

Selecting and Commanding Individual Robots in a Multi-Robot System

Alex Couture-Beil, Richard Vaughan, Greg Mori

School of Computing Science Simon Fraser University Burnaby, BC, Canada

Human-Robot Interaction

- human-robot interface:
 - Select an individual robot
 - Command the individually selected robot with a motion-based hand gesture

Selecting and Commanding Individual Robots in a Vision-Based Multi-Robot System

Alex Couture-Beil Richard T. Vaughan Greg Mori

Autonomy Lab Simon Fraser University

Swarmcraft (McLurkin 2006)

Conventional Human-Computer Interface

Pheromone Robot Remote Control (Payton 2004)

Hey Robot #472, take out garbage #532

Hey Coyote, take out the nearest garbage (e.g. Perzanowski et al. 2002)

Our Method: Face Engagement

Hey you, take out the nearest garbage

Robots and Face Engagement

- Goffman 1966 face engagement:
 - the process in which people use eye contact and facial gestures to interact with people (and robots too?)

Credit: Mutlu et al. 2009; developed at ATR by Ishiguro et al.

Credit: Staudte and Crocker 2009

Activating a robot with Face Engagement

- Tour-guide robot by Kuno et al.
- Approaches a user when directly looked at

Demonstration Task

The Algorithm

Viola Jones Face Detection

Viola Jones Face Detection

- Detector is insensitive to small changes
- Overlapping detected rectangles
- We use the number of overlapping rectangles as the detection score

The Algorithm

Face Detection + Leader Election

Face Detection + Leader Election

5/31/2010

CRV 2010

17

The Algorithm

Classifying Gestures

Our Approach

Punch Right

Wave Left

Sway

Waves

Related Work

- Many other papers on motion-based gesture/ activity recognition
 - E.g. Bobick and Davis PAMI01; Yamamoto and Koshikawa CVPR97; Shechtman and Irani CVPR05; Freeman et al. FG96; Ike et al. MVA07; Jhuang et al. ICCV07
- Our focus is on a fast real-time method
 - Derived from Fathi and Mori CVPR 08
 - Using GPU programming

User-centric Region

- Face detection (as detected for leader election)
 - user centric
 - scale invariant

- Face detection in a separate thread
 - Updated every 5-10 frames

4) Blur components

5) Compute zero component

$$F_0 = F_{x+} + F_{x-} + F_{y+} + F_{y-}$$

Similar to Efros et al. ICCV03 Template matching too slow

Motion Features (cont.)

- Temporal Blur
 - Capture a single cycle of movements
 - Roughly 1 second
- Collapsed into a single vector $v \in \Re^{6000 (5 \times 40 \times 30)}$

Adaboost Classifier

$$h_{t}(v, l) = \begin{cases} 1 & p_{t,l}v_{\tau(t)} > p_{t,l}\theta_{t} \\ 0 & otherwise \end{cases}$$

$$H(v,l) = \sum_{t=1}^{N} \alpha_t h_t(v,l)$$

N = 1500 weak classifiers

The Algorithm

Demonstration Task

Conclusion

- First system to use face-engagement to select individual robots in a multi-robot system
- Use of a standard frontal-face detector in a novel way – in a distributed leader election to estimate which robot is being looked at
- A real-time motion-based gesture recognition system for assigning tasks

Future Work

- User study
 - With the current system
 - Would an anthropomorphized robot help?
- Directing a robot to any arbitrary point by means of pointing
- Selecting a subset of robots
- Integration with speech-based commands

