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Abstract. In this paper we develop an algorithm for structured predic-
tion that optimizes against complex performance measures, those which
are a function of false positive and false negative counts. The approach
can be directly applied to performance measures such as Fβ score (natu-
ral language processing), intersection over union (image segmentation),
Precision/Recall at k (search engines) and ROC area (binary classifiers).
We attack this optimization problem by approximating the loss function
with a piecewise linear function and relaxing the obtained QP problem
to a LP which we solve with an off-the-shelf LP solver. We present ex-
periments on object class-specific segmentation and show significant im-
provement over baseline approaches that either use simple loss functions
or simple compatibility functions on VOC 2009.

1 Introduction

Solving challenging vision problems such as image understanding, image seg-
mentation, and video retrieval arguably requires the use of “complex” struc-
tured models – those incorporating relationships between multiple input and
output entities. Evidence for this comes from state-of-the-art approaches to the
aforementioned problems. For example, Hoiem et al. [1] formulate image un-
derstanding models that tie together object locations, camera parameters, and
surfaces. Blaschko and Lampert [2] localize objects using an efficient solution to
a structured output regression model. Desai et al. [3] learn models for simulta-
neously detecting all objects in an image. Non-max suppression and contextual
object co-occurrence statistics are learned in a discriminative fashion. Image
segmentation is a canonical example of structured labeling problem (e.g. [4–6]).

For many of these problems the natural performance measures are also “com-
plex” – ones that do not decompose into a simple sum of individual terms mea-
sured over each output entity. Examples of such measures are object detection
scores that penalize for multiple detections on a single true positive (e.g PAS-
CAL VOC [7]) and region labeling or object segmentation scores that penalize for
over and under labeling or segmentation (e.g. intersection / union score). Typical
methods for solving these problems learn parameters against other performance
measures, e.g. Hamming loss for segmentation, and then apply post-processing
techniques (e.g. non-maximum suppression in object detection) to address the
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structure in the performance measure. Instead, in this paper we develop an algo-
rithm for linking these two together and formulate learning as jointly considering
the complex, structured relationships between output variables in the model and
in the learning objective.

The main contribution of this paper is developing a general algorithm for
addressing this type of learning problem with complex models and those complex
loss functions which are a function of false positive and false negative counts.
We specifically apply it to image segmentation, but note that the algorithm can
be applied more broadly. We experiment with a standard Markov Random Field
(MRF) segmentation model that contains both unary terms for labeling pixels
and pairwise terms on the labels of neighbouring pixels. We show that learning
the parameters to this model under an objective directly tied to the performance
measure significantly improves performance relative to baseline algorithms on the
PASCAL VOC Segmentation Challenge.

2 Previous Work

A wide range of learning algorithms exist. Despite technical differences, all of
these approaches rely on a performance measure to define what is a “good” result.
Based on the complexity of the performance measure, two general approaches to
optimize it are imaginable, formulate the learning problem to directly optimize
this measure, or approximate this measure with a simpler one and try to optimize
it aiming to indirectly optimize the original complex performance measure. We
will call the former “direct optimization” and the latter “indirect optimization”.

Due to the complexity of some performance measures, e.g., average preci-
sion and intersection over union, many state-of-the-art approaches in different
challenges exploit an indirect optimization. Looking at PASCAL VOC challenge
2009 [7], for example, average precision and intersection over union are defined
as performance measures for detection and segmentation tasks respectively, but
methods for both tasks use indirect optimizations for solving these problems.

Structured prediction has become popular in computer vision. Taskar et al. [8]
and Tsochantaridis et al. [9] have the same formulation for structured predic-
tion using a max-margin criterion. Both of them need to solve the “most violated
constraint” [9], or loss augmented inference [8] in each iteration of their gradient
descent to find the optimal parameters. They assume the loss function is de-
composable and therefore solving for the most violated constraint is as hard as
doing the inference without the loss function, which is assumed to be tractable.
Joachims [10] proposed an approach to efficiently compute the most violated
constraint when the loss function is not decomposable, but limited the underly-
ing model by allowing only simple compatibility functions, those which involve
only a single input and output. In this paper we provide an algorithm for struc-
tured prediction with a complex compatibility function that optimizes against
complex performance measures, those which are a function of false positive and
false negative counts.
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3 Background

To create a foundation for the proposed approach, we start with an overview
of our learning formulation. Next, we discuss the two common approaches, one
based on a simple loss function with a complex compatibility function and the
other with complex loss function and simple compatibility function. We call a loss
function simple if it can be decomposed into loss on individual training samples.
Likewise, a compatibility function is called simple if it only depends on a single
sample point and its ground-truth label. Finally, we propose a framework to
incorporate certain complex loss functions and complex compatibility functions
in structured prediction.

