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Optimizing Non-Decomposable Loss Functions
in Structured Prediction

Mani Ranjbar, Tian Lan, Yang Wang, Steven N. Robinovitch, Ze-Nian Li, Greg Mori

Abstract—We develop an algorithm for structured prediction with non-decomposable performance measures. The algorithm learns
parameters of Markov random fields and can be applied to multivariate performance measures. Examples include performance
measures such as Fβ score (natural language processing), intersection over union (object category segmentation), Precision/Recall
at k (search engines) and ROC area (binary classifiers). We attack this optimization problem by approximating the loss function with
a piecewise linear function. The loss augmented inference forms a quadratic program (QP), which we solve using LP relaxation. We
apply this approach to two tasks: object class-specific segmentation and human action retrieval from videos. We show significant
improvement over baseline approaches that either use simple loss functions or simple scoring functions on the PASCAL VOC and H3D
Segmentation datasets, and a nursing home action recognition dataset.

Index Terms—Optimization, Large-Margin, Structural SVM
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1 INTRODUCTION

W E develop an algorithm for learning the param-
eters of structured Markov Random Field mod-

els against non-decomposable performance measures.
Solving challenging vision problems such as image un-
derstanding, object category segmentation, and video
retrieval arguably requires the use of structured models –
those incorporating relationships between multiple input
and output entities. Evidence for this comes from state-
of-the-art approaches to the aforementioned problems.
For example, Hoiem et al. [1] formulate image under-
standing models that tie together object locations, cam-
era parameters, and surfaces. Blaschko and Lampert [2]
localize objects using an efficient solution to a structured
output regression model. Desai et al. [3] learn models for
simultaneously detecting all objects in an image. Non-
max suppression and contextual object co-occurrence
statistics are learned in a discriminative fashion. Object
category segmentation is a canonical example of struc-
tured labeling problem – individual pixel labels are not
obtained independently, but by considering structured
relationships over groups of pixels (e.g. [4], [5], [6]).

For many of these problems the natural performance
measures are also “non-decomposable” – ones that do
not decompose into a simple sum of individual terms
measured over each output entity. Examples of such
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measures are object detection scores that penalize for
multiple detections on a single true positive (e.g PAS-
CAL VOC [7]) and region labeling or object segmen-
tation scores that penalize for over and under labeling
or segmentation (e.g. intersection / union score). Typ-
ical methods for solving these problems learn parame-
ters against other performance measures, e.g. Hamming
loss for segmentation, and then apply post-processing
techniques (e.g. non-maximum suppression in object
detection) to address the structure in the performance
measure. However, these methods fail to take into ac-
count structural properties such as connectivity of the
variables or counts of the variables with a certain value
(e.g. they do not correctly handle multiple detections or
tradeoffs in over/under segmentation). We argue that
directly optimizing against the non-decomposable loss is
superior to these post-processing approaches. Hence, in
this paper we develop an algorithm for linking these two
together and formulate learning as jointly considering
the complex, structured relationships between output
variables in the model and in the learning objective.

The main contribution of this paper is developing a
general algorithm for addressing this type of learning
problem with non-decomposable models and those non-
decomposable loss functions which are a function of
false positive and false negative counts. We specifically
apply it to two problems, object category segmentation
and human action retrieval, but note that the algo-
rithm can be applied more broadly. We experiment with
Markov Random Field (MRF) models. For segmentation,
this is a standard model that contains both unary terms
for labeling pixels and pairwise terms on the labels of
adjacent pixels. For action retrieval, we formulate a novel
MRF that can capture contextual relationships between
the actions of the people in a scene. In both cases, we
show that learning the parameters to the model under
an objective directly tied to the performance measure
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significantly improves performance relative to baseline
algorithms.

This paper builds on our preliminary work [8]. In this
paper we formulate a multi-label version of the method,
with different inference scheme, and new experiments
on object category segmentation and action retrieval.

2 PREVIOUS WORK
A wide range of learning algorithms exist. Despite
technical differences, all of these approaches rely on a
performance measure to define what is a “good” result.
Based on the complexity of the performance measure,
two general approaches to optimize it are imaginable,
formulate the learning problem to directly optimize this
measure, or approximate this measure with a simpler
one and try to optimize it aiming to indirectly optimize
the original non-decomposable performance measure.
We will call the former “direct optimization” and the
latter “indirect optimization”.

Due to the complexity of some performance measures,
e.g., average precision and intersection over union, many
state-of-the-art approaches in different challenges exploit
an indirect optimization. Looking at the PASCAL VOC
challenge 2010 [7], for example, average precision and
intersection over union are defined as performance mea-
sures for detection and segmentation tasks respectively,
but methods for both tasks use indirect optimizations for
solving these problems.

Structured models are arguably a requirement for
robust solutions to learning problems in a variety of
application domains. Tasks such as machine translation,
object category segmentation, and scene understanding
involve reasoning about relationships between words in
a document, pixels in an image, and objects in a scene
respectively. In addition, the performance measures for
these applications often are non-decomposable and are
not a simple sum of terms measured over individual
output entities. Instead, they measure performance as a
function of the entire, structured output. The focus of this
paper is developing a learning approach that can handle
these together, handling structured prediction while op-
timizing against certain non-decomposable performance
measures.

Modeling dependencies between outputs while opti-
mizing against a loss function has been a research topic
for many years. Optimizing the expected loss in this
scenario is a non-convex problem. However, Taskar et
al. [9] and Tsochantaridis et al. [10] have proposed rather
to optimize a convex relaxation of the expected loss. The
cutting-plane algorithm has been shown to be efficient
for solving this optimization [10]. Teo et al. [11] pre-
sented a bundle method, which is basically the cutting-
plane method stabilized with Moreau-Yosida regularizer
and prove a tighter bound on the duality gap. Taskar et
al. [12] solves the same problem using the extragradient
method. Extragradient consists of a gradient descent
followed by a projection to the feasible set. Shalev-
Shwartz et al. [13] proposed Pegasos, which works solely

in the primal space. Similar to [12], Pegasos consists of a
gradient descent step followed by a projection step. The
computational difficulty in all aforementioned structured
prediction approaches is finding the subgradient, which
requires solving the “most violated constraint” [10] or
“loss augmented inference” [14]. It is shown that for de-
composable performance measures learning is tractable
when the model is a submodular MRF or a matching [9],
[10], [12]. In contrast, in this paper we focus on non-
decomposable performance measures.

