methods above,
so we omit their description here for brevity. For video retrieval, significant re-
search effort has been devoted in the form of event detection applied to the
TRECVID MED collection. We refer the readers to an excellent state-of-the-art
work of Natarajan et al. [11] for more details. Video recognition has been an
active research area in computer vision. For example, Izadinia and Shah [12]
recognized complex video events (e.g. “parade”, “landing fish”) from low-level
event tags (e.g. “people marching”, “person reeling”). A recent work by Vahdat
and Mori [9] developed a method for modeling tag label noise for improving video
classification. We build on this line of work, instead focusing on the problem of
unsupervised video clustering. Furthermore, beyond single event-level labeling
for videos, other research has focused on labeling videos with a set of tags. A rep-
resentative work in this area by Qi et al. [13] predicted multiple correlative tags
in a structural SVM framework. The obtained tags can aid in video clustering,
retrieval and recognition tasks.

The framework we develop for clustering is based on the max-margin clus-
tering (MMC) approach of Xu et al. [14], which searches for clusterings of input
instances that have a large margin between different clusters. As compared to
other standard clustering methods (such as K-means and Spectral Clustering),
MMC jointly optimizes cluster-specific models and instance-specific labeling as-
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signments, and often generates better clusters [14–17]. A recent work by Zhou
et al. [8] applied a variant of MMC to cluster videos with latent tags. We ex-
tend this framework by two aspects: i) we explicitly model tag noise, and show
that incorporating noisy labels can produce more accurate clustering; and ii)
(as mentioned before) we use a structured model to capture interaction between
visual features, tags and video clusters, instead of using two disjoint processes
for learning tag models and clustering [8].

Sub-categories have been studied in the context of fine-grained recognition
of a given class or topic. The most popular technique for sub-categorization
uses latent variable models: it first utilizes clustering strategies to initialize
sub-categories, and then encode sub-category information as latent variables
for learning sub-category models. Yang and Toderici [18] use co-watch data to
learn sub-categories on YouTube videos. Hoai and Zisserman [19] develop a dis-
criminative approach to sub-category discovery. We show that our clustering
algorithm can be used to discover sub-categories within a video category, and
different from previous approaches we utilize a structured noisy tag model for
this clustering.

3 Tag-based Video Clustering

Consider the problem of discovering clusters of similar videos in unconstrained
web videos, similar to YouTube-type videos generated by amateur users. In the
most naive way, one can extract visual features from videos and cluster them in
visual feature space using off-the-shelf techniques like K-means. The main draw-
back of this technique is that the formed clusters tend to lack semantic meaning.
The problem arises from the underlying visual features used in the clustering.
Low level features often fail to represent higher level semantics. Therefore, the
resultant clusters are created according to the distance of input samples in the
visual feature space which may not match to the conceptual difference that hu-
mans associate to the samples.

In contrast, one can explore other sources of information for video clustering
rather than pure visual features. Often there are other data available, such as
user-provided tags which are common among internet video sharing websites.
Tags may refer to objects, actions, scenes or other semantically meaningful en-
tities in a video. Clusters formed on tags are more likely to be semantically
meaningful clusters than those created using visual features solely, as the clus-
ters are created in semantically meaningful tag space where similar videos are
more likely to share the same tags.

However, tags available on video sharing websites are typically very noisy.
The source of noise may vary in different cases, but mainly it can be due to the
ambiguity of the process. Tagging is a very subjective task and users may not
agree on the tags that should be assigned to the same video. Users can fail to
identify some tags relevant to their content; sometimes they introduce spam tags
to increase their chance in the retrieval process by misleading the system with
tags that are not actually present in their video. In this case, clusters created
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from tags will be prone to this noise, and may represent a group of irrelevant
videos. On the other hand, obtaining high-quality and noise-free tags can be a
very expensive annotation process.

