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Abstract

The problem we consider in this paper is to take a single timtedsional image containing a
human figure, locate the joint positions, and use these tmatst the body configuration and pose in
three-dimensional space. The basic approach is to storendaruof exemplar 2d views of the human
body in a variety of different configurations and viewpoimigh respect to the camera. On each of
these stored views, the locations of the body joints (léfbei right knee, etc.) are manually marked
and labelled for future use. The input image is then matcbeghth stored view, using the technique
of shape context matching in conjunction with a kinematiaintbased deformation model. Assuming
that there is a stored view sulfficiently similar in configizatand pose, the correspondence process will
succeed. The locations of the body joints are then trarestdrom the exemplar view to the test shape.
Given the 2d joint locations, the 3d body configuration andepare then estimated using an existing
algorithm. We can apply this technique to video by treatiagheframe independently — tracking just

becomes repeated recognition. We present results on ayvafidatasets.

Index Terms
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Recovering 3d Human Body Configurations

Using Shape Contexts

I. INTRODUCTION

As indicated in Figure 1, the problem we consider in this papeto take a single two-
dimensional image containing a human figure, locate thé pmsitions, and use these to estimate
the body configuration and pose in three-dimensional spé&ents include the case of multiple
cameras viewing the same human, tracking the body configarahd pose over time from video
input, or analogous problems for other articulated objscish as hands, animals or robots. A
robust, accurate solution would facilitate many differpractical applications—e.g. see Table 1 in
Gavrila’s survey paper [1]. From the perspective of compuigion theory, this problem offers
an opportunity to explore a number of different tradeoffde tole of low level vs. high level
cues, static vs. dynamic information, 2d vs. 3d analysis, iet a concrete setting where it is
relatively easy to quantify success or failure.

In this paper we consider the most basic version of the prebéstimating the 3d body
configuration based on a single uncalibrated 2d image. Theaph we use is to store a number
of exemplar 2d views of the human body in a variety of différeonfigurations and viewpoints
with respect to the camera. On each of these stored view$p¢hdons of the body joints (left
elbow, right knee, etc.) are manually marked and labelleduture use. The test image is then
matched to each stored view, using the shape context mgttbamnique of Belongie, Malik
and Puzicha [2]. This technique is based on representingeshy a set of sample points from
the external and internal contours of an object, found usingedge detector. Assuming that
there is a stored view sufficiently similar in configuratiomdgpose, the correspondence process
will succeed. The locations of the body joints are then tiemned from the exemplar view to
the test shape. Given the 2d joint locations, the 3d body gordtion and pose are estimated
using the algorithm of Taylor [3].

The main contribution of this work is demonstrating the usdaeformable template matching
to exemplars as a means to localize human body joint positidaving the context of the whole

body, from exemplar templates, provides a wealth of infdaromafor matching. The major issue
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that must be addressed with this approach is dealing withatige number of exemplars needed
to match people in a wide range of poses, viewed from a vaoetamera positions, and wearing
different clothing. In our work we represent exemplars aslkection of edges extracted using an
edge detector, and match based on shape in order to redueHatis of variation in appearance
due to clothing. Pose variation presents an immense clgallén this work we do not attempt to
estimate joint locations for people in arbitrary posestaad restricting ourselves to settings in
which the set of poses is limited (e.g. walking people, orespgkaters). Even in such settings,
the number of exemplars needed can be very large. In this werkalso provide a method
for efficiently retrieving from a large set of exemplars teaghich are most similar to a query
image, in order to reduce the computational expense of nmagch
The structure of this paper is as follows. We review previeosk in Section Il. In Section 11l

we describe the correspondence process mentioned aboygvé\tn efficient method for scaling
to large sets of exemplars in Section IV. Section V providetsids on a parts-based extension
to our keypoint estimation method. We describe the 3d estimalgorithm in Section VI. We

show experimental results in Section VII. Finally, we cam# in Section VIII.