Joachims [15] proposed an approach to efficiently
compute the most violated constraint for a large class
of non-decomposable loss functions, a subset of those
we consider in this paper. However, the underlying
models were limited, and do not permit pairwise in-
teractions between output labels. The method of Yue
et al. [16] takes a similar approach to optimize against
Mean Average Precision. Khanna et al. [17] present an
algorithm in the same framework to optimize against
normalized discounted cumulative gain (NDCG). Rather
than solving a convex relaxation of the expected loss,
McAllester et al. [18] proposed a perceptron-like training
approach to directly optimize the original loss function,
but still need to solve the loss augmented inference. For
the problems in which the inference procedure is not
tractable, Finley et al. [19] compare under-generating and
over-generating algorithms in structured prediction and
conclude that “overgenerating methods [LP and graph
cut] have theoretic advantages over undergenerating
[LBP, greedy] methods”.

In this paper we provide an algorithm for structured
prediction with a non-decomposable scoring function
that optimizes against non-decomposable performance
measures, those which are a function of false positive
and false negative counts.

3 BACKGROUND
To create a foundation for the proposed approach, we
start with an overview of our learning formulation. Next,
we discuss the two common approaches, one based
on decomposable loss functions with non-decomposable
scoring functions and the others with non-decomposable
loss functions and decomposable scoring functions. We
call a loss function simple if it can be decomposed
into loss on individual training samples. Likewise, a
scoring function is called simple if it only depends on a
single sample point and its ground-truth label. Finally,
we propose a framework to incorporate certain non-
decomposable loss functions and non-decomposable
scoring functions in structured prediction.

For notational convenience, we write matrices with
bold upper case letters (e.g. X), vectors with bold lower
case letters (e.g. x) and scalars with normal lower case
letters (e.g. x). In our notation, xi represents the ith

column of matrix X and xj represents the jth element
of vector x. We use superscripts to denote variables or
vectors that do not belong to a vector or a matrix (xi,
xi).
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3.1 Problem Formulation

The goal of our learning problem is defined as finding a
function h ∈ H from the hypothesis space H given train-
ing samples S = ((x1, y1), . . . ,(xN , yN )) that optimizes the
expected prediction performance on the new samples S′

of size N ′.

R∆(h) =

∫
∆

( [
h(x′1), h(x′2), . . . , h(x′N

′
)
]
, (1)

[y′1, y′2, . . . , y′N
′
]

)
dPr(S′).

In general, the loss function ∆ cannot be decomposed
into a linear combination of a loss function δ over indi-
vidual samples. But, for simplicity, most discriminative
learning algorithms (e.g. SVM) assume decomposibility
and i.i.d. samples, which allows for rewriting Eq. 1 as

R∆(h) = Rδ(h) =

∫
δ(h(x′), y′)dPr(x′, y′). (2)

Instead of solving the estimated risk in Eq. 2, learning
algorithms approximate that with empirical risk R̂δ de-
fined as

R̂δ(h) =
1

N

N∑
i=1

δ(h(xi), yi). (3)

For non-decomposable loss functions, such as F1 score
or intersection over union, optimizing Eq. 2 does not
provide the desired answer. Rather, we are interested
in finding an algorithm that can directly optimize the
empirical risk based on the sample loss,

R̂∆
S (h) = ∆

(
(h(x1), . . . , h(xN )), (y1, . . . , yN )

)
. (4)

Note that finding an h ∈ H that optimizes Eq. 4 for
an arbitrary loss function ∆ can be computationally
challenging.

3.2 Structured Prediction Learning

For non-decomposable loss functions, one can refor-
mulate the SVM based on the idea of multivariate
prediction [15]. Instead of having a mapping function
h : X → Y from a single example x to its label y, where
x ∈ X and y ∈ {−1,+1}, we look at all examples at once
and try to learn a mapping function h̄ : X ×· · ·×X → Ȳ ,
where Ȳ = {−1,+1}N . We define X = [x1, . . . ,xN ], and
y = [y1, . . . , yN ].

We can define the best labeling using a linear discrim-
inant function (scoring function)

h̄(X) = arg max
y′∈Ȳ

wTΨ(X,y′). (5)

Here, function Ψ measures the compatibility of the data
points and their assigned labels. If we define the Ψ
function as a simple form

Ψ(X,y′) =

N∑
i=1

y′ixi, (6)

that only depends on individual training points and their
labels, the optimal labeling sequence would be

arg max
y′∈Ȳ

wTΨ(X,y′) = arg max
y′∈Ȳ

N∑
i=1

y′iw
Txi (7)

=
(
h(x1), . . . , h(xN )

)
, (8)

which is exactly the same as the optimal labeling in SVM.
One way of incorporating a loss function ∆ in SVM

formulation is Margin Rescaling[9],

min
w,ξ≥0

‖w‖2 + Cξ (9)

s.t. ∀y′ ∈ Ȳ\y, wT [Ψ(X,y)−Ψ(X,y′)] ≥ ∆(y,y′)− ξ

Similar to the original SVM formulation, ξ in Eq. 9 is an
upper bound on ∆(h̄(X),y)[15].

The guarantee for convergence in polynomial time,
the potential for incorporating complex loss functions in
the objective and good performance in practice are the
most important reasons why structured prediction has
garnered much attention in computer vision recently.

In the standard approaches for solving Eq. 9, the
output vector, ỹ, corresponding to the most violated
constraint should be found repeatedly [20],

ỹ = arg max
y′∈Ȳ

∆(y,y′) + wTΨ(X,y′). (10)

Finding ỹ is computationally challenging given an
arbitrary loss function, ∆(y,y′), and compatibility func-
tion, Ψ(X,y′). However, solving Eq. 10 in two special
cases has been shown to be efficient. We categorize these
approaches based on the simplicity of their ∆ and Ψ
functions. We call a loss function simple if it can be
decomposed into individual training samples. Likewise,
a compatibility function is called simple if it decomposes
over single sample points and their ground-truth labels.

3.3 Decomposable ∆, Complex Ψ

Optimizing the parameters of a MRF structure when the
loss function can be decomposed into the loss of indi-
vidual samples falls into this category [9]. One popular
application in this category is foreground-background
segmentation with Hamming loss, which is defined as

∆H =
∑
i

1[yi 6=y′i]. (11)

where, 1[] is the indicator function. Szummer et al. [6]
have employed this formulation and reported promising
results for interactive segmentation.

Decomposibility of the loss function results in a MRF
form for Eq. 10, because the loss function can be treated
as another unary term that adds up to the unary terms of
the compatibility function. Assuming binary labels, this
MRF can be solved efficiently using graphcut.