3.1 Problem Formulation

The goal of our learning problem is defined as finding a function h ∈ H from
the hypothesis space H given training samples S = ((x1, y1), . . . ,(xN , yN )) that
optimizes the expected prediction performance on the new samples S′ of size n′.

R∆(h) =
∫
∆((h(x′1), h(x′2), . . . , h(x′n′)), (y

′
1, y
′
2, . . . , y

′
n′))dPr(S

′). (1)

In general, the loss function∆ cannot be decomposed into a linear combination of
a loss function δ over individual samples. But, for simplicity, most discriminative
learning algorithms (e.g. SVM) assume decomposibility and i.i.d. samples, which
allows for rewriting Eq. 1 as

R∆(h) = Rδ(h) =
∫
δ(h(x′), y′)dPr(x′, y′). (2)

Instead of solving the estimated risk in Eq. 2, learning algorithms approximate
that with empirical risk R̂δ defined as

R̂δ(h) =
1
n

N∑
i=1

δ(h(xi), yi). (3)

For non-decomposable loss functions, such as F1 score or intersection over union,
optimizing Eq. 2 does not provide the desired answer. Rather, we are interested
in finding an algorithm that can directly optimize the empirical risk based on
the sample loss,

R̂∆S (h) = ∆((h(x1), h(x2), . . . , h(xn)), (y1, y2, . . . , yn)). (4)

Note that finding an h ∈ H that optimizes Eq. 4 for an arbitrary loss function
∆ can be computationally challenging.
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3.2 Structured Prediction Learning

For non-decomposable loss functions, one can reformulate the SVM based on
the idea of multivariate prediction [10]. Instead of having a mapping function
h : X → Y from a single example x to its label y, where x ∈ X and y ∈
{−1,+1}, we look at all examples at once and try to learn a mapping function
h̄ : X × · · · × X → Ȳ, where Ȳ ∈ {−1,+1}N . We define x̄ = (x1, . . . ,xN ), and
y = (y1, . . . , yN ).

We can define the best labeling using a linear discriminant function

h̄(x̄) = arg max
y′∈Ȳ

wTΨ(x̄,y′). (5)

Here, function Ψ measures the compatibility of the data points and their assigned
labels. If we define the Ψ function as a simple form

Ψ(x̄,y′) =
N∑
i=1

y′ixi, (6)

that only depends on individual training points and their labels, the optimal
labeling sequence is

arg max
y′∈Ȳ

wTΨ(x̄,y′) = arg max
y′∈Ȳ

N∑
i=1

y′iw
Txi = (h(x1), . . . , h(xN )), (7)

which is exactly the same as the optimal labeling in SVM.
One way of incorporating a loss function ∆ in SVM formulation is Margin

Rescaling [9],
min

w,ξ≥0
‖w‖2 + Cξ (8)

s.t. ∀y′ ∈ Ȳ\y, wT [Ψ(x̄,y)− Ψ(x̄, ȳ′)] ≥ ∆(y,y′)− ξ (9)

Similar to the original SVM formulation, ξ in Eq. 8 is an upper bound on
∆(h̄(x̄),y)[10].

The guarantee for convergence in polynomial time, the potential for incorpo-
rating complex loss functions in the objective and good performance in practice
are the most important reasons why structured prediction has garnered much
attention in computer vision recently.

