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Abstract—We propose a novel damage assessment deep
model for buildings. Common damage assessment approaches
utilize both pre-event and post-event data, which are not
available in many cases. In this work, we focus on assessing
damage to buildings using only post-disaster. We estimate
severity of destruction via in a continuous fashion. Our model
utilizes three different neural networks, one network for pre-
processing the input data and two networks for extracting
deep features from the input source. Combinations of these
networks are distributed among three separate feature streams.
A regressor summarizes the extracted features into a single
continuous value denoting the destruction level. To evaluate
the model, we collected a small dataset of ground-level image
data of damaged buildings. Experimental results demonstrate
that models taking advantage of hierarchical rich features
outperform baseline methods.

Keywords-Building Damage Assessment; Regression with
Neural Networks; Hierarchical Models;

I. INTRODUCTION

Numerous tragic natural disasters threaten vulnerable ar-
eas of the world each year. Although developing early warn-
ing systems is not always feasible using current technolo-
gies, it could be possible to utilize advanced computer vision
approaches to manage post-event rescue and reconstruction
plans efficiently. Computer vision based automatic damage
assessment systems rely on optical data, which are processed
to detect damaged areas and assess the level of destruction.
According to the available data, these approaches either use
only post-event data or both pre- and post-event images. In
this work, we concentrate on the former.

Popular approaches that address automatic damage assess-
ment use both pre-event and post-event aerial/satellite data to
train classifiers (e.g. [1]). These algorithms classify damage
into pre-defined categories. However, in our case we are
interested in carrying out building damage assessment in a
continuous fashion rather than classifying it, using only post-
disaster data. To this end, we require a dataset of damaged
buildings annotated with the level of damage, a feature
extraction method to extract robust features out of post-
disaster image data, and a regressor to summarize all the
extracted features into a single continuous value representing
the level of destruction. Figure 1 illustrates this idea.

Figure 1. Given only post-disaster data we aim to output a continuous
value representing the damage severity. First column represents the input to
our algorithm, which is post-disaster images. The second column denotes
extracted features which will be used by the regressor (the third column)
to output a continuous damage level.

To our knowledge there is no publicly available dataset
of ground-level images of areas affected by natural disasters
and annotated with consistent labels. To deal with this
problem, we collected a small dataset and annotated each
instance with a label denoting the damage severity.

Inspired by the recent achievements of deep learning in
different areas of computer-vision, we consider utilizing
deep networks to extract robust features from the input
source. We construct a model made up of three sepa-
rate pipelines using different convolutional neural networks
(ConvNets). Each pipeline is designed to perform a spe-
cific visual analysis. The first pipeline directly analyzes
raw input images; however, the two other pipelines require
a pre-processing step on the input data. The input data
may contain irrelevant information to the context of our
task, such as greenery, pedestrians, and cars, which affects
the performance negatively. We consider extracting objects
relevant to damage assessment by employing a semantic
segmentation algorithm as a pre-processing step. Afterward,
different ConvNets traverse the raw and pre-processed data
and extract features. At last, the regressor is employed on
the extracted features of the three streams and outputs a
continuous value representing the level of damage.



The main contribution of this paper is the study of
segmentation methods as an advantageous factor involved
in damage detection and evaluation systems. In this work,
we consider utilizing a semantic segmentation paradigm
to improve the performance of the proposed algorithm.
Beside directly analyzing post disaster data as the only input
source to the algorithm, a semantic segmentation method is
employed on these data to collect objects relevant to build-
ing damage assessment. Results indicate that semantically
segmenting input data into objects of interest as foreground
affects the performance positively.

II. RELATED WORK

Damage detection and assessment is a well-studied topic
and has been explored in multiple research areas. Solutions
to computer vision problems, such as classification and
segmentation, are the essential components of functional
damage assessment systems.