The advantage of this approach is to exploit pairwise
connections, but it is only tractable for decomposable
loss functions.
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3.4 Non-decomposable ∆, Simple Ψ

The other special case presented by Joachims [15], is
when the Ψ function has a simple form of

Ψ(X,y′) =

N∑
i=1

y′ixi. (12)

If the loss function, ∆, is just a function of true positive
(TP ), false positive (FP ) and false negative (FN ), then
there are at most Np×Nn distinct loss values, where Np
and Nn represent the number of positive and negative
training examples, respectively. Hence, Eq. 10 can be
solved by iterating over all loss values and maximizing
wTΨ(X,y′) subject to the value of TP , FP and FN [15].

Unlike the approach of Taskar et al. [9], many standard
accuracy measures that lead to non-decomposable loss
functions, such as Fβ score (natural language process-
ing), intersection over union (object category segmen-
tation), Precision/Recall at k (web search engines) and
ROC area (binary classifiers) can be directly optimized
by this approach. However, this method cannot benefit
from the pairwise interactions of training samples, which
are shown to be advantageous in many applications,
such as object detection [3] and scene interpretation [1].

4 PROPOSED APPROACH: SOLVING NON-
DECOMPOSABLE ∆, COMPLEX Ψ

Discussing the advantages and shortcomings of the pre-
vious methods, we now propose an approach to directly
optimize certain complex loss functions in a MRF. Here,
we can optimize non-decomposable accuracy measures,
such as Fβ and intersection over union and still be able
to benefit from pairwise interactions between training
points. So far, we have considered only binary output
problems for simplicity, but for the rest of the paper
the output is assumed to be multilabel. For notational
convenience, we encode the output label, y in one-of-
M format, where M = |L| and L is the set of all
possible labels. In this encoding, the assigned label of
yi is represented using a binary vector of size M such
that its jth element is 1, when the jth label is assigned
to this output, and the rest of its elements are 0.

We choose to follow the general framework of
StructuralSVM [20], shown in Eq. 9. Solving Eq. 9 re-
quires finding the most violated constraint (Eq. 10) at
each iteration and modifying the parameter vector w
accordingly. We propose a novel method to efficiently
solve for an approximate most violated constraint for
certain non-decomposable loss functions in presence of
pairwise terms in the compatibility function, Ψ.

We can summarize the proposed approach as
1) Replacing the original non-decomposable loss

function with a piecewise linear approximation,
2) Writing the problem of finding the most violated

constraint as a quadratic program,
3) Converting the quadratic program to a linear pro-

gram and solve the relaxed problem.

4.1 Piecewise Linear Approximation

Many standard accuracy measures, including the one
presented in the previous section, share the property
that they can be computed from the contingency table1.
Given the number of positive and negative examples,
Np and Nn, the loss function corresponding to these
accuracy measures is just a function of FP and FN .
Using piecewise linear approximation, we can write

∆(FP , FN) ' ∆̃(FP, FN)

=

Q∑
r=1

1[(FP,FN)∈Rr] {αrFP + βrFN + γr}
(13)

where, Q is the number of subregions (pieces), αr, βr
and γr represent the rth plane coefficients and Rrs are
the subregions that partition the space spanned by FP
and FN .

As an example, Figure 1 illustrates the intersection
over union loss function,

∆∩
∪

(FP, FN) =
FN + FP

Np + FP
, (14)

along with its piecewise linear approximations using 15
and 40 pieces.

Given the subregion Rr, the original non-linear loss
function is a linear function of FP and FN . The next
step is to substitute the approximated loss function, ∆̃
into Eq. 10 and solve for the most violated constraint.

4.2 Forming the Quadratic Program

Capturing the structure of the output requires a model
that is rich enough to absorb the dependencies between
the outputs. At the same time, a preferred model can-
didate offers tractable inference procedure. A choice
that satisfies both requirements are MRFs, which are
commonly used for modeling interdependent inputs and
outputs in many applications.

We assume that we are given a MRF represented by
a graph G = (V,E) where V is the set of nodes with
N = |V |, and E is the set of edges. The output label
takes value from the set L, which has M members. We
define our Ψ with unary and pairwise terms as

Ψ(X,Y ) =

N∑
i=1

M∑
k=1

yikφu(xi)+

N∑
i=1

∑
j∈Ni

M∑
k=1

M∑
l=1

yikyjlφp(xi,xj).

(15)

Here Ni is the set of neighbors of node i. We later
explain how we define the unary and pairwise features
(φu and φp) in our experiments. We rewrite Eq. 10 with

1. Are just a function of TP , FP , TN and FN .
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FN FP

Δ(FP,FN)

a b c

Fig. 1. Intersection over union loss surface in FP and FN space. a) Exact surface, b) a piecewise linear approximation
with 40 subregions, c) a piecewise linear approximation with 15 subregions.

approximated loss function, ∆̃ as

Ỹ ∗ = arg max
Y ′

∆̃(Y ,Y ′) + wTΨ(X,Y ′) (16)

= arg max
Y ′

∆̃(Y ,Y ′) +
u
w
T

N∑
i=1

M∑
k=1

y′ikφu(xi)

+
p
w
T

N∑
i=1

∑
j∈Ni

M∑
k=1

M∑
l=1

y′iky
′
jlφp(xi,xj) (17)

where w = [
u
w;

p
w] (weights of the unary features

u
w

concatenated with the weights of the pairwise features
p
w).

The group of non-decomposable loss functions that are
considered in the proposed approach are a function of
false positive and false negative counts. Although the
definition of false positive and false negative counts are
straight forward in binary output problems, for multi-
label problems such definitions are task-dependent. In
this paper, we assume that the loss is defined for one
label (label p) versus the rest and therefore, define the
false positive and false negative counts as

FPY ,Y ′ =

N∑
i=1

y′ip
∑

k∈{1,...,M}\p

yik, (18)

FNY ,Y ′ =

N∑
i=1

yip
∑

k∈{1,...,M}\p

y′ik. (19)

Assuming that the loss values fall in subregion Rr, we
can write Eq. 17 as

Ỹ ∗ = arg max
Y ′

(
αr

N∑
i=1

y′ip
∑

k∈{1,...,M}\p

yik + βr

N∑
i=1

yip
∑

k∈{1,...,M}\p

y′ik + γr+

u
w
T

N∑
i=1

M∑
k=1

y′ikφu(xi)+

p
w
T

N∑
i=1

∑
j∈Ni

M∑
k=1

M∑
l=1

y′iky
′
jlφp(xi,xj)

)
.

