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Abstract. Human activity videos involve rich, varied interactions be-
tween people and objects. In this paper we develop methods for gener-
ating such videos – making progress toward addressing the important,
open problem of video generation in complex scenes. In particular, we
introduce the task of generating human-object interaction videos in a
zero-shot compositional setting, i.e., generating videos for action-object
compositions that are unseen during training, having seen the target
action and target object separately. This setting is particularly impor-
tant for generalization in human activity video generation, obviating the
need to observe every possible action-object combination in training and
thus avoiding the combinatorial explosion involved in modeling complex
scenes. To generate human-object interaction videos, we propose a novel
adversarial framework HOI-GAN which includes multiple discriminators
focusing on different aspects of a video. To demonstrate the effective-
ness of our proposed framework, we perform extensive quantitative and
qualitative evaluation on two challenging datasets: EPIC-Kitchens and
20BN-Something-Something v2.
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1 Introduction

Visual imagination and prediction are fundamental components of human intel-
ligence. Arguably, the ability to create realistic renderings from symbolic rep-
resentations are considered prerequisite for broad visual understanding. Com-
puter vision has seen rapid advances in the field of image generation over the
past few years. Existing models are capable of generating impressive results
in this static scenario, ranging from hand-written digits [3, 11, 19] to realistic
scenes [5, 29, 34, 53, 78]. Progress on video generation [4, 25, 57, 64, 66, 69, 70], on
the other hand, has been relatively moderate and remains an open and challeng-
ing problem. While most approaches focus on the expressivity and controllability
of the underlying generative models, their ability to generalize to unseen scene
compositions has not received as much attention. However, such generalizability
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Fig. 1. Generation of Zero-Shot Human-Object Interactions. Given training
examples “wash aubergine” and “put tomato”, an intelligent agent should be able to
imagine action sequences for unseen action-object compositions, i.e., “wash tomato”
and “put aubergine”.

is an important cornerstone of robust visual imagination as it demonstrates the
capacity to reason over elements of a scene.

We posit that the domain of human activities constitutes a rich realistic
testbed for video generation models. Human activities involve people interact-
ing with objects in complex ways, presenting numerous challenges for generation
– the need to (1) render a variety of objects; (2) model the temporal evolution
of the effect of actions on objects; (3) understand spatial relations and interac-
tions; and (4) overcome the paucity of data for the complete set of action-object
pairings. The last, in particular, is a critical challenge that also serves as an
opportunity for designing and evaluating generative models that can generalize
to myriad, possibly unseen, action-object compositions. For example, consider
Figure 1. The activity sequences for “wash aubergine” (action a1: “wash”; object
o1: “aubergine”) and “put tomato”(action a2: “put”; object o2: “tomato”) are
observed in the training data. A robust visual imagination would then allow an
agent to imagine videos for “wash tomato” (a1, o2) and “put aubergine” (a2, o1).

We propose a novel framework for generating human-object interaction (HOI)
videos for unseen action-object compositions. We refer to this task as zero-shot
HOI video generation. To the best of our knowledge, our work is the first to pro-
pose and address this problem. In doing so, we push the envelope on conditional
(or controllable) video generation and focus squarely on the model’s ability to
generalize to unseen action-object compositions. This zero-shot compositional
setting verifies that the model is capable of semantic disentanglement of the
action and objects in a given context and recreating them separately in other
contexts.

The desiderata for performing zero-shot HOI video generation include: (1)
mapping the content in the video to the right semantic category, (2) ensuring
spatial and temporal consistency across the frames of a video, and (3) producing
interactions with the right object in the presence of multiple objects. Based
on these observations, we introduce a novel multi-adversarial learning scheme
involving multiple discriminators, each focusing on different aspects of an HOI
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video. Our framework HOI-GAN generates a fixed length video clip given an
action, an object, and a target scene serving as the context.

Concretely, the conditional inputs to our framework are semantic labels of ac-
tion and object, and a single start frame with a mask providing the background
and location for the object. Then, the model has to create the object, reason
over the action, and enact the action on the object (leading to object trans-
lation and/or transformation) over the background, thus generating the whole
interaction video. During training of the generator, our framework utilizes four
discriminators – three pixel-centric discriminators, namely, frame discrimina-
tor, gradient discriminator, video discriminator; and one object-centric relational
discriminator. The three pixel-centric discriminators ensure spatial and tempo-
ral consistency across the frames. The novel relational discriminator leverages
spatio-temporal scene graphs to reason over the object layouts in videos ensuring
the right interactions among objects. Through experiments, we show that our
HOI-GAN framework is able to disentangle objects and actions and learns to
generate videos with unseen compositions.