II. PREVIOUS WORK

There has been considerable previous work on this problénBfbadly speaking, it can be
categorized into two major classes. The first set of appemaoke a 3d model for estimating the
positions of articulated objects. Pioneering work was don®’Rourke and Badler [4], Hogg [5]
and Yamamoto and Koshikawa [6]. Rehg and Kanade [7] track kigth DOF articulated objects
such as hands. Bregler and Malik [8] use optical flow measengsnfrom a video sequence to
track joint angles of a 3d model of a human, using the prodéexponentials representation
for the kinematic chain. Kakadiaris and Metaxas [9] use ipléitcameras and match occluding
contours with projections from a deformable 3d model. Gavand Davis [10] is another 3d
model based tracking approach, as is the work of Rohr [11frExking walking pedestrians.
Sidenbladh and Black [12] presented a learning approacteeeloping the edge cues typically
used when matching the 3d models projected into the imageeplEhe method first learns the
appearance of edge cues on human figures from a collectiomiofny images, and then uses
these learned statistics to track people in video sequertesmpts have also been made at

addressing the high dimensional, multi-modal nature ofssach space for a 3d human body
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Fig. 1. The goal of this work. (a) Input image. (b) Automalligaextracted keypoints. (c) 3d rendering of estimated body

configuration. In this paper we present a method to go fromiddb) to (c).

model. Deutscher et al. [13] have tracked people performaried and atypical actions using
improvements on a particle filter. Choo and Fleet [14] use arldyMonte Carlo (HMC) filter,
which at each time step runs a collection of Markov Chain MoGarlo (MCMC) simulations
initialized using a particle filtering approach. Sminclkise and Triggs [15] use a modified
MCMC algorithm to explore the multiple local minima inheten fitting a 3d model to given
2d image positions of joints. Lee and Cohen [16] presenteprassive results on automatic
pose estimation from a single image. Their method ysegdosal maps, based on face and skin
detection, to guide a MCMC sampler to promising regions efithage when fitting a 3d body
model.

The second broad class of approaches does not explicitlik wih a 3d model, rather 2d
models trained directly from example images are used. Thezeseveral variations on this
theme. Baumberg and Hogg [17] use active shape models to pedestrians. Wren et al. [18]
track people as a set of colored blobs. Morris and Rehg [18¢riiee a 2d scaled prismatic
model for human body registration. loffe and Forsyth [20}fpen low-level processing to
obtain candidate body parts and then use a mixture of tredsféo likely configurations.
Ramanan and Forsyth [21] use similar low-level procesdg,add a constraint of temporal
appearance consistency to track people and animals in \@elgoences. Song et al. [22] also
perform inference on a tree model, using extracted poirttifea along with motion information.
Brand [23] learns a probability distribution over pose amtbeity configurations of the moving
body and uses it to infer paths in this space. Toyama and BReuse 2d exemplars, scored
by comparing edges with Chamfer matching, to track peopkideo sequences. Most related

to our method is the work of Sullivan and Carlsson [25], whe asler structure to compare
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exemplar shapes with test images. This approach was dexkkipthe same time as our initial
work using exemplars [26].

Other approaches rely on background subtraction to ex#rathouette of the human figure.
A mapping from silhouettes to 3d body poses is learned fraamitig images, and applied
to the extracted silhouettes to recover pose. Rosales dath$d27] describe the Specialized
Mappings Architecture (SMA), which incorporates the irseeBd pose to silhouette mapping for
performing inference. Grauman et al. [28] learn silhouettetour models from multiple cameras
using a large training set obtained by rendering synthatibdn models in a variety of poses.
Haritaoglu et al. [29] first estimate approximate posturghaf human figure by matching to a
set of prototypes. Joint positions are then localized byirigpéextrema and curvature maxima
on the silhouette boundary.

Our method first localizes joint positions in 2d and therslifiem to 3d using the geometric
method of Taylor [3]. There are a variety of alternative agmhes to this lifting problem. Lee
and Chen [30], [31] preserve the ambiguity regarding fooetiming (closer endpoint of each
link) in an interpretation tree, and use various constsatot prune impossible configurations.
Attwood et al. [32] use a similar formulation, and evaluate ikelihood of interpretations
based on joint angle probabilities for known posture typ&asbrosio et al. [33] describe a
photogrammetric approach that enforces temporal smossghtzeresolve the ambiguity due to
foreshortening. Barron and Kakadiaris [34] simultandépestimate 3d pose and anthropometry

(body parameters) from 2d joint positions in a constrainptintization method.