(20)

Note that Eq. 20 only includes the predicted label y′

in linear and quadratic forms. Hence, we can write a
quadratic program based on Eq. 20 subject to the loss
values being in subregion Rr.

( FP︷ ︸︸ ︷
N∑
i=1

y′ip
∑

k∈{1,...,M}\p

yik ,

FN︷ ︸︸ ︷
N∑
i=1

yip
∑

k∈{1,...,M}\p

y′ik

)
∈ Rr (21)

In order to have linear constraints in Eq. 21, the bound-
ary of all subregions should be definable as a linear
function of y′. One way is to separate the subregions
by straight lines. If for example, we partition the space
spanned by FP and FN into triangles (Fig. 1-b,c) then
Eq. 21 will be substituted by three linear constraints
corresponding to the three sides of the triangle.

4.3 Converting Quadratic Program to Linear Pro-
gram
The quadratic function in Eq. 20 is potentially non-
convex, since there is no constraint on the coefficients
of this function. So, instead of looking for a local optima
of this non-convex function, we relax the problem (MAP-
MRF LP relaxation [21]) by introducing some variables
that substitute the quadratic terms in the this function
and form a linear program, which is convex. In detail,
we introduce y′

ij
kl = y′iky

′
jl. To relate these new variables

to the output variables y′, we augment some linear
inequality constraints in the form, y′ijkl ≤ y′ik, y′ijkl ≤ y′jl
and

∑
k,l y

′ij
kl = 1. The final linear program that needs to

be solved for subregion Rr is
Maximize:

αr

N∑
i=1

y′ip
∑

k∈{1,...,M}\p

yik + βr

N∑
i=1

yip
∑

k∈{1,...,M}\p

y′ik + γr+

u
w
T

N∑
i=1

M∑
k=1

y′ikφu(xi)+

p
w
T

N∑
i=1

∑
j∈Ni

M∑
k=1

M∑
l=1

y′
ij
klφp(xi,xj)

Subject to: (22)( N∑
i=1

y′ip
∑

k∈{1,...,M}\p

yik ,

N∑
i=1

yip
∑

k∈{1,...,M}\p

y′ik

)
∈ Rr

y′
ij
kl ≤ y′ik, y′

ij
kl ≤ y′jl∑

k,l

y′
ij
kl = 1,

∑
k

y′ik = 1

y′ij , y
′ij
kl ∈ {0, 1}, i ∈ {1, . . . , N}, j ∈ Ni, k, l ∈ L

Solving this LP for thousands of binary variables (labels),
is not computationally tractable. So instead we relax the
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label values to real numbers between zero and one and
solve for optimal labeling. Later, we map the optimal
labels to integer values, if necessary, by rounding the
results. We solve Eq. 22 for each subregion separately,
and return the labeling of the one with the maximum
objective value as the most violated constraint.

4.4 Inference
The inference procedure concerns about maximizing the
assignment score wTΨ(X,Y ) over different assignments
and is MAP-MRF problem. For general multilabel prob-
lems this task is shown to be NP hard (see [5]), but many
approximate inference approaches has been proposed
to solve this problem [21], [22]. However, for a su-
permodular binary problem efficient min-cut/max-flow
algorithms exist that can solve the inference exactly [23].

For many applications, not only the maximizing as-
signment, but also the confidence score associated to
each element’s assignment is required. Given the confi-
dence scores, compromising FP versus FN or vice versa
is possible.

One way of computing a confidence score for the ith

element of the output is by looking at the difference in
the scores, when the ith output is assigned to the positive
label p comparing to when it is assigned to any other
label, while the rest of the output elements get their best
assignments [3]. Formally,

si = max
Y ,yip=1

wTΨ(X,Y )− max
Y ,yip 6=1

wTΨ(X,Y ) (23)

Each maximization in Eq. 23 is a MAP estimate in the
MRF. For our segmentation experiments, we only require
the best labeling, but for our action retrieval experiment
the score is needed to compare different approaches.

5 EXPERIMENTS

To highlight the superiority of the proposed approach
over two existing alternatives – keeping the model
non-decomposable, but optimizing against a decompos-
able loss function, or keeping the loss function non-
decomposable, but forgetting about the dependency be-
tween outputs and employing decomposable models –
we design a set of experiments. We compare the methods
on two applications – object category segmentation and
action retrieval.

5.1 Learning Method
We utilize NRBM [24] – an instance of a bundle method –
as the core of our learning and solve the loss augmented
inference based on the proposed approach. NRBM solves
the unconstrained form of Eq. 9

min
w

λ

2
‖w‖2 +max

Y ′

(
wTΨ(X,Y ′) + ∆(Y ′,Y )

)
−wTΨ(X,Y ) (24)

Note that other structured prediction formulations such
as Pegasos [13] or the formulation proposed by Meshi
et al. [25] could easily replace the bundle method. We

chose NRBM due to implementation simplicity knowing
that it has the same bound of O(1/ε) like aforementioned
alternatives to obtain a solution of accuracy ε. We do
cross validation to set the λ parameter in Eq. 24. To be
able to solve the inference as well as the loss augmented
inference exactly, for the first set of experiments involv-
ing binary output labellings, we add

p
w 4 0 constraints

similar to Szummer et al. [6] to make the function
supermodular.

5.2 Mesh Creation

The main idea of this paper is to approximate the
loss function with a piecewise planar function in false
positive and false negative space, in which the loss
function is assumed to live. The process of computing
the piecewise planar approximation is offline and could
be performed using many approaches. We choose to
start with a dense mesh in false positive and false
negative space and employ mesh simplification methods
to reduce the number of pieces to the desired number. To
keep the domain of the loss function intact, the boundary
of the original mesh and the simplified version should
be the same. The minimum number of pieces that a mesh
can be simplified to before violating this property is
dictated by the simplification method and the primitive
shapes that create the mesh.

The other alternative for creating the approximate
mesh is to fix the number of vertices and initialize the ap-
proximate surface, e.g. on a grid. Then, try to minimize
the distance between the original and approximated
meshes. The distance function is non-convex in most
cases and it is hard to find its global minimum. Instead,
general techniques such as gradient descent could be
employed to find a local minimum of this function.