In summary, our contributions are as follows:

– We introduce the task of zero-shot HOI video generation. Specifically, given
a training set of videos depicting certain action-object compositions, we pro-
pose to generate unseen compositions having seen the target action and
target object individually, i.e., the target action was paired with a different
object and the target object was involved in a different action.

– We propose a novel adversarial learning scheme and introduce our HOI-GAN
framework to generate HOI videos in a zero-shot compositional setting.

– We demonstrate the effectiveness of HOI-GAN through empirical evalu-
ation on two challenging HOI video datasets: 20BN-something-something
v2 [20] and EPIC-Kitchens [9]. We perform both quantitative and qualita-
tive evaluation of the proposed approach and compare with state-of-the-art
approaches.

Overall, our work facilitates research in the direction of enhancing generalizabil-
ity of generative models for complex videos.

2 Related Work

Our paper builds on prior work in: (1) modeling of human-object interactions and
(2) GAN-based video generation. In addition, we also discuss literature relevant
to HOI video generation in a zero-shot compositional setting.
Modeling Human-Object Interactions. Earlier research attempts to study
human-object interactions (HOIs) aimed at studying object affordances [21, 38]
and semantic-driven understanding of object functionalities [24,62]. Recent work
on modeling HOIs in images range from studying semantics and spatial features
of interactions between humans and objects [10, 18, 77] to action information
[13, 17, 76]. Furthermore, there have been attempts to create large scale image
and video datasets to study HOI [7, 8, 20, 39]. To model dynamics in HOIs,
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recent works have proposed methods that jointly model actions and objects
in videos [33, 35, 60]. Inspired by these approaches, we model HOI videos as
compositions of actions and objects.

GAN-based Image & Video Generation. Generative Adversarial Network
(GAN) [19] and its variants [3, 11, 79] have shown tremendous progress in high
quality image generation. Built over these techniques, conditional image gen-
eration using various forms of inputs to the generator such as textual informa-
tion [55,75,78], category labels [48,52], and images [29,36,43,80] have been widely
studied. This class of GANs allows the generator network to learn a mapping
between conditioning variables and the real data distribution, thereby allow-
ing control over the generation process. Extending these efforts to conditional
video generation is not straightforward as generating a video involves model-
ing of both spatial and temporal variations. Vondrick et al. [66] proposed the
Video GAN (VGAN) framework to generate videos using a two-stream generator
network that decouples foreground and background of a scene. Temporal GAN
(TGAN) [57] employs a separate generator for each frame in a video and an
additional generator to model temporal variations across these frames. MoCo-
GAN [64] disentangles the latent space representations of motion and content
in a video to perform controllable video generation using seen compositions of
motion and content as conditional inputs. In our paper, we evaluate the extent
to which these video generation methods generalize when provided with unseen
scene compositions as conditioning variables. Furthermore, promising success has
been achieved by recent video-to-video translation methods [4, 69, 70] wherein
video generation is conditioned on a corresponding semantic video. In contrast,
our task does not require semantic videos as conditional input.

Video Prediction. Video prediction approaches predict future frames of a video
given one or a few observed frames using RNNs [61], variational auto-encoders
[67,68], adversarial training [42,46], or auto-regressive methods [32]. While video
prediction is typically posed as an image-conditioned (past frame) image gener-
ation (future frame) problem, it is substantially different from video generation
where the goal is to generate a video clip given a stochastic latent space.

Video Inpainting. Video inpainting/completion refers to the problem of cor-
rectly filling up the missing pixels given a video with arbitrary spatio-temporal
pixels missing [14,22,50,51,59]. In our setting, however, the model only receives
a single static image as input and not a video. Our model is required to go be-
yond merely filling in pixel values and has to produce an output video with the
right visual content depicting the prescribed action upon a synthesized object.
In doing so, the background may, and in certain cases should, evolve as well.

