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Abstract

The problem we consider in this paper is to take a single two-dimensional image containing a

human figure, locate the joint positions, and use these to estimate the body configuration and pose in

three-dimensional space. The basic approach is to store a number of exemplar 2d views of the human

body in a variety of different configurations and viewpointswith respect to the camera. On each of

these stored views, the locations of the body joints (left elbow, right knee, etc.) are manually marked

and labelled for future use. The input image is then matched to each stored view, using the technique

of shape context matching in conjunction with a kinematic chain-based deformation model. Assuming

that there is a stored view sufficiently similar in configuration and pose, the correspondence process will

succeed. The locations of the body joints are then transferred from the exemplar view to the test shape.

Given the 2d joint locations, the 3d body configuration and pose are then estimated using an existing

algorithm. We can apply this technique to video by treating each frame independently – tracking just

becomes repeated recognition. We present results on a variety of datasets.

Index Terms

shape, object recognition, tracking, human body pose estimation
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Recovering 3d Human Body Configurations

Using Shape Contexts

I. INTRODUCTION

As indicated in Figure 1, the problem we consider in this paper is to take a single two-

dimensional image containing a human figure, locate the joint positions, and use these to estimate

the body configuration and pose in three-dimensional space.Variants include the case of multiple

cameras viewing the same human, tracking the body configuration and pose over time from video

input, or analogous problems for other articulated objectssuch as hands, animals or robots. A

robust, accurate solution would facilitate many differentpractical applications–e.g. see Table 1 in

Gavrila’s survey paper [1]. From the perspective of computer vision theory, this problem offers

an opportunity to explore a number of different tradeoffs – the role of low level vs. high level

cues, static vs. dynamic information, 2d vs. 3d analysis, etc. in a concrete setting where it is

relatively easy to quantify success or failure.

In this paper we consider the most basic version of the problem–estimating the 3d body

configuration based on a single uncalibrated 2d image. The approach we use is to store a number

of exemplar 2d views of the human body in a variety of different configurations and viewpoints

with respect to the camera. On each of these stored views, thelocations of the body joints (left

elbow, right knee, etc.) are manually marked and labelled for future use. The test image is then

matched to each stored view, using the shape context matching technique of Belongie, Malik

and Puzicha [2]. This technique is based on representing a shape by a set of sample points from

the external and internal contours of an object, found usingan edge detector. Assuming that

there is a stored view sufficiently similar in configuration and pose, the correspondence process

will succeed. The locations of the body joints are then transferred from the exemplar view to

the test shape. Given the 2d joint locations, the 3d body configuration and pose are estimated

using the algorithm of Taylor [3].

The main contribution of this work is demonstrating the use of deformable template matching

to exemplars as a means to localize human body joint positions. Having the context of the whole

body, from exemplar templates, provides a wealth of information for matching. The major issue
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that must be addressed with this approach is dealing with thelarge number of exemplars needed

to match people in a wide range of poses, viewed from a varietyof camera positions, and wearing

different clothing. In our work we represent exemplars as a collection of edges extracted using an

edge detector, and match based on shape in order to reduce theeffects of variation in appearance

due to clothing. Pose variation presents an immense challenge. In this work we do not attempt to

estimate joint locations for people in arbitrary poses, instead restricting ourselves to settings in

which the set of poses is limited (e.g. walking people, or speed skaters). Even in such settings,

the number of exemplars needed can be very large. In this workwe also provide a method

for efficiently retrieving from a large set of exemplars those which are most similar to a query

image, in order to reduce the computational expense of matching.

The structure of this paper is as follows. We review previouswork in Section II. In Section III

we describe the correspondence process mentioned above. Wegive an efficient method for scaling

to large sets of exemplars in Section IV. Section V provides details on a parts-based extension

to our keypoint estimation method. We describe the 3d estimation algorithm in Section VI. We

show experimental results in Section VII. Finally, we conclude in Section VIII.

II. PREVIOUS WORK

There has been considerable previous work on this problem [1]. Broadly speaking, it can be

categorized into two major classes. The first set of approaches use a 3d model for estimating the

positions of articulated objects. Pioneering work was doneby O’Rourke and Badler [4], Hogg [5]

and Yamamoto and Koshikawa [6]. Rehg and Kanade [7] track very high DOF articulated objects

such as hands. Bregler and Malik [8] use optical flow measurements from a video sequence to

track joint angles of a 3d model of a human, using the product of exponentials representation

for the kinematic chain. Kakadiaris and Metaxas [9] use multiple cameras and match occluding

contours with projections from a deformable 3d model. Gavrila and Davis [10] is another 3d

model based tracking approach, as is the work of Rohr [11] fortracking walking pedestrians.