In our experiments, we use MeshLab [26] and set the
number of pieces to 15, which is the lowest that respects
the boundary condition for all of the loss surfaces in
the experiments. We tried higher numbers of pieces, but
did not notice significant improvement in the overall
accuracy. An example of an original densely created loss
function along with its approximated versions are shown
in Fig 1. We use “quadric edge collapse ” technique
in MeshLab, which simplifies the mesh based on the
method of Gerland et al. [27]. The approximated sur-
face resembles the original loss surface quite accurately.
For example, the average absolute distance and the
maximum absolute distance between the approximated
surface and the original surface are 0.0011 and 0.031,
respectively in Pascal VOC 2009 dataset when the loss
value varies between zero and one.

5.3 Baseline Methods

We implement two baseline approaches to compare
against, each including one aspect of our proposed
method. The first baseline, which we name “Hamming”,
consists of our model, but optimized against Hamming
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loss, a decomposable loss function that is used widely
for structured prediction [9], [10], [6]. Hamming loss is
defined as

∆Hamming = π1FP + π2FN (25)

where, π1 and π2 adjust the contribution of FP and
FN in the overall loss. We set π2 = 1/2Np and cross
validate the ratio π2/π1 on the set {1, 2, 5, 10, 50, 100,
Nn/Np} (which is a time-consuming process). Here, Np
and Nn represent the number of positive and negative
examples in the training set. Solving the loss augmented
inference given this loss function is as hard as solving
the inference problem, because the loss is augmented to
each node in the graph as a unary term. Comparison
to this baseline reveals the importance of the proposed
learning framework, which lets us optimize against non-
decomposable loss functions.

To show the importance of the structure in the model
(smoothing in segmentation and intra-frame and inter-
frame interactions in action retrieval), we implement the
approach of Joachims [15]. This approach can exactly
optimize against multivariate non-decomposable perfor-
mance measures, the ones that can be approximately
optimized using the proposed approach, but only for
decomposable models. We remove the pairwise interac-
tions from the model and train the model parameters
using only the unary features. We call this approach
“Unary” in the results.

5.4 Object Category Segmentation
We employ object category segmentation as an example
of a structured output problem with binary outputs. The
task is to label the pixels of an image as being part
of a known object (foreground) or not (background).
We set the label of foreground to one and the label of
background to zero. Intersection over union, measured
over the entire dataset of images, is used to compare
object category segmentation accuracies on the Pascal
VOC challenge [7]. It is defined as

Acc∩
∪

(FP, FN) =
Np − FN
Np + FP

⇐⇒ ∆∩
∪

(FP, FN) =
FP + FN

Np + FP
,

(26)
We optimize against this loss function and compare
to the baselines on three datasets – Pascal VOC 2009,
Pascal VOC 2010 and H3D. Solving the MAP inference
and the loss augmented inference exactly requires a
supermodular scoring function. So, for this experiment
we guarantee supermodularity by forcing the weights
corresponding to pairwise features to be negative, know-
ing that the pairwise features are always positive.

5.5 Pixels vs. Superpixels
If we decide to perform segmentation on the pixel level,
meaning that the input be the set of all features extracted
from all pixels in the dataset and the output be the binary
label of each pixel, then for Pascal VOC 2009 dataset we
would have 133, 567, 772 pixels and the same number of

TABLE 1
Maximum achievable accuracy percentage in VOC 2009,

VOC 2010 and H3D datasets due to superpixelization.

Aeroplane Bus Car Horse Person TV/Monitor
VOC09 73.17 85.34 77.2 66.48 74.88 86.2
VOC10 72.63 82.24 77.67 68.37 74.06 85.78
H3D - - - - 79.11 -

nodes in our MRF. In average each node in our graph has
about 4 neighbors, which would create around 535×106

edges in the graph. Learning the parameters on this huge
graph is intractable both for the baseline methods and
the proposed approach. Moreover, the features extracted
from a group of nearby similar pixels are perhaps more
robust comparing to the features extracted from single
pixels. As an alternative, nearby pixels that share similar
appearance features could form a group (superpixel) and
share the same label. The down side of moving from
pixel to superpixel is the possibility that the pixel of a
superpixel come from both foreground and background.
In this case, the maximum achievable accuracy drops.

In our experiments we employ the superpixel extractor
of Felzenszwalb et al. [28] and set its parameters to
MinArea = 2000, k = 200, σ = 0.01. This setting of
parameters result in an average of 50 superpixels per
image of size 300 × 500 pixels. Using this parameters
the number of nodes in the graph decreases from about
134×106 to approximately 27×103 nodes in Pascal VOC
2009 dataset and from about 190× 106 to approximately
24× 103 nodes. However, as explained before, the maxi-
mum possible accuracy drops from 100% to the numbers
reported in Table 1.

The second baseline assumes that all positive exam-
ples (superpixels of the foreground) contribute equally
in the loss function, which is not true if the area of
the superpixels are different2. On the other hand, this
approach has O(N2) complexity, when N is the number
of nodes in the graph and clearly is not tractable if
working on pixels. Assuming the same features for each
pixel of a superpixel, we have modified Joachims [15]
algorithm to work on superpixels as follows. Instead of
sorting the superpixels based on their scores, we sort su-
perpixels by their scores divided by their areas. We also
adjust the value of the loss function based on the area of
the superpixels. This approach is guaranteed to produce
correct labellings for all superpixels except possibly one
foreground and one background superpixels3.

2. The other alternative is to force the superpixels to have the same
size, but then large flat regions such as sky would be broken into many
small superpixels and regions of small objects could be grouped with
background regions.

3. Algorithm 2 of [15] has been proven to find the optimal assign-
ment if all positive examples contribute equally in the loss function and
also do all negative examples. Based on Algorithm 2 of [15], the first
a positive examples get value 1 and the rest get value 0 at the optimal
v. Knowing that the pixels of a superpixel are sorted sequentially, the
only superpixel that may have inconsistent labels is the one that its
pixel is located at position a. The same argument holds for background
superpixels. So, all pixels of other superpixels get the same labels as
they would get if we could afford to run the algorithm on pixels.
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Fig. 2. Visualization of the average root and part shapes
in person category. Each row corresponds to shape mod-
els obtained from root and part appearance models of one
object pose.

5.5.1 Features

We define an MRF segmentation model with unary
and pairwise features, for which the exact inference is
performed using min-cut/max-flow algorithm [23].