[1l. ESTIMATION METHOD

In this section we provide the details of the configuratiotineastion method proposed above.
We first obtain a set of boundary sample points from the imbgat, we estimate the 2d image
positions of 14keypoints (wrists, elbows, shoulders, hips, knees, ankles, head amt)von the
image by deformable matching to a set of stored exemplatshiénge hand-labelled keypoint
locations. These estimated keypoints can then be used &iragohan estimate of the 3d body

configuration in the test image.
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A. Deformable Matching using Shape Contexts

Given an exemplar (with labelled keypoints) and a test imagecast the problem of keypoint
estimation in the test image as one of deformable matchirggaifémpt to deform the exemplar
(along with its keypoints) into the shape of the test imagmng with the deformation, we
compute a matching score to measure similarity between éfierrded exemplar and the test
image.

In our approach, a shape is represented by a discrete sgg@htsP = {p;,...,p,}, p; € R?
sampled from the internal and external contours on the shape

We first perform edge detection on the image, using the bayrdidector of Martin et al. [35],
to obtain a set of edge pixels on the contours of the body. Wa #ample some number of
points (300-1000 in our experiments) from these edge pixelsse as the sample points for the
body. Note that this process will give us not only externalt, dso internal contours of the body
shape. The internal contours are essential for estimatnfjgurations of self-occluding bodies.

The deformable matching process consists of three stepsnGample points on the exemplar
and test image:

1) Obtain correspondences between exemplar and test inaagges points

2) Estimate deformation of exemplar

3) Apply deformation to exemplar sample points
We perform a small number (maximum of 4 in experiments) ofatiens of this process to
match an exemplar to a test image. Figure 2 illustrates tlusgss.

1) Sample Point Correspondences: In the correspondence phase, for each ppirin a given
shape, we want to find the “best” matching pajnton another shape. This is a correspondence
problem similar to that in stereopsis. Experience thereggesig that matching is easier if one
uses a rich local descriptor. Rich descriptors reduce thieiguity in matching.

The shape context was introduced by Belongie et al. [2] to play such a role inpghanatching.
In later work [36], we extended the shape context descripiorencoding more descriptive
information than point counts in the histogram bins. To eadge pointg; we attach a unit
length tangent vectat; that is the direction of the edge af. In each bin we sum the tangent
vectors for all points falling in the bin. The descriptor fmpointp; is the histogrant;:

ht =" t;, whereQ = {q; # pi, (¢; — p:) € bin(k)} (1)

;i €Q
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Fig. 2. lterations of deformable matching. Column (a) sheample points from the two figures to be matched. The bottom
figure (exemplar) in (a) is deformed into the shape of the tgpré (test image). Columns (b,c) show successive iteratidn

deformable matching. The top row shows the correspondeoisisned through the shape context matching. The bottom row
shows the deformed exemplar figure at each step. In pantjdhia right arm and left leg of the exemplar are deformed into

alignment with the test image.

Each histogram binﬁﬁC now holds a single vector in the direction of the dominanéwtation
of edges falling in the spatial area bin. When comparing the descriptors for two points, we
convert thisd-bin histogram to 2d-dimensional vectot;, normalize these vectors, and compare

them using thel.? norm.
by = (R0 BV 32 32V e oy @

where " and h?¥ are thez andy components ofi/ respectively.

We call these extended descriptgeneralized shape contexts. Examples of these generalized
shape contexts are shown in Figure 3. Note that generalizgubscontexts reduce to the original
shape contexts if all tangent angles are clamped to zero.nAbkd original shape contexts,
these descriptors are not scale invariant. In the absensabstantial background clutter, scale
invariance can be achieved by setting the bin radii as aifumctf average inter-point distances.
Some amount of rotational invariance is obtained via thenibip structure, as after a small
rotation sample points will still fall in the same bins. Fuditational invariance can be obtained
by fixing the orientation of the histograms with respect tooaal edge tangent estimate. In

this work we do not use these strategies for full scale andtiostal invariance. This has the
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Fig. 3. Examples of generalized shape contexts. (a) Inpagén(b) Sampled edge point with tangents. (c) and (d) GEredla

shape contexts for different points on the shape.

drawback of possibly requiring more exemplars. Howevegrdhare definite advantages. For
example, people tend to appear in upright poses. By not bavidescriptor with full rotational
invariance, we are very unlikely to confuse sample pointshenfeet with those on the head.