A. Damage Detection Using Aerial/Satellite Imagery

Immediately responding to natural disasters plays a sig-
nificant role in assisting the affected population. Due to the
inaccessibility of many areas, satellite and aerial imagery
are a valuable source of data for estimating the impact of a
calamity. An example work is that of Gueguen et al. [1], who
propose a semi-supervised framework to detect large-scale
damage caused by catastrophes. They collected a dataset
of 86 pairs of pre-event and post-event satellite imagery
of impacted areas. For each pair, they extract features in
50×50 windows by using tree-of-shapes [2] as a descriptor
of the shape. Based on these features the algorithm clusters
areas, which then are used by human observers to obtain
feedback on them. They use this feedback to train a linear
Support Vector Machine (SVM) and classify the damaged
areas. Thomas et al. [3] propose an automatic building
damage assessment approach using pre-event and post-event
aerial images. They consider an increase in the total number
of edges appears on roof structures as a sign of damage.
Yusuf et al. [4] evaluate the affected areas by calculating
the difference between the brightness values in the pre and
post earthquake satellite images.

B. Object Recognition Methods

Object recognition methods have also been brought to
bear on the task of damage assessment. Extracting features
using feature descriptors, such as SIFT [5] and HOG [6], and
applying classifiers, such as SVM, have brought advance-
ment to object recognition algorithms. However, during the
past few years, the achievements of neural networks and
the prevalence of large scale datasets (e.g. [7]) drew the
attention of the computer vision community to new research
directions. Construction of ConvNets follows conventional
patterns, stacked convolutional layers followed by max-
pooling and fully-connected layers. LeNet-5 [8], AlexNet

[9], VGGNet [10], and ResNet [11] are examples along
the progression towards more complex network structures
following in this vein.

C. Semantic Segmentation

The goal of semantic segmentation is to classify each pixel
of an image into predefined object / stuff classes. A large
vein of work exists in this area. In our work, we consider
utilizing a semantic segmentation algorithm to split the input
data of our proposed algorithm into objects of interest and
background. To this end, we use a state-of-the art network,
DilatedNet [12], pre-trained on the ADE20K [13] dataset.

The ADE20K [13] dataset is collected for scene under-
standing and semantic segmentation, covering a diverse set
of objects and scenes as well as providing detailed object
annotations. Instances are annotated densely with object
segments, their names, and object parts.

Recently, deep ConvNets have been used directly to
predict pixel-level classification. For this purpose, the fully-
connected layers which were used to output probability
scores are replaced by convolution layers, allows Con-
vNets to preserve spatial dimensions. Fully Convolutional
Networks (FCN) [14] up-samples intermediate extracted
features from convolutional layers to preserve dimensions.
DeepLab [15] and DilatedNet [12] are other examples of
using deep ConvNets for dense prediction. They both use
atrous convolution or dilated convolution in their fully con-
volutional network structures. The DilatedNet [12] replaces
the pool4 and pool5 layers of the VGG-16 [10] with dilated
convolution. DeepLab [15] utilizes atrous convolution with
up-sampled filters, and fully-connected conditional random
fields [16] in order to accurately segment along object
boundaries.

III. PROPOSED APPROACH

Our goal in this work is to automatically assess damage to
buildings caused by natural disasters. Common approaches
classify damaged areas and detect changes by employing
both pre-event and post-event aerial or satellite images to
extract hand-crafted features as the input to linear classifiers
such as SVM (e.g. [1]). In this work, we extract rich
features from post-event images, as the only input source
to our algorithm, and output a continuous value as a factor
measuring damage severity rather than classifying damage
into predefined categories.

We leverage multiple convolutional neural networks (Con-
vNets) to propose a novel deep model performing building
damage assessment. Our model is made up of 3 feature
streams; each represents attributes of the image data which
are significant in damage assessment. Each pipeline com-
prises one or two ConvNets to extract rich features from the
input data.

The color image feature stream employs a deep network
(VGG [10]) to extract features from the raw input data (color



Figure 2. Overview of our proposed model. (1): Color image feature stream
(Section III-A). A deep structure directly analyzes the input image data. (2):
Color mask feature stream (Section III-B). A deep structure analyzes color
masks of the image data. (3): Binary mask feature stream (Section III-C). A
different deep structure is employed on the binary masks of the input data.
The regressor utilizes extracted features to estimate the level of destruction.

image). The color mask feature stream applies a segmenta-
tion deep network (DilatedNet [12]) to semantically segment
raw input data into objects of interest and then utilizes a deep
model (VGG [10]) to obtain features out of the segmented
images. The last pipeline, the binary mask feature stream,
attains binary masks of the objects of interest in image data
using the same segmentation method (DilatedNet [12]) and
utilizes a different deep structure (LeNet [8]) to analyze their
shape.