In this paper, we are aiming at an alternative approach to video clustering
that works with noisy tags. To implement the idea, we develop a structured
model that considers the interaction between video visual features, video tags
and video clusters. This structured model enables us to detect tags in a video
that are correlated with clusters. In contrast to previous tag-based clustering
approaches (e.g. [8]), our model will be equipped with a tag model that recognizes
tags on a video using visual features. The tag model will help us detect noise by
revealing the inconsistency of a video’s visual features with the other samples
that share the same tag.

First, we introduce the details of the visual feature-tag-clustering model used
for detecting tags and clustering videos. Next, in Sec. 3.2 we present structured
max-margin clustering approach followed by our flip max-margin clustering ap-
proach that clusters videos using noisy tags in Sec. 3.3. Finally, the details of
the optimization are described in Sec. 3.4.

3.1 Cluster Model for Visual Features and Tags

In this work, a structured model is defined for representing the relationship
between visual features and tags in a video cluster. The model is designed such
that both video clustering and tagging can be performed jointly. For this purpose,
we incorporate a tag model to detect tags present in a video, and a tag-cluster
interaction model to represent the correlated tags and clusters.

Let us represent a video by x and a set of T binary tags using t = {ti} for
i = 1, 2, . . . , T where ti ∈ {−1, 1} represents the presence and absence of i-th
tag respectively by 1 and −1. The scoring function w>φ(x, t, y), which measures
the compatibility score between cluster y and tag labeling t for the video x is
defined as:

w>φ(x, t, y) =

T∑
i=1

tiα
>
i θ(x) +

T∑
i=1

β>
i,yϕ(ti) (1)

Here, θ(x) is a global feature extracted from video x, αi is the appearance pa-
rameter for the i-th label and the term tiα

>
i θ(x) measures the compatibility of

the global feature with the i-th tag label. ϕ(ti) is a vector of size two that indi-
cates whether −1 or 1 has been taken by ti using [1, 0] or [0, 1], and, β>

i,yϕ(ti)
measures the compatibility between the i-th tag and the cluster y. Specifically,
βi,y is a two-dimensional weight vector that represents how likely each case of
the tag ti (e.g. presence as ti = 1 or absence as ti = −1) is associated with the
cluster y. Naturally, a large value of βi,y on the presence case means that videos
in the cluster y tend to have the tag ti, and a large value of βi,y on the absence
case means that videos in the cluster y tend to not have the tag ti. {αi}i=Ti=1 and

{βi,y}i=T,y=Ki=1,y=1 are the parameters of our model that are represented altogether
by w. Next, the training criterion for learning w is discussed.
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3.2 Structured Max-Margin Clustering

The goal of video clustering is to group videos into clusters such that videos
in the same cluster are similar. A variety of clustering methods exists in the
literature, using different video features and different clustering criteria.

First of all, the features used in clustering have crucial impact on the quality
of clusters. Video clustering may be performed over low-level visual features, or
semantically meaningful tags, or both.

Apart from the features, the clustering criterion constitutes another dimen-
sion of flexibility. Among the widely used approaches, K-means assigns samples
to clusters such that intra-cluster variation is minimum, or Spectral Cluster-
ing [20] uses eigenvalues of the affinity matrix of the data to map data to an
embedding space before clustering. Max-margin clustering (MMC) [14] instead
finds a labeling so that the margin between clusters will be maximal.

Here, we extend the MMC approach to the case that there is a structured
labeling of tags for each input video available for training. We present a new
clustering framework that learns the parameters of the model such that both
tag prediction and video clustering can be performed jointly. Given N training
videos, {xn, tn}n=Nn=1 to be clustered into K clusters, the goal of structured max-
margin clustering (Structured MMC) is to find the labeling yn ∈ {1, 2, . . . ,K}
using the following optimization problem:

min
w,ξn,yn

λ

2
||w||22 +

N∑
n=1

ξn (2)

s.t. w>φ(xn, tn, yn) ≥ w>φ(xn, t, y) +∆y,yn
t,tn
− ξn ∀t,∀y

L ≤
N∑
n=1

1(yn=k) ≤ U ∀k ∈ {1, 2, . . . ,K}

which minimizes the norm of parameters ||w||22 while assigning training examples
to clusters as well as tagging them with a minimum structured error measured by
the slack variables ξn. λ is a hyper parameter that controls the balance between
the norm of model parameters and constraint violation. The first constraint
enforces that the compatibility score of video xn, its tag label tn and assigned
cluster yn is greater than any other hypothesized labeling. Here, the margin is
re-scaled based on how different the hypothesized labeling is from the annotation
using the loss function ∆y,yn

t,tn
. Note that the loss function is a function of both

cluster assignments and video tags. Therefore, the Structured MMC defined in
Eq. 2 not only maximizes the margin between clusters, but also learns parameters
such that the annotated tags have higher scores than hypothesized tag labels.