Zero-Shot Learning. Zero-shot learning (ZSL) aims to solve the problem of
recognizing classes whose instances are not seen during training. In ZSL, external
information of a certain form is required to share information between classes
to transfer knowledge from seen to unseen classes. A variety of techniques have
been used for ZSL ranging from usage of attribute-based information [16, 40],
word embeddings [71] to WordNet hierarchy [1] and text-based descriptions [15,
23, 41, 81]. [72] provides a thorough overview of zero-shot learning techniques.
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Similar to these works, we leverage word embeddings to reason over the unseen
compositions of actions and objects in the context of video generation.
Learning Visual Relationships. Visual relationships in the form of scene
graphs, i.e., directed graphs representing relationships (edges) between the ob-
jects (nodes) have been used for image caption evaluation [2], image retrieval [31]
and predicting scene compositions for images [44,49,74]. Furthermore, in a gen-
erative setting, [30] aims to synthesize an image from a given scene graph and
evaluate the generalizability of an adversarial network to create images with un-
seen relationships between objects. Similarly, we leverage spatio-temporal scene
graphs to learn relevant relations among the objects and focus on the gener-
alizability of video generation models to unseen compositions of actions and
objects. However, our task of zero-shot HOI video generation is more difficult as
it requires learning to map the inputs to spatio-temporal variations in a video.
Learning Disentangled Representations for Videos. Various methods have
been proposed to learn disentangled representations in videos [12,27,64], such as,
learning representations by decoupling the content and pose [12], or separating
motion from content using image differences [65]. Similarly, our model implicitly
learns to disentangle the action and object information of an HOI video.

3 HOI-GAN

Intuitively, for a generated human-object interaction (HOI) video to be realistic,
it must: (1) contain the object designated by a semantic label; (2) exhibit the
prescribed interaction with that object; (3) be temporally consistent; and (4
– optional) occur in a specified scene. Based on this intuition, we propose an
adversarial learning scheme in which we train a generator network G with a set
of 4 discriminators: (1) a frame discriminator Df , which encourages the generator
to learn spatially coherent visual content; (2) a gradient discriminator Dg, which
incentivizes G to produce temporally consistent frames; (3) a video discriminator
Dv, which provides the generator with global spatio-temporal context; and (4)
a relational discriminator Dr, which assists the generator in producing correct
object layouts in a video. We use pretrained word embeddings [54] for semantic
representations of actions and objects. All discriminators are conditioned on
word embeddings of the action (sa) and object (so) and trained simultaneously
in an end-to-end manner. Figure 2 shows an overview of our proposed framework
HOI-GAN. We now formalize our task and describe each module in detail.

3.1 Task Formulation

Let sa and so be word embeddings of an action a and an object o, respectively.
Furthermore, let I be an image provided as context to the generator. We encode
I using an encoder Ev to obtain a visual embedding sI, which we refer to as
a context vector. Our goal is to generate a video V = (V (i))Ti=1 of length T
depicting the action a performed on the object o with context image I as the
background of V . To this end, we learn a function G : (z, sa, so, sI) 7→ V , where z
is a noise vector sampled from a distribution pz, such as a Gaussian distribution.
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Fig. 2. Architecture Overview. The generator network G is trained using 4 dis-
criminators simultaneously: a frame discriminator Df , a gradient discriminator Dg, a
video discriminator Dv, and a relational discriminator Dr. Given the word embeddings
of an action sa, an object so, and a context image sI , the generator learns to synthesize
a video with background I in which the action a is performed on the object o.

3.2 Model Description

We describe the elements of our framework below. Overall, the four discrimi-
nator networks, i.e., frame discriminator Df , gradient discriminator Dg, video
discriminator Dv, and relational discriminator Dr are all involved in a zero-sum
game with the generator network G. Refer to the supplementary for implemen-
tation details.
Frame Discriminator. The frame discriminator network Df learns to distin-
guish between real and generated frames corresponding to the real video Vreal
and generated video Vgen = G(z, sa, so, sI) respectively. Each frame in Vgen and
Vreal is processed independently using a network consisting of stacked conv2d

layers, i.e., 2D convolutional layers followed by spectral normalization [47] and

leaky ReLU layers [45] with a = 0.2. We obtain a tensor of size N (t)×w(t)
0 ×h

(t)
0

(t = 1, 2, . . . , T ), where N (t), w
(t)
0 , and h

(t)
0 are the channel length, width and

height of the activation of the last conv2d layer respectively. We concatenate
this tensor with spatially replicated copies of sa and so, which results in a tensor

of size (dim(sa) + dim(so) +N (t))× w(t)
0 × h

(t)
0 . We then apply another conv2d

layer to obtain a N ×w(t)
0 × h

(t)
0 tensor. We now perform 1× 1 convolutions fol-

lowed by w
(t)
0 ×h

(t)
0 convolutions and a sigmoid to obtain a T -dimensional vector

corresponding to the T frames of the video V . The i-th element of the output
denotes the probability that the frame V (i) is real. The objective function of the
network Df is the loss function:

Lf =
1

2T

T∑
i=1

[log(D
(i)
f (Vreal; sa, so)) + log(1−D

(i)
f (Vgen; sa, so))], (1)

where D
(i)
f is the i-th element of the output of Df .

Gradient Discriminator. The gradient discriminator network Dg enforces
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temporal smoothness by learning to differentiate between the temporal gradient
of a real video Vreal and a generated video Vgen. We define the temporal gradient
∇t V of a video V with T frames V (1), . . . , V (T ) as pixel-wise differences between
two consecutive frames of the video. The i-th element of ∇tV is defined as:

[∇t V ]i = V (i+1) − V (i), i = 1, 2, . . . , (T − 1). (2)

The architecture of the gradient discriminator Dg is similar to that of the frame
discriminator Df . The output of Dg is a (T −1)-dimensional vector correspond-
ing to the (T − 1) values in gradient ∇t V . The objective function of Dg is

Lg =
1

2(T − 1)

T−1∑
i=1

[log(D(i)
g (∇t Vreal; sa, so))+

log(1−D(i)
g (∇t Vgen; sa, so))],

(3)

where D
(i)
g is the i-th element of the output of Dg.

Video Discriminator. The video discriminator network Dv learns to distin-
guish between real videos Vreal and generated videos Vgen by comparing their
global spatio-temporal contexts. The architecture consists of stacked conv3d

layers, i.e., 3D convolutional layers followed by spectral normalization [47] and
leaky ReLU layers [45] with a = 0.2. We obtain a N × d0 × w0 × h0 tensor,
where N , d0, w0, and h0 are the channel length, depth, width, and height of
the activation of the last conv3d layer respectively. We concatenate this tensor
with spatially replicated copies of sa and so, which results in a tensor of size
(dim(sa)+ dim(so)+N)×d0×w0×h0, where dim(·) returns the dimensionality
of a vector. We then apply another conv3d layer to obtain a N × d0 × w0 × h0
tensor. Finally, we apply a 1×1×1 convolution followed by a d0×w0×h0 convo-
lution and a sigmoid to obtain the output, which represents the probability that
the video V is real. The objective function of the network Dv is the following
loss function:

Lv =
1

2
[ log(Dv(Vreal; sa, so)) + log(1−Dv(Vgen; sa, so))]. (4)

Relational Discriminator. In addition to the three pixel-centric discrimina-
tors above, we also propose a novel object-centric discriminator Dr. Driven by a
spatio-temporal scene graph, this relational discriminator learns to distinguish
between scene layouts of real videos Vreal and generated videos Vgen (Figure 3).

Specifically, we build a spatio-temporal scene graph S = (N , E) from V ,
where the nodes and edges are represented by N and E respectively. We assume
one node per object per frame. Each node is connected to all other nodes in
the same frame, referred to as spatial edges. In addition, to represent tempo-
ral evolution of objects, each node is connected to the corresponding nodes in
the adjacent frames that also depict the same object, referred to as temporal
edges. To obtain the node representations, we crop the objects in V using Mask-
RCNN [26], compute a convolutional embedding for them, and augment the
resulting vectors with the aspect ratio (AR) and position of the corresponding
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Fig. 3. Relational Discriminator. The relational discriminator Dr leverages a
spatio-temporal scene graph to distinguish between object layouts in videos. Each node
contains convolutional embedding, position and aspect ratio (AR) of the object crop
obtained from MaskRCNN. The nodes are connected in space and time and edges are
weighted based on their inverse distance. Edge weights of (dis)appearing objects are 0.

bounding boxes. The weights of spatial edges in E are given by inverse Euclidean
distances between the centers of these bounding boxes corresponding to the ob-
ject appearing in the frame. The weights of the temporal edges is set to 1 by
default. When an object is not present in a frame (but appears in the overall
video), spatial edges connecting to the object will be absent by design. This is
implemented by setting the weights to 0 depicting distance between the objects
as∞. Similarly, if an object does not appear in the adjacent frame, the temporal
edge is set to 0. In case of multiple objects of the same category, the correspon-
dence is established based on the location in the adjacent frames using nearest
neighbour data association.