We desire a correspondence between sample points on the hayes that enforces the
uniqueness of matches. This leads us to formulate our nmataifia test image to an exemplar
human figure as an assignment problem (also known as the t@diglpartite matching problem)
[37]. We find an optimal assignment between sample pointshertdst body and those on the
exemplar.

To this end we construct a bipartite graph. The nodes on aie reipresent sample points
from the test image, on the other side the sample points oexémplar. Edge weights between
nodes in this bipartite graph represent the costs of magcdample points. Similar sample points
will have a low matching cost, dissimilar ones will have ahigatching coste-cost outlier
nodes are added to the graph to account for occluded poidta@ise - sample points missing
from a shape can be assigned to be outliers for some smallWestise an assignment problem
solver to find the optimal matching between the sample pahtbe two bodies.

Note that the output of more specific filters, such as face adldetectors, could easily be
incorporated into this framework. The matching cost betwssmple points can be measured in
many ways.

2) Deformation Model: Belongie et al. [2] used thin plate splines as a deformati@ueh
However, it is not appropriate here, as human figures deforanmore structured manner. We use

a 2d kinematic chain as our deformation model. The 2d kiniengaiain has 9 segments: a torso
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Fig. 4. The deformation model. (a) Underlying kinematic iohgb) Automatic assignment of sample points to kinematic
chain segments on an exemplar. Each different symbol derotkfferent chain segment. (¢) Sample points deformedjusia

kinematic chain.

(containing head, waist, hips, shoulders), upper and lavers (linking elbows to shoulders,
and wrists to elbows), and upper and lower legs (linking kneehips, and ankles to knees).
Figure 4(a) depicts the kinematic chain deformation mo@rir deformation model allows
translation of the torso, and 2d rotation of the limbs arotimel shoulders, elbows, hips and
knees. This is a simple representation for deformations &6§ue in 2d. It only allows in-
plane rotations, ignoring the effects of perspective miijen as well as out of plane rotations.
However, this deformation model is sufficient to allow forahdeformations of an exemplar.

In order to estimate a deformation or deform a body’s samgietp, we must know to which
kinematic chain segment each sample point belongs. On the@ars we have hand-labelled
keypoints; we use these to automatically assign the husdoédsample points to segments.
Sample points are assigned to segments by finding minimutandis to bone-line, the line
segment connecting the keypoints at the segment ends,foaad leg segments. For the torso,
line segments connecting the shoulders and hips are usedmfils point is assigned to the
segment for which this distance is smallest.

Since we know the segmertt(p;) that each exemplar sample poipt belongs to, given
correspondencelp;, p;’)} we can estimate a deformatidnof the points{p;}. Our deformation

process starts at the torso. We find the least squares bastatian for the sample points on
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the torso.

D, = T = argminy Z 1T (ps) — pi'lI? (3)

pi,S(ps)=torso

T = % Z (pi" — pi), where N = #{p; : S(p;) = torso} (4)

pi:S(pi)=torso
Subsequent segments along the kinematic chain have rhjoonts. We again obtain the least

squares best estimates, this time for the rotations of fuéises. Given previous deformatioP

along the chain up to this segment, we estim@teas the best rotation around the joint location

Cj-
Py = {pi: S(pi) = j} )
Dj = Ré,Cj - argminRe’cj Z HRG,c](ﬁ pl) _pi,H2 (6)
Pi€EP;
§ = argmin, Z (D pi — ¢;)" R (¢ — 1f) ()
piEPj

A > Gialy = D Gy
# = arctan - —
Zi Qizlsy + Ez Qiyqiy
where ¢; = D -pi —¢; and q =p.— cj (9)

(8)

Steps 2 and 3 in our deformable matching framework are pwddrin this manner. We
estimate deformations for each segment of our kinematilmmcmedel, and apply them to the
sample points belonging to each segment.

We have now provided a method for estimating a set of keypaising a single exemplar,
along with an associated score (the sum of shape contexhimgtcosts for the optimal assign-
ment). The simplest method for choosing the best keypoinfigoration in a test image is to
find the exemplar with the best score, and use the keypoietdigied using its deformation as
the estimated configuration. However, with this simple rodtthere are concerns involving the
number of exemplars needed for a general matching frameviorthe following sections we
will address this by first describing an efficient method foalsg to large sets of exemplars, and

then developing a parts-based method for combining majat@sults from multiple exemplars.