In the MRF, there is an edge between each pair of
adjacent superpixels i and j. This is a standard method
to model label smoothness in each image. We define a set
of pairwise features that represent φp(xi,xj) in Eq. 22.
We first convert the image from RGB to La∗b∗ color
space. We define Li, ai and bi to be the average L, a and
b values inside superpixel i, respectively and assign the
length of the common boundary between superpixel i
and j to Pij . We then compute the pairwise features as

φp(xi,xj) = (27)
Pij . exp

[
−τ1(Li − Lj)2,−τ2(ai − aj)2,−τ2(bi − bj)2

]
In our experiments the values of τ1 and τ2 are set to
2× 10−2 and 5× 10−3, respectively.

To represent each superpixel, we use a set of bottom-
up and top-down features, which form the unary fea-
tures φu(xi) for superpixel i in Eq. 22. To create the
bottom-up features, we compute Color SIFT features [29]
on a dense grid with 6 pixel spacing in horizontal and
vertical directions. We then turn this into a bag-of-words
representation using a codebook of 1000 visual words.

For top-down features, we take a similar approach
to the implicit shape model [30]. We first learn two
appearance models for each of the 6 object categories
using the detector of Felzenszwalb et al. [31]. The result
includes two root filters and 6 × 2 part filters, where
each root filter and 6 corresponding part filters model the
object appearance in one pose. We run this detector on
the training set and collect all bounding boxes that have
positive scores. We then crop the ground-truth images
on the bounding box locations and compute the average
shape for the roots and parts, Fig 2.

We explain the rest of the process for one part, but the
same process is applied to all parts and both roots. We
find the potential part locations and their confidences by
running the detector on the image in different scales. We
call the result at each scale a confidence map, Fig. 3-b.

TABLE 2
Background to foreground pixel ratio in Pascal VOC 2009

and 2010

Aeroplane Bus Car Horse Person TV/Monitor
VOC 2009 163 69 86 130 24 96
VOC 2010 168 64 70 119 26 105

Each potential part location casts its vote for the shape of
that part proportional to its confidence. We implement
this by convolving the confidence maps (different scales)
with the average shape for that particular part. We call
the convolution result in each scale a potential mask,
Fig. 3-c. To merge the potential masks, we rescale them
to the original image size and get the maximum of the
masks, Fig. 3-d. We accumulate the mask values inside
each superpixel to form the top-down feature corre-
sponding to the part. Fig. 3 depicts the entire process
for one part.

5.5.2 Pascal VOC 2009 and 2010 Segmentation
Datasets
The Pascal VOC 2009 dataset includes 749 pixel-level
labeled training images and 750 validation images. The
Pascal VOC 2010 dataset includes 964 training and 964
validation images. We decide to train our method on
the training set and test on the validation set, because
the ground-truth for the test set is not publicly available
and our focus is on comparison to baseline methods
using a different model or learning criterion. We present
the results on 6 object categories, Aeroplane, Bus, Car,
Horse, Person, and TV/Monitor. We select these cate-
gories because the top-down unary features obtained
from the Felzenszwalb et al. object detector [31] pro-
vide reasonable detection on them. Without the top-
down features, the overall accuracy would be so low
as to make the comparison between different learning
methods uninformative. Note that we perform the ex-
periments on these objects independently. For example,
when we segment object class car, any other object is
taken as background. This is different from the VOC
segmentation challenge in which the segmentation result
should contain all object classes simultaneously. One of
the most challenging aspects of these datasets is the ratio
of foreground to background pixels for all categories
(Table 2). Moreover, the images in these datasets are not
taken in a controlled environment and include severe
illumination and occlusion. We compare the proposed
approach to the baselines on the 6 object categories in
Figure 4. As illustrated, the proposed approach signifi-
cantly outperforms the baselines on this dataset. Listings
of state of the art results are available from [32], [33].
Note that the main contribution of this paper is a general
learning method for setting parameters. It could be used
in conjunction with other segmentation methods that
achieve excellent results on these datasets.

Moreover, the results of “Unary” in most cases except
for “aeroplane” class is superior to “Hamming”, which
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Fig. 3. The process of computing top-down features for the head part. Instead of showing the center of the detected
parts we depict the bounding box for visualization purposes in the second stage.
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Fig. 4. Intersection over union performance (%) compar-
ison on VOC 2009 and 2010 datasets

suggests optimizing against the right performance mea-
sure is more important than smoothing the assignments
in this dataset.

We compare the effect of optimizing against adjusted
Hamming loss versus intersection over union in Fig. 5.
Adjusted Hamming loss tends to return fewer false pos-
itives, but with the cost of missing many true positives.
In fact, it often marks all pixels as background, while
intersection over union actually produces segmentations.
That is because when the entire image is labeled as
background the adjusted Hamming loss results 1/2 loss
while intersection over union loss results 1.

5.5.3 H3D Dataset
We also compare the results on the H3D dataset [34].
This dataset includes 273 training and 107 testing images
along with three types of annotations – keypoint anno-
tations, 3d pose annotation and region annotation. The
keypoint annotation includes the location of joints and
other keypoints such as eyes, nose, elbows, etc. The 3d
pose annotation has been inferred from the keypoints.
The region annotation, which we use in this paper,
provides detailed annotation of people, such as face,
neck, lower and upper cloth, etc. For our experiments we

a b c

Fig. 5. Segmentation for person category. Optimizing ad-
justed Hamming loss (“Hamming”) against our proposed
method. a) input image, b) segmentation considering
adjusted Hamming loss (“Hamming”), c) our proposed
method employing intersection over union. Intersection
over union provides more true positives by possibly cre-
ating some false positives. Adjusted Hamming loss de-
creases false positive by sacrificing some true positives.

compute the union of all region annotations that are part
of a person (bags, occluder and hat are not considered
as parts of a person) as foreground and the rest as back-
ground. The ratio of background to foreground pixels
in this dataset is 3.9, which is significantly lower than
the ratio in Pascal VOC datasets. The reason is that all
images in H3D dataset include at least some foreground
pixels, which is not the case in Pascal VOC datasets. The
comparison result in Figure 6 shows that the proposed
approach outperforms the baselines significantly on this
dataset. We also show some segmentation results on
H3D dataset in Figure 10.

5.6 Action Retrieval
The second application that we consider in this paper is
action retrieval. The task is to find actions that are similar
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to the query action in video frames. In this experiment
we are interested in detection and localization of the
query action. Action retrieval is an important problem
with numerous real-world applications such as multi-
media content analysis and surveillance and security
systems. In the experiments we explore a surveillance
application, automated analysis of nursing home video
footage. We would like to find actions of interest –
for instance residents falling down, sitting, or standing
up. The offline batch processing setting is of interest
to clinicians studying the behaviours of nursing home
residents. For instance, this setting is useful for gathering
data on the circumstances of injurious falls by residents,
or mobility measures for residents.