The relational discriminator Dr operates on this scene graph S by virtue
of a graph convolutional network (GCN) [37] followed by stacking and average-
pooling of the resulting node representations along the time axis. We then con-
catenate this tensor with spatially replicated copies of sa and so to result in a

tensor of size (dim(sa) + dim(so) +N (t))×w(t)
0 × h

(t)
0 . As before, we then apply

convolutions and sigmoid to obtain the final output which denotes the probabil-
ity of the scene graph belonging to a real video. The objective function of the
network Dr is given by

Lr =
1

2
[ log(Dr(Sreal; sa, so)) + log(1−Dr(Sgen; sa, so))]. (5)

Generator. Given the semantic embeddings sa, so of action and object labels
respectively, and context vector sI, the generator network G learns to gener-
ate video Vgen consisting of T frames (RGB) of height H and width W . We
concatenate noise z with the conditions, namely, sa, so, and sI. We provide
this concatenated vector as the input to the network G. The network comprises
stacked deconv3d layers, i.e., 3D transposed convolution layers each followed by
Batch Normalization [28] and leaky ReLU layers [45] with a = 0.2 except the
last convolutional layer which is followed by a Batch Normalization layer [28]
and a tanh activation layer. The network is optimized according to the following



Generating Videos of Zero-Shot Compositions of Actions and Objects 9

objective function:

Lgan =
1

T

T∑
i=1

[log(1−D
(i)
f (Vgen; sa, so))]+

1

(T − 1)

T−1∑
i=1

[log(1−D(i)
g (∇t Vgen; sa, so))]+

log(1−Dv(Vgen; sa, so)) + log(1−Dr(Sgen; sa, so)).

(6)

4 Experiments

We conduct quantitative and qualitative analysis to demonstrate the effective-
ness of the proposed framework HOI-GAN for the task of zero-shot generation
of human-object interaction (HOI) videos.

4.1 Datasets and Data Splits

We use two datasets for our experiments: EPIC-Kitchens [9] and 20BN-Something-
Something V2 [20]. Both of these datasets comprise a diverse set of HOI videos
ranging from simple translational motion of objects (e.g. push, move) and rota-
tion (e.g. open) to transformations in state of objects (e.g. cut, fold). Therefore,
these datasets, with their wide ranging variety and complexity, provide a chal-
lenging setup for evaluating HOI video generation models.

EPIC-Kitchens [9] contains egocentric videos of activities in several kitchens.
A video clip V is annotated with action label a and object label o (e.g. open
microwave, cut apple, move pan) along with a set of bounding boxes B (one per
frame) for objects that the human interacts with while performing the action.
There are around 40k instances in the form of (V, a, o,B) across 352 objects and
125 actions. We refer to this dataset as EPIC hereafter.

20BN-Something-Something V2 [20] contains videos of daily activities
performed by humans. A video clip V is annotated with a label l, an action tem-
plate and object(s) on which the action is applied (e.g. ‘hitting ball with racket’
has action template ‘hitting something with something’). There are 220,847
training instances of the form (V, l) spanning 30,408 objects and 174 action
templates. To transform l to action-object label pair (a, o), we use NLTK POS-
tagger. We consider the verb tag (after stemming) in l as action label a. We
observe that all instances of l begin with the present continuous form of a which
is acting upon the subsequent noun. Therefore, we use the noun that appears
immediately after the verb as object o. Hereafter, we refer to the transformed
dataset in the form of (V, a, o) as SS.
Splitting by Compositions. We believe it is reasonable to only generate com-
binations that are semantically feasible, and do so by only using action-object
pairs seen in the original datasets. We use a subset of action-object pairs as
testing pairs – these pairs are not seen during training but are present in the
original dataset, hence are semantically feasible. To make the dataset training /
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Table 1. Generation Scenarios. Description of the conditional inputs for the two
generation scenarios GS1 & GS2 used for evaluation. 3 denotes ‘Yes’, 7 denotes ‘No’.