IV. SCALING TO LARGE SETS OFEXEMPLARS

The deformable matching process described above is cotignaby expensive. If we have

a large set of exemplars, which will be necessary in order &cimpeople of different body
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shapes in varying poses, performing an exhaustive conguatisevery exemplar is not feasible.
Instead, we use an efficient pruning algorithm to reduce tilesét of exemplars to a shortlist
of promising candidates. Only this small set of candidatdsbe compared to the test image
using the expensive deformable matching process.

In particular, we use theepresentative shape contexts pruning algorithm [38] to construct
this shortlist of candidate exemplars. This method relieshe descriptive power of just a few
shape contexts. Given a pair of images of very different hurfigures, such as a tall person
walking and a short person jogging, none of the shape canfextn the walking person will
have good matches on the jogging one — it is immediately alsvibat they are different shapes.
The representative shape contexts pruning algorithm isesntuition to efficiently construct a
shortlist of candidate matches.

In concrete terms, the pruning process proceeds in thewfoltp manner. For each of the
exemplar human figure shapgs we precompute a large numbefabout 800) of shape contexts
{SC? : j =1,2,...,s}. But for the query human figure shapg, we only compute a small
numberr (r ~ 5—10 in experiments) of representative shape contexts (RSGs)oimpute these
r RSCs we randomly seleetsample points from the shape via a rejection sampling mettinatd
spreads the points over the entire shape. We use all the sgropits on the shape to fill the
histogram bins for the shape contexts corresponding teeth@ints. To compute the distance
between a query shape and an exemplar shape, we find the hebemtor each of the RSCs.

The distance between shapgsand.S; is then:
1 — dGsc(SCff,SC?(u))

ds(Sy, 9) = ; N (10)
wherem(u) = arg min;dgsc(SCY, SCY) (11)

N, is a normalizing factor that measures how discriminative tbpresentative shape context
SCY is:
1
N,=— S dgsc(SCt, SC™ 12
|S| Z GSC( q i ) ( )

S;eS
where$ is the set of all shapes. We determine the shortlist by gpthiese distances. Figure 1V

shows some example shortlists. Note that this pruning ndetas presented, assumes that the
human figure is the only object in the query image, as will be ¢hse in our experiments.
However, it is possible to run this pruning method in cligtermages [38].
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Fig. 5. Example shortlists. Column (a) shows query imag&jmos (b-k) columns show shortlist of candidate matchemfro

representative shape context pruning. Exemplars in posgkusto the human figure in the query image are retrieved.

V. USING PART EXEMPLARS

Given a set of exemplars, we can choose to match either emtgmplars or parts, such
as limbs, to a test image. The advantage of a parts-basedamppthat matches limbs is that
of compositionality, which saves us from an exponentiallesipn in the required number of
exemplars. Consider the case of a person walking while hgldi briefcase in one hand. If we
already have exemplars for a walking motion, and a singlengkar for holding an object in
the hand, we can combine these exemplars to produce coregchimg results. However, if we
were forced to use entire exemplars, we would require ardifte*holding object and walking”
exemplar for each portion of the walk cycle. Using part exmgpprevents the total number of
exemplars from growing to an unwieldy size. As long as we casuee that the composition

of part exemplars yields an anatomically correct configanatve will benefit from this reduced
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number of exemplars.

The matching process is identical to that presented in thegoling section. For each exemplar,
we deform it to the shape of the test image. However, instéa$signing a total score for an
exemplar, we give a separate score for each part on the eaerfpis is done by summing the
shape context matching costs for sample points from eadh Ipaour experiments (Figure 8)
we use 6 “limbs” as our parts: arms (consisting of shouldéowe and wrist keypoints) and
legs (hip, knee, and ankle), along with separate head anst paits.