The second constraint in Eq. 2 enforces balanced clusters where L and U are
the lower and upper bounds controlling the size of each cluster. The same con-
straint is used in [8] to prevent the algorithm from finding the trivial clustering
that assigns all the videos to one cluster.

Note that the optimization problem in Eq. 2 differs from previous clustering
techniques in that both the structured prediction of tags and clustering are
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formulated in a unified framework. This is an essential capability as after learning
model parameters, w, using training videos, the model can potentially be used
to jointly tag and cluster unseen videos.

3.3 Flip Max-Margin Clustering

The Structured MMC algorithm described above relies on the tags given in the
training phase. However, in the case of noisy tags the quality of clusters can
be poor since they are formed based on unreliable tags. Further, tags that are
missing on training videos can have a significant effect on the clustering results,
since the model will unduly penalize their absence on a particular video.

Instead of treating the tags provided on training videos as fixed, we explicitly
model the possibility of incorrect tags on input videos. Motivated by the idea of
Flip SVM [9], we propose flip max-margin clustering (Flip MMC) that is allowed
to change tags in the course of training. In this approach, the training algorithm
may correct some tag label noise by considering their inconsistency in visual
feature space with respect to the videos sharing the same tag. But at the same
time, the algorithm is penalized for label changes to prevent the situation where
all the tags are set to the same category.

In order to operationalize this idea, we modify the optimization problem for
Structured MMC in Eq. 2. We change this optimization problem to include un-
certainty in tags, allowing a certain number of tags to “flip” or change. This will
let the clustering algorithm adaptively correct tags on a training video believed
to be erroneous, adding missing tags to a video and/or deleting spurious ones.

Let us define the refined tag labels for the n-th training example by t′n =
{t′ni}i=Ti=1 . Intuitively, the refined tag label should be similar to annotated (noisy)
tag label, tn, except a few tags flipped based on inconsistency with other videos
in the same cluster. Here, the label change cost function ∆′

tn,t′n
is defined to

penalize training algorithm from making refined tag label very different from
the annotated tags, tn. In this case, the optimization problem of Flip MMC is
formulated as:

min
w,ξn,ξ′n,yn,t

′
n

λ

2
||w||22 +

N∑
n=1

ξn + γ

N∑
n=1

ξ′n (3)

s.t. ξ′n ≥ ∆′
tn,t′n

w>φ(xn, t
′
n, yn) ≥ w>φ(xn, t, y) +∆y,yn

t,t′n
− ξn ∀t,∀y

L ≤
N∑
n=1

1(yn=k) ≤ U ∀k ∈ {1, 2, . . . ,K}

which minimizes the norm of parameters ||w||22 while assigning training examples
to clusters as well as recognizing refined tag labels, t′n constrained to be similar
to annotated tags, t′n. λ and γ are hyper parameters that controls the balance
between the norm of model parameters, constraint violation for refined tag label,
ξn and the tag label change cost ξ′n. The second constraint enforces that the
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compatibility score of video xn, its refined tag label t′n and assigned cluster yn
is greater than any other hypothesized labeling where the margin is rescaled
using ∆y,yn

t,t′n
similar to Structured MMC. In this work, both ∆′

tn,t′n
and ∆y,yn

t,t′n
are assumed to be a decomposable loss function that can be decomposed to
a sum of losses measured on individual tag/cluster annotation. Here, simple
hamming loss functions are used for both functions. Note that γ controls the
amount of annotated label change allowed in training. By setting it to ∞ Flip
MMC becomes Structured MMC.