Target Conditions GS1 GS2

Target action a seen during training 3 3

Target object o seen during training 3 3

Background of target context I seen during training 7 3

Object mask in target context I corresponds to target object o 3 7

Target action a seen with target context I during training 7 3/ 7

Target object o seen with target context I during training 7 7

Target action-object composition (a-o) seen during training 7 7

testing splits suitable for our zero-shot compositional setting, we first merge the
data samples present in the default train and validation sets of the dataset. We
then split the combined dataset into training set and test set based on the con-
dition that all the unique object and action labels in appear in the training set,
however, any composition of action and object present in the test set is absent
in training set and vice versa. We provide further details of the splits for both
datasets EPIC and SS in the supplementary.
Generation Scenarios. Recall that the generator network in the HOI-GAN
framework (Fig. 2) has 3 conditional inputs, namely, action embedding, object
embedding, and context frame I. The context frame serves as the background
in the scene. Thus, to provide this context frame during training, we apply a
binary mask M (1) corresponding to the first frame V (1) of a real video as I =
(1−M (1))�V (1), where 1 represents a matrix of size M (1) containing all ones and
� denotes elementwise multiplication. This mask M (1) contains ones in regions
(either rectangular bounding boxes or segmentation masks) corresponding to the
objects (non-person classes) detected using MaskRCNN [26] and zeros for other
regions. Intuitively, this helps ensure the generator learns to map the action and
object embeddings to relevant visual content in the HOI video.

During testing, to evaluate the generator’s capability to synthesize the right
human-object interactions, we provide a background frame as described above.
This background frame can be selected from either the test set or training set,
and can be suitable or unsuitable for the target action-object composition. To
capture these possibilities, we design two different generation scenarios. Specifi-
cally, in Generation Scenario 1 (GS1), the input context frame I is the masked
first frame of a video from the test set corresponding to the target action-object
composition (unseen during training). In Generation Scenario 2 (GS2), I is the
masked first frame of a video from the training set which depicts an object other
than the target object. The original action in this video could be same or different
than the target action. See Table 1 for the contrast between the scenarios.

As such, in GS1, the generator receives a context that it has not seen during
training but the context (including object mask) is consistent with the target
action-object composition it is being asked to generate. In contrast, in GS2,
the generator receives a context frame that it has seen during training but is
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Scenario (a, o) Context Generated Output

GS1

take
spoon
(EPIC)

GS1

hold
cup
(SS)

GS2

move
broccoli
(EPIC)

GS2

put
apple
(SS)

Fig. 4. Qualitative Results: Videos generated using our best version of HOI-GAN
using embeddings for action (a)-object (o) composition and the context frame. We show
5 frames of the video clip generated for both generation scenarios GS1 and GS2. The
context frame in GS1 is obtained from a video in the test set depicting an action-object
composition same as the target one. The context frame for GS2 scenarios shown here
are from videos depicting “take carrot” (for row 3) and “put bowl” (for row 4). Refer
to supplementary section for additional videos generated using HOI-GAN.

not consistent with the action-object composition it is being asked to generate.
Particularly, the object mask in the context does not correspond to the target
object. Although the background is seen, the model has to evolve the background
in ways different from training samples to make it suitable for the target compo-
sition. Thus, these generation scenarios help illustrate that the generator indeed
generalizes over compositions.

4.2 Evaluation Setup

Evaluation of image/video quality is inherently challenging, thus, we use both
quantitative and qualitative metrics.
Quantitative Metrics. Inception Score (I-score) [58] is a widely used met-
ric for evaluating image generation models. For images x with labels y, I-score
is defined as exp(KL(ρ(y|x)||ρ(y))) where ρ(y|x) is the conditional label distri-
bution of an ImageNet [56] -pretrained Inception model [63]. We adopted this
metric for video quality evaluation. We fine-tune a Kinetics [6]-pretrained video
classifier ResNeXt-101 [73] for each of our source datasets and use it for calcu-
lating I-score (higher is better). It is based on one of the state-of-the-art video
classification architectures. We used the same evaluation setup for the baselines
and our model to ensure a fair comparison.