With N exemplars we havéV estimates for the location of each of the 6 limbs. Each of
theseN estimates is obtained using the deformable matching psatdescribed in the previous
section. We will denote by’ the j* limb obtained by matching to thé" exemplar, and its
shape context matching score (obtained from the deformmiblehing process) to bg’. We
now combine these individual matching results to find thestbeombination of these estimates.
It is not sufficient to simply choose each limb independeasithe one with the best score. There
would be nothing to prevent us from violating underlying tmaical constraints. For example,
the left leg could be found hovering across the image disjsom the rest of the body. We
need to enforce theonsistency of the final configuration.

Consider again the case of using part exemplars to matchgive fof a person walking while
holding a briefcase. Given a match for the arm grasping thefdarse, and matches for the rest
of the body, we know that there are constraints on the distdoetween the shoulder of the
grasping arm and the rest of the body. Motivated by this, tle@suare of consistency we use
is the 2d image distance between the bases (shoulder foritie &ip for the legs) of limbs.
We form a tree structure by connecting the arms and the waistet head, and the legs to the
waist. For each link in this tree, we compute thé 2d image distances between all pairs of
bases of limbs obtained by matching with thedifferent exemplars. We now make use of the
fact that each whole exemplar on its own is consistent. @ensa pair of limbs(l}, I) — limb
u from exemplari and limbv from exemplarj, with (u,v) being a link in the tree, such as
left hip - waist. Using the limbs from these two different exglars together is plausible if the
distances between their bases is comparable to that of éalelb whole exemplars. We compare
the distancel;; between the baseg andb; of these limbs with the two distances obtained
when taking limbs: andv to be both from exemplaror both from exemplay. We define the

consistency cost’;?” of using this pair of limbg{}*,/7) together in matching a test image to be
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a function of the average of the two differences, scaled bgrarpetero:

dy = by =] (13)
di — | + | —d;»;-w)

55 (14)

Note that the consistency coSt:” for using limbs from the same exemplar across a tree link

¢ = l—exp (—

is zero. As the configuration begins to deviate from the ctest exemplars}’;;” increases. We
define the total cosf(x) of a configurationr = (2!, 22, ..., 2°%) € {1,2,..., N}% as the weighted

sum of consistency scores and shape context limb sd@ges

6
Sr)=(1—w)) L +w. > CZ, (15)
j=1

links:(i,5)
The relative importance between quality of individual &soand consistency costs is determined
by w.. Both w. and o (defined above) were determined manually. Note that whemgugsart
exemplars, shape contexts are still computed using sanopiésgdrom whole exemplars. In our
experiments we did not find the use of shape context limb sciwoen whole exemplars to be
problematic, possibly due to the coarse binning structdird@® shape contexts.

There areN® possible combinations of limbs from th€ exemplars. However, we can find
the optimal configuration i®(N?) time using a dynamic programming algorithm along the tree
structure.

Moreover, an extension to our algorithm can produce the Aopnatches for a given test
image. Preserving the ambiguity in this form, instead of imglan instant choice, is particularly
advantageous for tracking applications, where tempornasistency can be used as an additional

filter.

VI. ESTIMATING 3D CONFIGURATION

We use Taylor's method [3] to estimate the 3d configuratiora dfody given the keypoint
position estimates. Taylor's method works on a single 2dgenaaken with an uncalibrated
camera.

It assumes that we know:

1) the image coordinates of keypoir(ts, v)

2) the relative lengths of body segments connecting these keypoints

3) a labelling of “closer endpoint” for each of these bodymegts
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4) that we are using a scaled orthographic projection mautelhie camera

In our work, the image coordinates of keypoints are obtawiedthe deformable matching
process. The “closer endpoint” labels are supplied on teeng¥ars, and automatically transferred
to an input image after the matching process. The relatingths of body segments are fixed
in advance, but could also be transferred from exemplars.

We use the same 3d kinematic model defined over keypointsaasntiTaylor's work.

We can solve for the 3d configuration of the bofl\X;, Y;, Z;) : i € keypoints} up to some
ambiguity in scales. The method considers the foreshortening of each body sggmeonstruct
the estimate of body configuration. For each pair of body ssgnendpoints, we have the

following equations:

Po= (Xi—X)+ (M =Y + (21— 2,)° (16)

(ur —up) = s(X; —Xy) (17)
(v1 —w) = s(Y1—Y2) (18)
dZ = (Zy—Z,) (19)
—=dZ = /1?2~ ((u1 — uz)? + (v — 13)?)/s2 (20)

To estimate the configuration of a body, we first fix one keypamthe reference point and
then compute the positions of the others with respect todference point. Since we are using
a scaled orthographic projection model theand Y coordinates are known up to the scale
s. All that remains is to compute relative depths of endpoitits We compute the amount of
foreshortening, and use the user-supplied “closer entiptabels from the closest matching
exemplar to solve for the relative depths.