We emphasize that our framework is general, and can handle video datasets
with more or less noisy tags. For example, in a case with less noise, the trade off
parameter γ can be set to a large value to prevent too many flips. Or, the label
change cost function ∆′

tn,t′n
can be renormalized to penalize flipping erroneous

tags less, especially if there is some prior information available regarding the
amount of noise for each tag.

3.4 Optimization

The Flip MMC framework proposed in the previous section jointly optimizes the
model parameters that describe each cluster, finds the best assignment of videos
to clusters, and refines the tag labeling to reduce the noise in tag annotation.
Similar to MMC, the Flip MMC optimization is a challenging non-convex opti-
mization problem due to the discrete optimization that assigns videos to clusters
and refines tag labels.

Here this non-convex optimization problem is rewritten in unconstrained
format as:

min
w

λ

2
||w||22 +Rw (4)

where Rw is the the risk function defined in the form of an assignment problem:

Rw = minyn

N∑
n=1

R′
w(yn) (5)

s.t. L ≤
N∑
n=1

1(yn=k) ≤ U

where R′
w(yn) computes the “mis-clustering” cost of assigning the n-th video to

the cluster yn using:

R′
w(yn) = min

t′n
max
y,t

(
w>φ(xn, t, y) +∆y,yn

t,t′n
− w>φ(xn, t

′
n, yn) + γ∆′

t′n,tn

)
. (6)

In Eq. 6 annotated tags change to t′n such that the error of assigning the video
xn to yn is minimal while number of changes are being penalized by ∆′

t′n,tn
.

In order to address the unconstrained optimization problem in Eq. 4, we
develop a coordinate descent-style algorithm shown in the supplementary mate-
rial. This algorithm alternates between finding the parameters of each cluster (w)
and finding an assignment of videos to clusters. The algorithm mainly consists
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of three steps performed iteratively. First, “mis-clustering” cost is computed in
Eq. 6, and then it is used for computing risk function by solving the assignment
problem in Eq. 5. Finally, the model parameters are updated given the risk val-
ues using the NRBM approach of Do and Artières [21], which is a non-convex
extension of the cutting plane algorithm. The details of the training algorithm
can be found in the supplementary material.

4 Experiments

In this section, the proposed video clustering technique is examined for two
different tasks. First, the method is evaluated for the general video clustering
task based on tags, and later it is used for discovering sub-categories of complex
video events.

Dataset: For the experiments, we use our model to cluster web videos in
the TRECVID MED 2011 dataset [10]. We use the Event Kit video collection
that includes 2379 videos from 15 event categories: “board trick”, “feeding ani-
mal”, “landing fish”, “wedding ceremony”, and “woodworking project”, “birth-
day party”, “changing a tire”, “flash mob”, “getting a vehicle unstuck”, “groom-
ing animal”, “making sandwich”, “parade”, “parkour”, “repairing appliance”,
and “sewing project”. Each category contains about 150 videos.

Visual Feature: For all experiments HOG3D features [2], k-means quan-
tized into a 1000-word codebook are used. For all techniques that require vi-
sual features, the approximated Histogram Intersection Kernel via feature ex-
tension [22] is used to provide higher quality results.

Tags: The noisy tags generated in Vahdat and Mori [9] TRECVID MED
2011 dataset are used in the experiments. [9] uses text analysis tools to extract
binary tags based on one-sentence long textual description of videos provided
with the dataset in the “judgment files.” As tags are generated from arbitrary
sentences, there is a large amount of noise inherited in tag annotation. The 114
tags that have more than 10 occurrences in the dataset are used here.