In addition, we believe that measuring realism explicitly is more relevant
for our task as the generation process can be conditioned on any context frame
arbitrarily to obtain diverse samples. Therefore, in addition to I-score, we also
analyze the first and second terms of the KL divergence separately. We refer
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to these terms as: (1) Saliency score or S-score (lower is better) to specifically
measure realism, and (2) Diversity score or D-score (higher is better) to indicate
the diversity in generated samples. A smaller value of S-score implies that the
generated videos are more realistic as the classifier is very confident in classifying
the generated videos. Specifically, the saliency score will have a low value (low is
good) only when the classifier is confidently able to classify the generated videos
into action-object categories matching the conditional input composition (action-
object), thus indicating realistic instances of the required target interaction. In
fact, even if a model generates realistic-looking videos but depicts an action-
object composition not corresponding to the conditional action-object input,
the saliency score will have high values. Finally, a larger value of D-score implies
the model generates diverse samples.
Human Preference Score. We conduct a user study for evaluating the quality
of generated videos. In each test, we present the participants with two videos gen-
erated by two different algorithms and ask which among the two better depicts
the given activity, i.e., action-object composition (e.g. lift fork). We evaluate
the performance of an algorithm as the overall percentage of tests in which that
algorithm’s outputs are preferred. This is an aggregate measure over all the test
instances across all participants.
Baselines. We compare HOI-GAN with three state-of-the-art video generation
approaches: (1) VGAN [66], (2) TGAN, [57] and (3) MoCoGAN [64]. We develop
the conditional variants of VGAN and TGAN from the descriptions provided in
their papers. We refer to the conditional variants as C-VGAN and C-TGAN
respectively. We observed that these two models saturated easily in the initial
iterations, thus, we added dropout in the last layer of the discriminator network
in both models. MoCoGAN focuses on disentangling motion and content in the
latent space and is the closest baseline. We use the code provided by the authors.

4.3 Results

Next, we discuss the results of our qualitative and quantitative evaluation.
Comparison with Baselines. As shown in Table 2, HOI-GAN with differ-
ent conditional inputs outperforms C-VGAN and C-TGAN by a wide margin
in both generation scenarios. In addition, our overall model shows considerable
improvement over MoCoGAN, while MoCoGAN has comparable scores to some
ablated versions of our models (where gradient discriminator and/or relational
discriminator is missing). Furthermore, we varied the richness of the masks in
the conditional input context frame ranging from bounding boxes to segmen-
tation masks obtained corresponding to non-person classes using MaskRCNN
framework [26]. We observe that providing masks during training leads
to slight improvements in both scenarios as compared to using bounding boxes
(refer to Table 2). We also show the samples generated using the best version
of HOI-GAN for the two generation scenarios (Figure 4). See supplementary for
more generated samples and detailed qualitative analysis.
Ablation Study. To illustrate the impact of each discriminator in generating
HOI videos, we conduct ablation experiments (refer to Table 3). We observe



Generating Videos of Zero-Shot Compositions of Actions and Objects 13

Table 2. Quantitative Evaluation. Comparison of HOI-GAN with C-VGAN, C-
TGAN, and MoCoGAN baselines. We distinguish training of HOI-GAN with bounding
boxes (bboxes) and segmentation masks (masks). Arrows indicate whether lower (↓) or
higher (↑) is better. [I: inception score; S: saliency score; D: diversity score]

Model
EPIC SS

GS1 GS2 GS1 GS2

I↑ S↓ D↑ I↑ S↓ D↑ I↑ S↓ D↑ I↑ S↓ D↑

C-VGAN [66] 1.8 30.9 0.2 1.4 44.9 0.3 2.1 25.4 0.4 1.8 40.5 0.3
C-TGAN [57] 2.0 30.4 0.6 1.5 35.9 0.4 2.2 28.9 0.6 1.6 39.7 0.5
MoCoGAN [64] 2.4 30.7 0.5 2.2 31.4 1.2 2.8 17.5 1.0 2.4 33.7 1.4

(o
u
rs

) HOI-GAN (bboxes) 6.0 14.0 3.4 5.7 20.8 4.0 6.6 12.7 3.5 6.0 15.2 2.9
HOI-GAN (masks) 6.2 13.2 3.7 5.2 18.3 3.5 8.6 11.4 4.4 7.1 14.7 4.0