Moreover, Taylor notes that the minimum scalg,, can be estimated from the fact th&t

cannot be complex.

s > \/(ul - u2)2l+ (Ul - U2)2 (21)

This minimum value is a good estimate for the scale since drieecbody segments is often

perpendicular to the viewing direction.
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VIl. EXPERIMENTS

We demonstrate results of our method applied to three damaindeo sequences of walking
people from the CMU MoBo Database, a speed skater, and angigoickroach. In all of these
video sequences, each frame is processed independentlgynamics are used, and no temporal
consistency is enforced.

Each of these experiments presents a challenge in termsiafioa in pose within a restricted
domain. In the case of the MoBo Database, substantial \@miat clothing and body shape are
also present. We do not address the problem of backgrouttérclun each of the datasets either
a simple background exists, or background subtractiones ,uso that the majority of extracted

edges belong to the human figure in the image.

A. CMU MoBo Database

The first set of experiments we performed used images fronCiiel MoBo Database [39].
This database consists of video sequences of number ofcssibjerforming different types of
walking motions on a treadmill, viewed from a set of statigneameras. We selected the first
10 subjects (numbers 04002-04071), 30 frames (frames machli®1-130) from the “fastwalk”
sequence for each subject, and a camera view perpendicuthetdirection of the subject’s
walk (vr03.7). Marking of exemplar joint locations, in addition to “sler endpoint” labels,
was performed manually on this collection of 300 frames.Kgasund subtraction was used to
remove most of the clutter edges found by the edge detector.

We used this dataset to study the ability of our method to leavatiations in body shape and
clothing. A set of 10 experiments was conducted in which eadbject was used once as the
guery against a set of exemplars consisting of the imagelseofemaining 9 subjects. For each
guery image, this set of 270 exemplars was pruned to a stiafllength 10 using representative
shape contexts. Deformable matching to localize bodygasonly performed using this shortlist.
In our un-optimized MATLAB implementation, deformable roling between a query and an
exemplar takes 20-30 seconds on a 2 GHz AMD Opteron proceBBerrepresentative shape
contexts pruning takes a fraction of a second, and reducaslbeomputation time substantially.

Note that on this dataset keypoints on the subject’s rigit and leg are often occluded, and
are labelled as such. Limbs with occluded joints are noigassi edge points in the deformable

matching, and instead inherit the deformation of limbsHertup the kinematic chain. Occluded
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joints from an exemplar are not transferred onto a query anagd are omitted from the 3d
reconstruction process.

Figure 6 shows sample results of 2d body joint localization &d reconstruction on the
CMU MoBo dataset. The same body parameters (lengths of beginents) are used in all 3d
reconstructions. With additional manual labelling, thesely parameters could be supplied for
each exemplar and transferred onto the query image to obytaie accurate reconstructions.

More results of 2d joint localization are shown in Figure Tvé&h good edges, particularly on
the subject’s arms, the deformable matching process pesfovell. However, in cases such as
the 3" subject in Figure 7, the edge detector has difficulty due eohahg. Since the resulting
edges are substantially different from those of other suibjehe joint localization process fails.

Figure 8 shows a comparison between the parts-based dymaogcamming approach and
single exemplar matching. The parts-based approach ig@lieprove the localization of joints
by combining limbs from different exemplars. The main diffty encountered with this method
is in the reuse of edge pixels. A major source of error is matgihe left and right legs of
two exemplars to the same edge pixels in the query image.réhse is a fundamental problem

with tree models.

B. Speed Skating

We also applied our method to a sequence of video frames otedspkater. We chose 5
frames for use as exemplars, upon which we hand-labellegadiet/locations. We then applied
our method for configuration estimation to a sequence of 2inés. Results are shown in
Figure 9.