The choice of loss function is arbitrary in our learning
framework as long as it remains a function of false
positive and false negative counts. A widely used perfor-
mance measure for retrieval tasks is precision on the first
K retrieved elements, termed precision at K. This mea-
sure represents what we care about when performing
retrieval in many applications – one wants to maximize
the number of relevant events of interest in a fixed
number of retrieved videos. The loss associated with the
precision is defined as

∆Prec = 1− Precision =
FP

Np + FP − FN
, (28)

Here, Np is the number of positive examples (people
with ground-truth label equal to the query label). In our
action retrieval task, all detections that have the same
label as the query action are considered positive and
all other detections are negative. So, false positive and
false negative counts are computed using Eq. 18 and 19,
respectively.

5.6.1 Model
We describe our model for action retrieval in a sequence
of video frames. We assume that a set of person locations
in each video frame has been provided via a human
detection algorithm. The goal is to automatically retrieve
the people in a video who perform a query action.
We believe there are correlations between the actions
of different people in a scene and try to capture these
interactions in our action retrieval model.

The model we develop is depicted in Fig. 7. Our model
is a Markov Random Field (MRF), where each detection
corresponds to a node (site) in the graph (shown in blue).
There are three types of edges in the graph, shown in
red, green and yellow. Red edges denote the relationship
between assigning different labels to each node given the

video features describing the corresponding detection.
These edges form the unary potentials in our MRF.

The other two edge types model intra-frame and
inter-frame correlations between actions. The types of
interaction between people in one frame and people in
consecutive frames are different. Intra-frame interactions
are about which actions are likely to co-occur. On the
other hand, inter-frame interactions model the smooth-
ness of people’s actions over time. To differentiate the
two types of interactions, two groups of pairwise interac-
tions are included in the model, intra-frame interactions
and inter-frame interactions, shown in green and yellow,
respectively. An edge between two nodes holds a vector
of scores corresponding to every possible combination
of action labels for its nodes.

Let φ(xi) be the feature vector for ith detection and L
be the set of all possible action labels, with M elements.
For notational convenience, we encode the action label
in a one-of-M format.

Action Appearance Potential θ: The appearance
score for the ith node in the graph is formulated as:

θ(xi,yi,
u
w) =

M∑
k=1

u
w
T
yipφ(xi), (29)

Later, in Section 5.6.2 we describe how we compute the
appearance features φ(x).

Intra-frame Action Potential ρ: The pairwise action-
action scores are only a function of the action labels at
two neighbouring nodes with no ordering (symmetric).
Under these assumptions, there will be M(M + 1)/2
parameters. The intra-frame interaction scores between
nodes i and j can be written as

ρ(yi,yj ,
p1
w) =

M∑
k=1

M∑
l=k

p1
wk+(l−k)Myikyjl (30)

Essentially,
p1
w parameters encode which actions are

likely to appear together in a frame.

Inter-frame Action Potential µ: Similarly, inter-frame
interaction scores can be formulated as

µ(yi,yj ,
p2
w) =

M∑
k=1

M∑
l=1

p2
wk+lMyipyjq (31)

with a different set of parameters wµ scoring pairs of
action labels in consecutive video frames. Note that the
transition between actions of a person is not symmetric
(walking to falling vs. falling to walking), which re-
sults in M2 parameters for inter-frame potentials in our
model.

The overall model score aggregates these cues over a
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Fig. 7. Illustration of our model. A Markov random field with unary (red), intra-frame (green) and inter-frame (yellow)
connections is used.

video sequence, defined as

S(X,Y ,w) =

N∑
i=1

θ(xi,yi,
u
w)+ (32)

N∑
i=1

∑
j∈

1
Ni

ρ(yi,yj ,
p1
w) +

N∑
i=1

∑
j∈

2
Ni

µ(yi,yj ,
p2
w),

where N is the number of nodes in the model (number

of detections),
1

N and
2

N are the set of pairs of neighbour-
ing nodes in intra-frame and inter-frame connections,
respectively.

5.6.2 Person Detection and Description
We implement a simple method for person detection
that proves to be reasonably effective for our dataset.
We extract moving regions from the videos using the
OpenCV implementation of the standard Gaussian Mix-
ture Model (GMM) [35]. Moving regions with area less
than a threshold (500 pixels in our experiments) are
deemed unreliable and therefore ignored. In the training
set we manually label the output of the detection process
from the set of possible actions, which includes the
“unknown” action to label the false positives. At test
time, we detect people using the same process, extract
their features and then recognize their actions.

In our surveillance dataset, widely used features such
as optical flow or HOG [36] are typically not reliable due
to low video quality. Instead, we use the local spatio-
temporal (LST) descriptor [37], which has been shown
to be reliable for low spatial and temporal resolution
videos. The feature descriptor is computed as follows.
We first divide the bounding box of a detected person
into N blocks. In the experiments we use a 10×10 grid to
obtain 100 blocks for each detection. Foreground pixels
are detected using background subtraction. Each fore-
ground pixel is classified as either static or moving by
frame differencing. Each block is represented as a vector
composed of two components: u = [u1, . . . , ut, . . . , uτ ]
and v = [v1, . . . , vt, . . . , vτ ], where ut and vt are the

TABLE 3
Number of detected people in the training and test sets

for each action

unknown walk stand sit bend fall
Train 626 331 454 291 38 20
Test 877 330 163 199 13 15

percentage of static and moving foreground pixels at
time t respectively. τ is the temporal extent used to
represent each moving person, which has been set to
5 frames in our experiments.

5.6.3 Nursing Home Dataset
We have collected a dataset of 13 video clips from a
surveillance camera in a nursing home recorded at 3
frames per second and spatial resolution of 640×480
pixels [38]. The size of the clips in the dataset varies from
94 to 234 frames. the action label set includes 6 actions,
unknown, walk, stand, sit, bend and fall. We use 7 clips
for training and the remaining 6 clips for testing. After
running the detector on all video clips, we manually
label all detected bounding boxes. These bounding boxes
are employed for training and testing. The summary of
the number of detections for each action in the dataset
is presented in Table 3. Note that the actions are highly
imbalanced and there are only a few detected people
with fall, bend actions. We choose the action query label
from a subset of these actions – walk, stand, sit, bend
and fall.

We fix the value of K to Np in the experiments
and compare three approaches based on precision at K
retrieved items. The results are shown in Table 4. The
proposed approach outperforms the other approaches
for all the actions except bending, which has the fewest
instances in the test set.