In the standard approaches for solving Eq. 8, the output vector, ỹ, corre-
sponding to the most violated constraint should be found repeatedly [9],

ỹ = arg max
y′∈Ȳ

∆(y,y′) +wTΨ(x̄,y′). (10)

Finding ỹ is computationally challenging given an arbitrary loss function,
∆(y,y′), and compatibility function, Ψ(x̄,y′). However, solving Eq. 10 in two
special cases has been shown to be efficient. We categorize these approaches
based on the simplicity of their ∆ and Ψ functions. We call a loss function
simple if it can be decomposed into individual training samples. Likewise, a
compatibility function is called simple if it decomposes over single sample points
and their ground-truth labels.
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3.3 Simple ∆, Complex Ψ

Optimizing the parameters of a MRF structure when the loss function can be
decomposed into the loss of individual samples falls into this category. One
popular application in this category is foreground-background segmentation with
Hamming loss, which is defined as

∆H =
∑
i

1[yi 6=y′i]. (11)

Szummer et al. [6] have employed this formulation and reported promising results
for interactive segmentation.

Decomposibility of the loss function results in a MRF form for Eq. 10, because
the loss function can be treated as another unary term that adds up to the unary
terms of the compatibility function. Assuming binary labels, this MRF can be
solved efficiently using graphcut.

The advantage of this approach is to exploit pairwise connections, but it is
only tractable for decomposable loss functions.

3.4 Complex ∆, Simple Ψ

The other special case presented by Joachims [10], is when the Ψ function has a
simple form of

Ψ(x̄,y′) =
N∑
i=1

y′ixi. (12)

If the loss function, ∆, is just a function of true positive (TP ), false positive
(FP ) and false negative (FN), then there are at most Np × Nn distinct loss
values, where Np and Nn represent the number of positive and negative training
examples, respectively. Hence, Eq. 10 can be solved by iterating over all loss
values and maximizing wTΨ(x,y′) subject to the value of TP , FP and FN [10].

Unlike the approach of Szummer et al. [6], many standard accuracy measures
that lead to non-decomposable loss functions, such as Fβ score (natural language
processing), intersection over union (image segmentation), Precision/Recall at
k (web search engines) and ROC area (binary classifiers) can be directly opti-
mized by this approach. However, this method cannot benefit from the pairwise
interactions of training samples, which are shown to be advantageous in many
applications, such as object detection [3] and scene interpretation [1].

4 Proposed Approach: Solving Complex ∆, Complex Ψ

Discussing the advantages and shortcomings of the previous methods, we now
propose an approach to directly optimize certain complex loss functions in a
Markov network. Here, we can optimize non-decomposable accuracy measures,
such as Fβ and intersection over union and still be able to benefit from pairwise
interactions between training points.

We choose to follow the general framework of StructuralSVM [9], shown in
Eq. 8. Solving Eq. 8 requires finding the most violated constraint (Eq. 10) at
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each iteration and modifying the parameter vectorw accordingly [9]. We propose
a novel method to efficiently solve for an approximate most violated constraint
for certain non-decomposable loss functions in presence of pairwise terms in the
compatibility function, Ψ .

We can summarize the proposed approach as

1. Replacing the original non-decomposable loss function with a piecewise linear
approximation,

2. Writing the problem of finding the most violated constraint as a quadratic
program,

3. Converting the quadratic program to a linear program and solve the relaxed
problem.

4.1 Piecewise Linear Approximation

Many standard accuracy measures, including the one presented in the previous
section, share the property that they can be computed from the contingency
table1. Given the number of positive and negative examples, Np and Nn, the
loss function corresponding to these accuracy measures is just a function of FP
and FN . Using piecewise linear approximation, we can write

∆(FP, FN) ' ∆̃(FP, FN) =
M∑
j=1

1[(FP,FN)∈Rj ] {αjFP + βjFN + γj} (13)

where, M is the number of subregions (pieces), αj , βj and γj represent the jth

plane coefficients and Rjs are the subregions that partition the space spanned
by FP and FN .

a b c

Fig. 1. Intersection over union loss surface in FP and FN space. a) Exact surface, b) a
piecewise linear approximation with 40 subregions, c) a piecewise linear approximation
with 15 subregions.