Having the extracted features, we could follow two di-
rections. Using them to rank the instances (e.g. [17]) of
damaged buildings based on the severity of damage, or
summarize them into a single continuous value (regression)
representing the level of destruction. In this work we perform
regression using the extracted features. At last, the regressor
exploits features extracted by the 3 streams to assess the
level of destruction. An overview of the proposed model is
illustrated in Fig. 2. In the following sections, we describe
the behavior of each stream, their inputs, and corresponding
outputs in detail. Moreover, we build several models based
on these pipelines and evaluate their performance in Sec-
tion IV.

A. Color Image Feature Stream

The color image feature stream is the first pipeline of
our proposed model. This pipeline is designed to analyze
raw input data as opposed to the two other pipelines which
require a pre-processing step on the input data. The VGG
network structure [10] extracts features from raw input
data using the following procedure. Given an input image
X(Width×Height×Channels), which holds the raw pixel
values of the image, several convolutional layers compute a
dot product between their weights (W ) and a small region
of the input they are connected to (known as receptive field)
and apply their bias offset (b) as shown in Equation 1. Af-
terward, an element-wise activation function (ReLU), shown
in Equation 2, and a downsampling operation (known as
Pooling) will be applied to the output of neurons.

zj = f(
∑
i

wixi + b) (1)

f(x) = max(0, x) (2)

Features extracted by the convolutional layers are then
processed by fully-connected layers, which hold neurons that
are connected to all the neurons in the previous layer. The
result is features of color images which then will be used
by the regressor.

B. Color Mask Feature Stream

The second pipeline of our model is the color mask feature
stream. Several visual factors, including camera position and
angle, could affect the performance of vision-based systems
by adding extra objects to the image, such as sky, trees, etc.
These factors either slow down the learning process or have
negative effects on the accuracy of vision-based algorithms.
To address this issue in our work, we consider utilizing
semantic segmentation algorithms to focus on the relevant
regions in the input data rather than processing the whole
image.

For this purpose, a deep structure (DilatedNet [12]) is used
to segment images into objects of interest as foreground and
the rest as background. Given an input image, DilatedNet
collects all the instances of a pre-defined object set, which
we consider as relevant, through an image and outputs those
as foreground. A couple of output instances are shown in
Figure 3.

Similar to Section III-A, several convolutional layers fol-
lowed by an activation function (ReLU) and a pooling layer
traverse color masks and extract features. These features are
then used by fully-connected layers to provide the regressor
(Section III-D) with features of color masks.

C. Binary Mask Feature Stream

Inspired by LeNet [8], which recognizes handwritten dig-
its (essentially binary images) using a simple convolutional
neural network, we consider learning the shape of intact



Figure 3. The first row: raw images which are used by the color image
feature stream pipeline. Second row: corresponding color masks as the input
to the color mask pipeline. Instances of greenery and the sky are omitted.
Hence, the model is able to focus on relevant parts.

and destroyed buildings. The MNIST dataset [8], which has
been used to train LeNet, contains black and white two-
dimensional vectors representing handwritten digits. Using
MNIST, LeNet successfully learned to distinguish between
digits.

The third pipeline of our algorithm, the binary mask
feature stream, is designed to learn the shape of damaged
building parts. To this end, DilatedNet [12] is used to
produce binary masks of our pre-defined object set which we
expect to be relevant to damage assessment. The process is
similar to Section III-B, however, the foreground (objects
of interest) is marked as white, and the background is
marked as black. In order to extract features corresponding
to the shape of objects, the LeNet [8] network structure
is then employed on the binary masks. Given an input
X(Width×Height×1 (input is binary so the dimension of
channels is reduced to 1 as opposed to 3 in RGB images),
we analyze it using a LeNet structure. Two convolutional
layers (Equation1), each followed by a pooling layer which
downsamples by a factor of 2, and a fully-connected layer
using an activation function (ReLU in Equation 2), and
another fully-connected layer, traverse the binary input and
extract features to be used by the regressor (Section III-D).