4.1 Video Clustering

In this section, the proposed clustering approach is used to cluster the web
videos in the TRECVID MED 2011 dataset. Following previous work [14–17,
8], the videos are grouped into the number of event categories in the dataset
(K = 15). The Flip MMC and Structured MMC approach are compared with
four sets of baselines:

Visual Features: The first set are based on approaches that work directly
on the visual features without considering any tag annotation. Here a video is
represented by a global bag-of-words feature vector. We have examined three con-
ventional approaches including the K-means algorithm, Spectral Clustering [20],
and the MMC approach implemented in [8]. Furthermore, to mitigate the effect
of randomness, K-means and Spectral Clustering are run 10 times with different
initial seeds and the average results are recorded in the experiments.
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Binary Tags: The second set of baselines is the same baselines where visual
features are replaced with binary tag annotations. Here a video is represented
by a vector of binary variables indicating the annotated presence/absence of
tags , and the same K-means algorithm, Spectral Clustering [20], and the MMC
approach [8] are used for clustering videos.

Binary Tags and Visual Features: The third set of baselines are created
by representing each video using the concatenation of their visual features as
well as binary tag labels. The baseline shows the case where information from
heterogeneous sources are combined in a naive way.

Detection Scores: The fourth set of baselines trains SVM tag detectors
from visual features, and represents each video by a vector of tag detection
scores. Note that these baselines consider tag detection and clustering as two
separated steps. In contrast, our approach models tags and clusters in a joint
framework, while correcting noisy tags. As above, we have conducted K-means,
Spectral Clustering and MMC on this data. We have also compared the latent
max-margin clustering (Latent MMC) approach proposed in [8], which clusters
videos based on the latent presence/absence of video tags. Note that Latent
MMC originally builds tag detectors on a different dataset other than the one
for clustering. As we assume tag annotation on the clustering dataset, a fair
comparison is made by training tag detectors on the same clustering data for all
the compared methods.

Parameters: MMC, Latent MMC, Structured MMC and Flip MMC require
setting the lower bound (L) and upper bound (U) values in cluster balance
constraint. For all these methods we set L and U to 0.9NK and 1.1NK respectively.
For all the methods, the trade off parameter, λ is chosen as the best from the
range {0.1, 1, 10}, and the other trade-off parameter of Flip MMC γ, is set to 0.1.
All MMC based clustering we used the same initialization of clusters resulted
from Spectral Clustering. The same optimization package is used for all the
MMC-like methods for a fair comparison.

We use Hamming loss for both Structured MMC and Flip MMC. ∆′
t′,t, the

label change cost function is also defined as Hamming loss which basically counts
the number of label changes. For flip part, we defined cost function such that
it prevents label flips from a positive tag to a negative tag. The rational be-
hind this type of loss function is the fact that in the TRECVID MED dataset,
sentences used for generating tag annotation are entered by expert annotators.
It is assumed that the annotators have not entered spam sentences. So, the ex-
tracted tags are actually present in the video, and there is no need to remove
them. However, it is natural to assume that sentences does not contain all the
potential tags annotated (mentioned) in the sentence.

Performance measures: Four standard measurements are used to evaluate
the quality of the clusters: purity [14] measures the accuracy of the dominating
class in each cluster, normalized mutual information (Normalized MI) [23] is
from the information-theoretic perspective and calculates the mutual dependence
of the predicted clustering and the ground-truth partitions, Rand index [24]
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Table 1: Quantitative comparison of clusters generated by different approaches.
Visual Features represents the set of baselines that perform on visual features,
Binary Tags are the baselines that work with binary tags directly, Binary tags
and Visual Features are those that use both visual features and binary tags, and
Detection Scores denotes the set of baselines that use tag detection scores. Our
model refers to the models of Structured MMC (defined in Sec. 3.1) and Flip
MMC (defined in Sec. 3.3).

Purity Normalized MI Rand index F-measure

Visual Features:
K-means 0.26 0.19 0.88 0.14
Spectral Clustering 0.25 0.20 0.88 0.15
MMC 0.25 0.19 0.88 0.14

Binary Tags:
K-means 0.51 0.52 0.86 0.30
Spectral Clustering 0.71 0.73 0.93 0.56
MMC 0.76 0.72 0.95 0.64

Binary Tags and
Visual Features:
K-means 0.51 0.49 0.90 0.34
Spectral Clustering 0.76 0.74 0.94 0.62
MMC 0.79 0.72 0.95 0.66

Detection Scores:
K-means 0.63 0.60 0.93 0.50
Spectral Clustering 0.82 0.76 0.96 0.69
MMC 0.83 0.78 0.96 0.73
Latent MMC 0.86 0.82 0.97 0.79

Our model:
Structured MMC 0.87 0.84 0.97 0.79
Flip MMC 0.90 0.88 0.98 0.84

evaluates true positives within clusters and true negatives between clusters and
balanced F-measure considers both precision and recall.