As an example, Figure 1 illustrates the intersection over union loss function,

∆∩
∪

(FP, FN) =
FN + FP

Np + FP
, (14)

along with its piecewise linear approximations using 15 and 40 pieces.
Given the subregion Rj , the original non-linear loss function is a linear func-

tion of FP and FN . The next step is to substitute the approximated loss func-
tion, ∆̃ into Eq. 10 and solve for the most violated constraint.
1 Is just a function of TP , FP , TN and FN .
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4.2 Forming the Quadratic Program

Choosing the right form of Ψ function is crucial to achieve high performance. In
segmentation, for example, employing only unary terms in the Ψ function that
model the relationship between an observed pixel and its label result in a lack of
smoothness in the labeling. Hence, methods usually incorporate pairwise terms
in the Ψ function to smooth the output labeling. We define our Ψ with unary
and pairwise terms as

Ψ(x̄,y) =
∑
i

(2yi − 1)φu(xi) +
∑
i

∑
j∈Ni

(yi + yj − 2yiyj)φp(xi,xj). (15)

Here Ni is the set of neighbors of sample i and we have assumed y ∈ {0, 1}. We
rewrite Eq. 10 with approximated loss function, ∆̃ as

ỹ∗ = arg max
y′∈Ȳ

∆̃(y,y′) + wTΨ(x̄,y′) (16)

= arg max
y′∈Ȳ

∆̃(y,y′) + wT
u

∑
i

(2y′i − 1)φu(xi) (17)

+ wT
p

∑
i

∑
j∈Ni

(y′i + y′j − 2y′iy
′
j)φp(xi,xj)

where w = [wu;wp] (concatenation of the two).
Note that FP =

∑
i (1− yi)y′i and FN =

∑
i yi(1− y′i), where yi is the true

label and y′i is the predicted label for the ith example. If we assume that the loss
values fall in subregion Rk, we can write Eq. 17 as

ỹ∗ = arg max
y′∈Ȳ

(
αk
∑
i

(1− yi)y′i + βk
∑
i

yi(1− y′i) + γk + (18)

wT
u

∑
i

(2y′i − 1)φu(xi) +wT
p

∑
i

∑
j∈Ni

(y′i + y′j − 2y′iy
′
j)φp(xi,xj)

)
.

Note that Eq. 18 only includes the predicted label y′ in linear and quadratic
forms. Hence, we can write a quadratic program based on Eq. 18 subject to the
loss values being in subregion Rk,

Maximize:
αk
∑
i

(1− yi)y′i + βk
∑
i

yi(1− y′i) + γk + (19)∑
i

(2y′i − 1)[wT
uφu(xi)] +

∑
i

∑
j∈Ni

(y′i + y′j − 2y′iy
′
j)[w

T
p φp(xi,xj)]

Subject to:{∑
i

(1− yi)y′i,
∑
i

yi(1− y′i)

}
∈ Rk, i = 1, . . . , N (20)
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In order to have linear constraints in Eq. 20, the boundary of all subregions
should be definable as a linear function of y′. One way is to separate the sub-
regions by straight lines. If for example, we partition the space spanned by FP
and FN into triangles (Fig. 1b,c) then Eq. 20 will be substituted by three linear
constraints corresponding to the three sides of the triangle.

4.3 Converting Quadratic Program to Linear Program

The quadratic program in Eq. 19 is potentially non-convex, since there is no
constraint on the coefficients of the objective function. So, instead of looking for
a local optima of this non-convex function, we relax the problem (MAP-MRF
LP relaxation [11]) by introducing some variables that substitute the quadratic
terms in the objective function and form a linear program, which is convex. In
detail, we introduce four new variables corresponding to four different possible
configurations of a pair of labels as follows.

y00
ij ≡ (1− y′i)(1− y′j), y01

ij ≡ (1− y′i)y′j , y10
ij ≡ y′i(1− y′j), y11

ij ≡ y′iy′j . (21)

We also add a set of constraints to relate the introduced variables to y′ variables.
The final linear program is

Maximize:
αk
∑
i

(1− yi)y′i + βk
∑
i

yi(1− y′i) + γk + (22)∑
i

(2y′i − 1)[wT
uφu(xi)] +

∑
i

∑
j∈Ni

(y01
ij + y10

ij )[wT
p φp(xi,xj)]

Subject to:{∑
i

(1− yi)y′i,
∑
i

yi(1− y′i)

}
∈ Rk, i = 1, . . . , N, j ∈ Ni (23)

y10
ij + y11

ij = y′i (24)

y01
ij + y11

ij = y′j (25)

y00
ij + y01

ij + y10
ij + y11

ij = 1 (26)

Solving this LP for thousands of binary variables (labels), is not computationally
tractable. So instead we relax the label values to real numbers between zero and
one and solve for optimal labeling. Later, we map the optimal labels to binary
values by rounding the results. We solve Eq. 22 for each subregion separately,
and return the labeling of the one with the maximum objective as the most
violated constraint.