D. Regression

The aforementioned pipelines provide hierarchical rich
features in a feed-forward process. The end goal is to learn
to compute a single continuous value out of these features.
To this end, features obtained through the described streams
are concatenated into a single feature vector. This vector is
processed by a fully-connected layer, to infer a single value.
A sigmoid function (Equation 3) is then used to map the
output to a range between 0 and 1, which we expect to be
the level of destruction.

S(x) =
1

1 + e−x
(3)

Having the output makes the model able to utilize a loss
function in conjunction with an optimization method in the

error back-propagation process to update the weights in a
way that the loss is minimized.

There is a difference between training a deep structure for
classification and training it for regression. The loss function,
which controls the learning process, in a regression network
has to penalize outputs based on their distance to the ground
truth. For example, for an unobserved data point equal to 2, a
network which outputs 3 is performing better than a network
which outputs 4, however, in a classification task both
outputs are considered equally wrong. To address this issue
in our work, we employ Euclidean distance (Equation 5)
as the loss function and stochastic gradient descent (SGD)
as the optimization method. Assuming Xn = (x1, ..., xD),
Yn = (y1, ..., yD), and Zn = (z1, ..., zD′) as the extracted
features of the nth sample through the color image, color
mask, and binary mask pipelines, we can formulate the
process as the following optimization problem:

pn = φ(X_
n Y_

n Zn) (4)

argmin
w

1

2N

N∑
i=1

‖tn − S(pn)‖22 (5)

where _ stands for concatenation. φ is the function of the
fully-connected layer applied to the extracted features, N is
the total number of training samples, tn is the ground truth
on example n, S(pn) denotes applying Sigmoid function
(Equation 3) to the predicted label for the sample n, and
w stands for all the learnable weights in convolutional and
fully-connected layers.

IV. EXPERIMENTS

A. Dataset

We collected a novel dataset of ground-level post-disaster
images of buildings affected by natural disasters. All the
images are obtained through the internet using three sources:
Virtual Disaster Viewer [18], Open Images Dataset [19]
and Google image search engine. We collected and refined
images and labels through the different stages. There are
200 images in the final training set and 50 images in the
final testing set 1. The collected images had different sizes.
Due to memory and space considerations we downsampled
all the instances to 224×224 to be used by color image and
color mask pipelines and 28×28 to be used by binary mask
pipeline. Moreover, by downsampling, we were able to take
advantage of pretrained state of the art models which use
the same image size.

1The dataset can be downloaded at:
http://vml.cs.sfu.ca/wp-content/uploads/building/buildingdataset.tar.gz



Figure 4. Distribution of five damage levels over the collected dataset.

B. Data Annotation
In order to pair each image with the damage estimation,

we utilized the damage classification scheme described in
the damage assessment report of the Haiti earthquake [20] to
annotate each image in the training set with a value between
0 and 1 at a step size of 0.25. Greater values imply more
destruction.

The damage assessment report [20] classifies damage to
buildings of Haiti, caused by the earthquake in 2010, based
on visual attributes of walls, floors, and roofs. Inspired
by their approach, we manually classified images of the
dataset into five levels. No damage, slight damage, moderate
damage, heavy damage, and total destruction levels are
described with 0, 0.25, 0.5, 0.75, and 1 respectively. Figure 4
illustrates the distribution of labels over the dataset.

C. Training Settings and Results
We acquired color masks and binary masks of objects of

interest using a DilatedNet [12] pretrained on the ADE20K
[13] dataset. We defined a set of 29 out of 900 objects of
ADE20K that we consider as relevant to building damage as-
sessment, including wall, building, and ceiling 2. DilatedNet
is fed by raw images and based on pixel-wise classifications,
and collects instances of objects of our interest. As the first
step of training, we converted color images, color masks, and
binary masks as well as labels to HDF5 data models to be
used by Caffe [21] as the input source. Each image in the
data model is paired with its label. These labels are used
in the backward propagation of errors (backpropagation)
to compute the gradient of the Euclidean loss function
with respect to all the weights. Stochastic Gradient Descent
(SGD) uses the computed gradient to update the weights and
minimize the Euclidean loss.