We visualize the intra-frame and inter-frame interac-
tion weights in Fig. 8. One interesting observation is the
positive intra-frame weight between bending and walking
while looking for the walking action. The bending action
usually happens in the nursing home dataset when a
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Fig. 8. Visualization for some of the learned intra-
frame (left) and inter-frame (right) interactions. Vertical
labels are the query actions (walk (W), Stand(St), Sit(Si),
Bend(B) and Fall(F)). The inter-frame interactions are
asymmetric, which is shown as two weights one from
query action to the other actions (left half) and from the
other actions to the query action (right half).

TABLE 4
Precision percentage at K = Np

walk stand sit bend fall
Hamming 54.1 17.1 36.5 0.0 11.1

Unary 53.5 16.3 38.0 8.8 11.1
Our 55.2 17.8 38.4 2.9 22.2

nurse is helping an elderly resident who has fallen. In
this scenario another nurse is very likely to come to help,
who performs the walking action. As another example, a
person is very unlikely to switch his action from walking
to sitting and vise-versa (Fig 8 right). Also, repeatedly
performing the same action over time is likely for all
actions except abrupt actions like falling.

5.7 Significance Test

As suggested by [39], non-parametric statistical tests
such as the Friedman test are more suitable for com-
paring two or more classifiers over multiple datasets.
We follow the approach in [39] (Friedman test + a post-
hoc test), and verified that the improved performances
w.r.t. the baselines (unary & hamming loss) over all
of the datasets in our experiments are significant at
α = 0.05: the average rank differences between our
method and the baselines (1.31 and 1.19) are both larger
than the critical difference (0.78).

6 CONCLUSION

In this paper we developed a general algorithm for
addressing learning problems with complex models and
complex loss functions, those which are a function of
false positive and false negative counts. We replace the
original non-decomposable loss function with a piece-
wise linear approximation, and solve it using a linear
programming relaxation of the original quadratic pro-
gram.

In future work it would be interesting to analyze the
quality of these approximations. However, in this work

we have provided experimental evidence of their effec-
tiveness. In particular we apply this method to learning
an object category segmentation model that contains
both unary terms for labeling pixels and pairwise terms
on the labels of adjacent superpixels. We show that
learning the parameters to this model under an objective
directly tied to the performance measure significantly
improves performance relative to baseline algorithms on
the PASCAL VOC Segmentation Challenges and H3D
datasets. Moreover, we proposed a new model for action
retrieval that can capture three sources of information:
body motion, intra-frame action interaction and inter-
frame action interaction. We showed empirically that
the proposed approach can significantly improve on two
strong baselines, one including our structured model
of all actions in a scene, but optimizing decomposable
Hamming loss; and the other one optimizing the desired
loss function, but without any interaction between differ-
ent people’s actions. Together, these experiments provide
evidence that our learning approach can be used to
improve the performance of systems using other features
and structured models for complex problems.
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Fig. 10. Some segmentation results on H3D dataset.

[34] L. Bourdev and J. Malik, “Poselets: Body part detectors trained
using 3d human pose annotations,” in ICCV, 2009.

[35] C. Stauffer and W. E. L. Grimson, “Learning patterns of activity
using real-time tracking,” PAMI, vol. 22, no. 8, pp. 747–757, 2000.

[36] N. Dalal and B. Triggs, “Histograms of oriented gradients for
human detection,” in CVPR, 2005.

[37] C. C. Loy, T. Xiang, and S. Gong, “Modelling activity global
temporal dependencies using time delayed probabilistic graphical
model,” in ICCV, 2009.

[38] T. Lan, Y. Wang, G. Mori, and S. Robinovitch, “Retrieving actions
in group contexts,” in Int. Work. on Sign Gest. Act., 2010.

[39] J. Demsar, “Statistical comparisons of classifiers over multiple
data sets,” JMLR, vol. 7, pp. 1–30, 2006.

Mani Ranjbar is currently a PhD candidate at
the School of Computing Science, Simon Fraser
University, Canada. He received his M.Sc. in
Computer Architecture from Sharif University of
Technology, Iran in 2007 and his B.Sc. in Com-
puter Engineering from the same university in
2005. His research interests are in computer
vision and machine learning including object
detection, segmentation and tracking.

Tian Lan is currently a Ph.D. candidate in the
School of Computing Science at Simon Fraser
University, Canada. He received his M.Sc. from
the same university in 2010, and his B.Eng from
Huazhong University of Science and Technol-
ogy, China in 2008. He has worked as a research
intern at Disney Research Pittsburgh in summer
2011. His research interests are in the area of
computer vision, with a focus on semantic under-
standing of human actions and group activities
within a scene.

Yang Wang is currently an NSERC postdoctoral
fellow at the Department of Computer Science,
University of Illinois at Urbana-Champaign. He
received his Ph.D. from Simon Fraser University
(Canada), his M.Sc. from University of Alberta
(Canada), and his B.Sc. from Harbin Institute
of Technology (China), all in computer science.
He was a research intern at Microsoft Research
Cambridge in summer 2006. His research in-
terests lie in high-level recognition problems in
computer vision, in particular, human activity

recognition, human pose estimation, object/scene recognition, etc.

Steven N. Robinovitch PhD (BAppSc-88, M.S.-
90, Ph.D.-95), is a Professor and Canada Re-
search Chair in Injury Prevention and Mobility
Biomechanics at Simon Fraser University. His
research focuses on improving our understand-
ing of the cause and prevention of fall-related
injuries (especially hip fracture) in older adults,
through laboratory experiments, mathematical
modeling, field studies in residential care facili-
ties, and product design.

Ze-Nian Li is a Professor in the School of
Computing Science at Simon Fraser University,
British Columbia, Canada. Dr. Li received his
undergraduate education in Electrical Engineer-
ing from the University of Science and Tech-
nology of China, and M.Sc. and Ph.D. degrees
in Computer Sciences from the University of
Wisconsin-Madison under the supervision of the
late Professor Leonard Uhr. His current research
interests include computer vision, multimedia,
pattern recognition, image processing, and ar-

tificial intelligence.

Greg Mori received the Ph.D. degree in Com-
puter Science from the University of California,
Berkeley in 2004. He received an Hon. B.Sc. in
Computer Science and Mathematics with High
Distinction from the University of Toronto in
1999. He is currently an associate professor
in the School of Computing Science at Simon
Fraser University. Dr. Mori’s research interests
are in computer vision, and include object recog-
nition, human activity recognition, human body
pose estimation.