Results: The quantitative comparison of the proposed clustering approach
with baselines is presented in Table 1. On the TRECVID MED 2011 dataset,
Flip MMC achieves the highest performance in terms of all the measurements.
The comparison between Structured MMC and Flip MMC shows the efficiency
of label flip in getting better clusters. Surprisingly, the performance of K-means,
Spectral Clustering and MMC gain a significant boost when discrete tag labels
were replaced with the detection scores of an SVM classifier that is trained on
the training dataset. This may be due to the fact that SVM maps binary tag
labels to a continuous domain where the magnitude of scores are correlated with
the strength of the presence of the tag. The comparison between Visual Features
and Binary Tags baseline sets confirms the fact that in general clustering videos
based on tags can actually result in semantically meaningful clusters, and finally
the low accuracy of Binary Tags and Visual Features baselines comparing to
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our approach shows that naive approaches such as feature concatenation may
improve the accuracy of techniques that rely on individual sources of information
such as visual features or tags, but, in contrast our approach can wisely use the
information in visual features to refine annotated tag labels that result in better
clusters.

4.2 Sub-categorization

In this section, the proposed approach is used to discover sub-categories of event
categories in TRECVID MED 2011. Due to the complex nature of events defined
in the TRECVID MED dataset, the amount of intra-class variation is very large.
Sub-categorization of events can be potentially used to discover clusters that have
lower intra-class variation. For example, an event such as “boarding trick” can
involve snowboards, skateboards, or other devices; can occur in scenes ranging
from urban streets to watery environs; and has other variations, much of which
is captured in relevant tags.

In order to discover sub-categories, we consider videos from each ground-
truth event category in turn. Videos of each event category are clustered into six
clusters. Representative samples of the results for “grooming animal”, “getting a
vehicle unstuck”, and “boarding trick” are visualized in Figure 2. As we are using
tags for clustering videos, the discovered clusters are in general semantically
meaningful.

Figure 2 shows examples of sub-categories for “getting a vehicle unstuck”
that correspond to the type of vehicle, or the environment in which the vehi-
cle has been stuck. Clusters that correspond to getting a vehicle unstuck from
mud or snow are discovered. The event category “grooming animal” results in
sub-categories that vary according to the animal being groomed, and snow-
board/skateboard variants are discovered in the “boarding trick” event category.

5 Conclusion

We have presented a method for automatically obtaining clusters of videos by
utilizing visual features and noisy tags. We developed a clustering algorithm
based on max-margin clustering that finds groups of videos by optimizing a
max-margin criterion separating each cluster from competing ones. Different
from previous clustering approaches, we explicitly model label noise. We showed
empirically that this was effective, resulting in more accurate clustering than a
set of baseline methods.

We presented results on the TRECVID MED unconstrained web video dataset
that verified the efficacy of the proposed method. In particular, one could dis-
cover either high-level event categories or semantically meaningful sub-categories
of events by utilizing noisy tag data in conjunction with visual features. Noisy
tag data are commonplace, and methods for effectively using them for cluster-
ing could facilitate more efficient methods for exploring and understanding web
video collections.
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PDF created with pdfFactory trial version www.pdffactory.comFig. 2: Qualitative visualization of sub-categories discovered from event cate-
gories in TRECVID MED 2011 dataset. Each row represents three sub-categories
of an event category. For each sub-category four highest-scored videos are visu-
alized. The tags associated for each video is also reported along with red tags
added by Flip MMC. In most cases the formed clusters represent a semantically
meaningful sub-category. The semantic content of each cluster can be extracted
by manually checking common detected tags, and is reported on top.
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