We built several models using described pipelines and
evaluated them on our test set. Results are provided in
Table I. Results denote the color mask feature stream con-
tributes more than other pipelines to the performance of the
system.

2Wall, building, floor, ceiling, road, windowpane, sidewalk, earth, door,
house, field, rock, column, skyscraper, path, stairs, runway, screendoor,
stairway, bridge, countertop, hovel, awning, booth, pole, land, banister,
escalator, and tent are considered as relevant.

Table I
EVALUATION OF PROPOSED MODELS BASED ON EUCLIDEAN DISTANCE.

LOWER VALUES REPRESENT BETTER PERFORMANCE. COLOR IMAGE
AND COLOR MASK PIPELINES UTILIZE VGG [10] PRETRAINED ON

IMAGENET [22] AND FINE-TUNED ON OUR COLOR IMAGE AND COLOR
MASK DATASETS RESPECTIVELY. THE BINARY MASK PIPELINE

EMPLOYS LENET [8] PRETRAINED ON THE MNIST DATASET AND
FINE-TUNED ON OUR BINARY MASK DATASET.

Model components
Color image

feature
stream

Color mask
feature
stream

Binary mask
feature stream Euclidean distance

4 — — 0.20

— 4 — 0.18

— — 4 0.33

4 4 — 0.17
4 — 4 0.20

— 4 4 0.19

4 4 4 0.18

Table II
TRAINING SETTINGS. “LR” STANDS FOR LEARNING-RATE AND “FC”
STANDS FOR FULLY-CONNECTED LAYER. “BASE LR” APPLIES TO ALL
THE LAYERS, EXCEPT THE LAST FC LAYER. SETTINGS ARE RANKED

RELATIVELY BASED ON THEIR LR.

Setting
lr

base lr last fc weights
learning rate

last fc bias
term lr

high lr 0.0001 0.001 0.002

medium high lr 0.0001 0.0005 0.001

medium lr 0.0001 0.0002 0.0005

low lr 0.0001 0.0001 0.0002

Moreover, in order to realize whether changing the train-
ing strategies affects the performance, we chose our two best
performing models in Table I (color image + color mask as
the best-performing model, and color image + color mask
+ binary mask as the second best-performing model) and
conducted further experiments on them. We modified the
hyper-parameters we used to train our regressor by defining
new learning rates. These settings are shown in Table II.
The results of applying different training settings on the
two best-performing models are shown in Table III. These
models reached their best results using different settings.
Samples of testing input and output of the best model (color
image + color mask using medium learning-rate) are shown
in Figure 5. Moreover, examples of failure cases of this
algorithm are illustrated in Figure 6.

V. CONCLUSION

In this work, we presented a novel hierarchical model
performing building damage assessment in a continuous
fashion using post-disaster images of damaged buildings as
the input. The model contains three different pipelines and
each pipeline is made up of one or two different ConvNets.
These pipelines are designed to extract features from the



Figure 5. Samples of testing input and output of our best-performing model, color image + color mask feature streams trained by medium lr (Table III).
Left two columns are inputs to the algorithm, the third column is ground-truth, and the last column is the estimated damage level.

raw input data, objects that we consider as relevant to
damage assessment, and the shape of intact and damaged
building parts. Additionally, we collected a dataset of post-
disaster images, to train and evaluate our models. We built

several models using combinations of the three pipelines and
evaluated their performance. The results show that models
taking advantage of features of raw input data and color
mask of relevant objects to building damage assessment have



Figure 6. Examples of failure cases of our best-performing model. Left two columns are inputs to the algorithm, the third column is ground-truth, the
fourth column is the estimated damage level, and the last column is the error (Euclidean distance).

potential to perform better than other models.
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