Difficulties are encountered as the skater’'s arm crosseimt bf her body. More exemplars
would likely be necessary at these points in the sequenceevthe relative ordering of edges

changes (i.e. furthest left edge is now the edge of thigteatsof the edge of the arm).

C. Cockroach Video Sequence

The final dataset consisted of 300 frames from a video of aroack running on a transparent
treadmill apparatus, viewed from below. These data weleateld by biologists at U.C. Berkeley
who are studying their movements. The research that thegaar@ucting requires the extraction

of 3d joint angle tracks for many hours of footage. The curssrution to this tracking problem
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Fig. 6. Results on MoBo dataset. Top row shows input imagh vétovered joint positions. Middle row shows best matching
exemplar, from which joint positions were derived. Bottoawrshows 3d reconstruction from different viewpoint. Onbng
positions marked as unoccluded on the exemplar are traedfey the input image. Joint positions are marked as red biatsk
lines connect unoccluded joints adjacent in the body mddete that background subtraction is performed to removéeriu
in this dataset.

is manual labour. In each frame of each sequence, a persomathyamarks the 2d locations of
each of the cockroach’s joints. 3d locations are typicablyacned using stereo from a second,
calibrated camera.

Such a setting is ideal for an exemplar-based approach. Evevery 10** frame from a
sequence needs to be manually marked and used as an exeniplge gain in efficiency could
be made.

As a preliminary attempt at tackling this problem, we appltee same techniques that we
developed for detecting human figures to this problem of dietg cockroaches. The method
and parameters used were identical, aside from additiow@feixtra limbs to our model.

We chose 41 frames from the middle 200 frames (eviétyframe) as exemplars to track
the remainder of the sequence. Again, each frame was peat@ésdependently to show the
efficacy of our exemplar-based method. Of course, temparadistency should be incorporated

in developing a final system for tracking.
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Fig. 7. Results on MoBo dataset. Each pair of rows shows ifpages with recovered joint positions above best matching
exemplars. Only joint positions marked as unoccluded oreeenplar are transferred to the input image. Note that backgl

subtraction is performed to remove clutter in this dataset.

Figure 10 shows some results for tracking using the pargsdanethod. Results are shown
for the first 24 frames, outside of the range of the exemplainéch were selected from frames

50 through 250.
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Fig. 8. Comparison between single exemplar and dynamicranoging. Top row shows results obtained matching to a single
exemplar, bottom row uses dynamic programming to combimédifrom multiple exemplars. Third column shows an example

of reuse of edge pixels to match left and right legs at samatiloe.
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Fig. 9. Results on speed skater sequence. Frames 6-8, Hd214-16 are shown. Exemplars for the sequence are frames
5,9,13, and 17.

VIIl. CONCLUSION

The problem of recovering human body configurations in a gegsetting is arguably the most
difficult recognition problem in computer vision. By no maado we claim to have solved it here;

much work still remains to be done. In this paper we have piteskea simple, yet apparently
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Fig. 10. Results on cockroach sequence. Every second frarttee dirst 24 frames of the video sequence is shown. The
parts-based method was used, with 41 exemplars, é/érframe starting at frame 50.

effective, approach to estimating human body configuration3d. Our method matches using
2d exemplars, estimates keypoint locations, and then usese tkeypoints in a model-based
algorithm for determining the 3d body configuration.

We have shown that using full-body exemplars provides usefutext for the task of localizing
joint positions. Detecting hands, elbows or feet in isolatis a difficult problem. A hand is not
a hand unless it is connected to an elbow which is connecteddiooulder. Using exemplars
captures this type of long-range contextual informatiartufe work could incorporate additional
attributes such as locations of labelled features suchaes far hands in the same framework.

However, there is definitely a price to be paid for using exiamsan this fashion. The number
of exemplars needed to match people in a wide range of possged from a variety of camera
positions, is likely to be unwieldy. Recent work by Shakluvech et al. [40] has attempted to
address this problem of scaling to a large set of exemplargsiyg locality sensitive hashing
to quickly retrieve matching exemplars.

The opposite approach to exemplars, that of assembling indigares from a collection of
low-level parts (e.g. [20]-[22], [41]) holds promise innes of scalability, but as noted above,
lacks the context needed to reliably detect these low-leadk. We believe that combining these

two approaches in a sensible manner is an important topitutare work.
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