Table 3. Ablation Study. We evaluate the contributions of our pixel-centric losses
(F,G,V) and relational losses (first block vs. second block) by conducting ablation study
on HOI-GAN (masks). The last row corresponds to the overall proposed model.[F:
frame discriminator Df ; G: gradient discriminator Dg; V: video discriminator Dv; R:
relational discriminator Dr]

Model
EPIC SS

GS1 GS2 GS1 GS2

I↑ S↓ D↑ I↑ S↓ D↑ I↑ S↓ D↑ I↑ S↓ D↑

−
R

HOI-GAN (F) 1.4 44.2 0.2 1.1 47.2 0.3 1.8 34.7 0.4 1.5 39.5 0.3
HOI-GAN (F+G) 2.3 25.6 0.7 1.9 30.7 0.5 3.0 24.5 0.9 2.7 28.8 0.7
HOI-GAN (F+G+V) 2.8 21.2 1.3 2.6 29.7 1.7 3.3 18.6 1.2 3.0 20.7 1.0

+
R

HOI-GAN (F) 2.4 24.9 0.8 2.2 26.0 0.7 3.1 20.3 1.0 2.9 27.7 0.9
HOI-GAN (F+G) 5.9 15.4 3.5 4.8 21.3 3.3 7.4 12.1 3.5 5.4 19.2 3.4
HOI-GAN (F+G+V) 6.2 13.2 3.7 5.2 18.3 3.5 8.6 11.4 4.4 7.1 14.7 4.0

that the addition of temporal information using the gradient discriminator and
spatio-temporal information using the video discriminator lead to improvement
in generation quality. In particular, the addition of our scene graph based re-
lational discriminator leads to considerable improvement in generation quality
resulting in more realistic videos (refer to second block in Table 3). Additional
quantitative studies and results are in the supplementary.

Human Evaluation. We recruited 15 sequestered participants for our user
study. We randomly chose 50 unique categories and chose generated videos for
half of them from generation scenario GS1 and the other half from GS2. For
each category, we provided three instances, each containing a pair of videos;
one generated using a baseline model and the other using HOI-GAN. For each
instance, at least 3 participants (ensuring inter-rater reliability) are asked to
choose the video that best depicts the given category. The (aggregate) human
preference scores for our model versus the baselines range between 69-84% for
both generation scenarios (refer Table 4). These results indicate that HOI-GAN
generates more realistic videos than the baselines.
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Table 4. Human Evaluation. Human Preference Score (%) for scenarios GS1 and
GS2. All the results have p-value less than 0.05 implying statistical significance.

Ours / Baseline GS1 GS2

HOI-GAN / MoCoGAN 71.7/28.3 69.2/30.8
HOI-GAN / C-TGAN 75.4/34.9 79.3/30.7
HOI-GAN / C-VGAN 83.6/16.4 80.4/19.6

(a, o) Context Generated Output
open
micro-
wave

cut
peach

Fig. 5. Failure Cases. Videos generated using HOI-GAN corresponding to the given
action-object composition (a, o) and the context frame. We show 4 frames of the videos.

Failure Cases. We discuss the limitations of our framework using qualitative
examples shown in Figure 5. For “open microwave”, we observe that although
HOI-GAN is able to generate conventional colors for a microwave, it shows lim-
ited capability to hallucinate such large objects. For “cut peach” (Figure 5), the
generated sample shows that our model can learn the increase in count of par-
tial objects corresponding to the action cut and yellow-green color of a peach.
However, as the model has not observed the interior of a peach during training
(as cut peach was not in training set), it is unable to create realistic transforma-
tions in the state of peach that show the interior clearly. We provide additional
discussion on the failure cases in the supplementary.

5 Conclusion

In this paper, we introduced the task of zero-shot HOI video generation, i.e., gen-
erating human-object interaction (HOI) videos corresponding to unseen action-
object compositions, having seen the target action and target object indepen-
dently. Towards this goal, we proposed the HOI-GAN framework that uses a
novel multi-adversarial learning scheme and demonstrated its effectiveness on
challenging HOI datasets. We show that an object-level relational discriminator
is an effective means for GAN-based generation of interaction videos. Future
work can benefit from our idea of using relational adversaries to synthesize more
realistic videos. We believe relational adversaries to be relevant beyond video
generation in tasks such as layout-to-image translation.
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our user study.
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