5. Experiments

As a concrete example, we experiment on object segmentation using our pro-
posed approach. Given an input image, the goal is to produce a 0/1 mask, in
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which a pixel gets label 1 if it is part of a given object category and label 0
otherwise.

Dataset. We run our experiments on the VOC2009 Segmentation [7] dataset.
There are 749 images in the training set, 750 images in the validation set and 750
images in the test set. We train the parameters on the training set and evaluate
performance on the validation set so that we can directly compare to baseline
methods without relying on the VOC server. We compare the results using the
intersection over union accuracy measure on 6 out of 20 object categories that
can be localized the best employing our top-down features. Note that we perform
the experiments on these objects independently. For example, when we segment
object class car, any other object is taken as background. This is different from
the VOC segmentation challenge in which the segmentation result should contain
all object classes simultaneously. To combine our independent segmentations, we
would need to have a score for each foreground pixel. Then, we could assign a
pixel the label with maximum score. One way of scoring labels is the approach of
Kohli [12] that can exactly compute the min marginals for graph cuts, however
it is outside the scope of this paper.

Features. We define an MRF segmentation model with unary and pairwise
features, for which the approximate inference is performed using FastPD [13].
Instead of working on the pixel level we first group the pixels into superpixels,
which are fewer and therefore makes the learning process faster. Also they are
larger so can be represented by more meaningful features. We use the superpixel
extractor of Felzenszwalb et al. [14] that has three parameters. We set these pa-
rameters as k = 200, MinArea = 1330 and σ = 0.01. This setting of parameters
result in an average of 50 superpixels per image of size 300× 500 pixels.

To represent each superpixel, we use a set of bottom-up and top-down fea-
tures, which form φu(xi) for superpixel i in Eq. 22. To create the bottom-up
features, we compute Color SIFT features [15] on a dense grid with 6 pixel spac-
ing in horizontal and vertical directions. We then turn this into a bag-of-words
representation using a codebook of 1000 visual words.

For top-down features, we take a similar approach to the implicit shape
model [16]. We first learn two appearance models for each of the 6 object cat-
egories using the detector of Felzenszwalb et al. [17]. The result includes two
root filters and 6×2 part filters, where each root filter and 6 corresponding part
filters model the object appearance in one pose. We run this detector on the
training set and collect all bounding boxes that have positive scores. We then
crop the ground-truth images on the bounding box locations and compute the
average shape for the roots and parts, Fig 2.

We explain the rest of the process for one part, but the same process is
applied to all parts and both roots. We find the potential part locations and
their confidences by running the detector on the image in different scales. We
call the result at each scale a confidence map, Fig. 3-b. Each potential part
location casts its vote for the shape of that part proportional to its confidence.
We implement this by convolving the confidence maps (different scales) with the
average shape for that particular part. We call the convolution result in each
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Fig. 2. Visualization of the average root and part shapes for person category. Each
row corresponds to shape models obtained from root and part appearance models of
one object pose.

scale a potential mask, Fig. 3-c. To merge the potential masks, we rescale them
to the original image size and get the maximum of the masks, Fig. 3-d. We
accumulate the mask values inside each superpixel to form the top-down feature
corresponding to the part. Fig. 3 depicts the entire process for one part.

 

D
e

tecto
r 

 

M
ax 

 

a b c d

Fig. 3. The process of computing top-down features. Instead of showing the center of
the detected parts we depict the bounding box for visualization purposes in the second
stage.

To employ the pairwise interaction between neighboring superpixels i and
j, we define a set of pairwise features that represent φp(xi,xj) in Eq. 22. We
first convert the image from RGB to La∗b∗ color space. We define Li, ai and bi
to be the average L, a and b values inside superpixel i, respectively and assign
the length of the common boundary between superpixel i and j to Pij . We then
compute the pairwise features as

φp(xi,xj) = Pij . exp
[
−τ1(Li − Lj)2,−τ2(ai − aj)2,−τ2(bi − bj)2

]
. (27)

In our experiments the values of τ1 and τ2 are set to 2 × 10−2 and 5 × 10−3,
respectively.

Results We compare the proposed method to two other methods based on
their intersection over union segmentation accuracy. We use the same set of
features for all methods. All three methods share the same general framework
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as explained by Tsochantaridis et al. [9]. The difference is in the form of their
loss function ∆ and their compatibility function Ψ . The first approach BL1 uses
a decomposable Hamming loss function and a complex Ψ function including
pairwise terms. The second method BL2 has been presented by Joachims [10]
that can optimize a non-decomposable loss function, intersection over union in
our experiment, but only includes unary terms in the Ψ function. And finally, the
third method is the proposed approach that approximates the intersection over
union loss function and can handle Ψ functions with unary and pairwise terms.
We also show some segmentation results in Fig. 5 for all 6 object categories.

We use the same regularizer coefficient C = 1 for all three methods and
set the number of subregions, M , for our piecewise linear approximation to 40.
First, we triangulate the loss surface in FP, FN space finely. Then, we simplify
the mesh into 40 triangles using a software called “Polygon Cruncher”, which
tries to approximate the original mesh as close as possible. To solve the LP
problem of Eq. 22, we employ an off-the-shelf LP solver, Mosek [18].

In the training set, the number of superpixels that belong to the object are far
fewer than the number of background superpixels, e.g., 1 foreground superpixel
for every 25 background superpixels in person category. It means that reporting
all superpixels as background gives Hamming score of 24

25 or 96%. However, the
same result obtains zero score based on intersection over union, because the
intersection is simply empty. Therefore, we use adjusted Hamming loss defined
as

∆AH = κFP + FN. (28)

By changing κ we can adjust the relative contribution of foreground and back-
ground labels. In our experiment we set κ for each object to the ratio of fore-
ground and background superpixels in the training set. Without this adjustment
BL1 would always return every superpixel as background.

The results reported in Table 1 show significant improvement in segmentation
accuracy by the proposed method. Moreover, the results of BL1 and BL2 are
comparable in a sense that in half of the categories BL1 performs better than
BL2 and performs worse in the other half.

Table 1. Intersection over union accuracies for 6 object categories.

BL1 BL2 Proposed Method
∆ = Adjusted Hamming ∆ = ∩

∪ ∆ = ∩
∪

Unary + Pairwise Unary Unary + Pairwise

person 20.73 26.7 32.53
bus 25.49 22.65 31.69
aeroplane 21.23 12.65 32.11
car 23.37 22.86 27.83
horse 0.0 5.2 13.85
tv/monitor 2.24 6.63 12.69
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We compare the effect of optimizing adjusted Hamming loss versus intersec-
tion over union in Fig. 5. Adjusted Hamming loss tends to return fewer false
positives, but with the cost of missing many true positives. In fact, it often
marks all pixels as background, while intersection over union actually produces
segmentations.

a b c

Fig. 4. Segmentation for person category. Optimizing adjusted Hamming loss (BL1)
against our proposed method. a) input image, b) segmentation considering adjusted
Hamming loss (BL1), c) our proposed method employing intersection over union. Inter-
section over union provides more true positives by possibly creating some false positives.
Adjusted Hamming loss decreases false positive by sacrificing some true positives.

6 Conclusion

In this paper we develop a general algorithm for addressing learning prob-
lems with complex models and complex loss functions, those which are a func-
tion of false positive and false negative counts. We replace the original non-
decomposable loss function with a piecewise linear approximation, and solve it
using a linear programming relaxation of the original quadratic program. In fu-
ture work it would be interesting to analyze the quality of these approximations.
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Fig. 5. Some segmentation results. Each row corresponds to one object category.
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However, in this work we have provided experimental evidence of their effec-
tiveness. In particular we apply this method to learning an image segmentation
model that contains both unary terms for labeling pixels and pairwise terms
on the labels of neighbouring pixels. We show that learning the parameters to
this model under an objective directly tied to the performance measure signif-
icantly improves performance relative to baseline algorithms on the PASCAL
VOC Segmentation Challenge.
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