Sidenbladh and Black [12] presented a learning approach fordeveloping the edge cues typically

used when matching the 3d models projected into the image plane. The method first learns the

appearance of edge cues on human figures from a collection of training images, and then uses

these learned statistics to track people in video sequences. Attempts have also been made at

addressing the high dimensional, multi-modal nature of thesearch space for a 3d human body
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(a) (b) (c)

Fig. 1. The goal of this work. (a) Input image. (b) Automatically extracted keypoints. (c) 3d rendering of estimated body

configuration. In this paper we present a method to go from (a)to (b) to (c).

model. Deutscher et al. [13] have tracked people performingvaried and atypical actions using

improvements on a particle filter. Choo and Fleet [14] use a Hybrid Monte Carlo (HMC) filter,

which at each time step runs a collection of Markov Chain Monte Carlo (MCMC) simulations

initialized using a particle filtering approach. Sminchisescu and Triggs [15] use a modified

MCMC algorithm to explore the multiple local minima inherent in fitting a 3d model to given

2d image positions of joints. Lee and Cohen [16] presented impressive results on automatic

pose estimation from a single image. Their method usedproposal maps, based on face and skin

detection, to guide a MCMC sampler to promising regions of the image when fitting a 3d body

model.

The second broad class of approaches does not explicitly work with a 3d model, rather 2d

models trained directly from example images are used. Thereare several variations on this

theme. Baumberg and Hogg [17] use active shape models to track pedestrians. Wren et al. [18]

track people as a set of colored blobs. Morris and Rehg [19] describe a 2d scaled prismatic

model for human body registration. Ioffe and Forsyth [20] perform low-level processing to

obtain candidate body parts and then use a mixture of trees toinfer likely configurations.

Ramanan and Forsyth [21] use similar low-level processing,but add a constraint of temporal

appearance consistency to track people and animals in videosequences. Song et al. [22] also

perform inference on a tree model, using extracted point features along with motion information.

Brand [23] learns a probability distribution over pose and velocity configurations of the moving

body and uses it to infer paths in this space. Toyama and Blake[24] use 2d exemplars, scored

by comparing edges with Chamfer matching, to track people invideo sequences. Most related

to our method is the work of Sullivan and Carlsson [25], who use order structure to compare
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exemplar shapes with test images. This approach was developed at the same time as our initial

work using exemplars [26].

Other approaches rely on background subtraction to extracta silhouette of the human figure.

A mapping from silhouettes to 3d body poses is learned from training images, and applied

to the extracted silhouettes to recover pose. Rosales and Sclaroff [27] describe the Specialized

Mappings Architecture (SMA), which incorporates the inverse 3d pose to silhouette mapping for

performing inference. Grauman et al. [28] learn silhouettecontour models from multiple cameras

using a large training set obtained by rendering synthetic human models in a variety of poses.

Haritaoglu et al. [29] first estimate approximate posture ofthe human figure by matching to a

set of prototypes. Joint positions are then localized by finding extrema and curvature maxima

on the silhouette boundary.

Our method first localizes joint positions in 2d and then lifts them to 3d using the geometric

method of Taylor [3]. There are a variety of alternative approaches to this lifting problem. Lee

and Chen [30], [31] preserve the ambiguity regarding foreshortening (closer endpoint of each

link) in an interpretation tree, and use various constraints to prune impossible configurations.

Attwood et al. [32] use a similar formulation, and evaluate the likelihood of interpretations

based on joint angle probabilities for known posture types.Ambrósio et al. [33] describe a

photogrammetric approach that enforces temporal smoothness to resolve the ambiguity due to

foreshortening. Barrón and Kakadiaris [34] simultaneously estimate 3d pose and anthropometry

(body parameters) from 2d joint positions in a constrained optimization method.

III. ESTIMATION METHOD

In this section we provide the details of the configuration estimation method proposed above.

We first obtain a set of boundary sample points from the image.Next, we estimate the 2d image

positions of 14keypoints (wrists, elbows, shoulders, hips, knees, ankles, head and waist) on the

image by deformable matching to a set of stored exemplars that have hand-labelled keypoint

locations. These estimated keypoints can then be used to construct an estimate of the 3d body

configuration in the test image.

October 2, 2005 DRAFT



5

A. Deformable Matching using Shape Contexts

Given an exemplar (with labelled keypoints) and a test image, we cast the problem of keypoint

estimation in the test image as one of deformable matching. We attempt to deform the exemplar

(along with its keypoints) into the shape of the test image. Along with the deformation, we

compute a matching score to measure similarity between the deformed exemplar and the test

image.

In our approach, a shape is represented by a discrete set ofn pointsP = {p1, . . . , pn}, pi ∈ R2

sampled from the internal and external contours on the shape.

We first perform edge detection on the image, using the boundary detector of Martin et al. [35],

to obtain a set of edge pixels on the contours of the body. We then sample some number of

points (300-1000 in our experiments) from these edge pixelsto use as the sample points for the

body. Note that this process will give us not only external, but also internal contours of the body

shape. The internal contours are essential for estimating configurations of self-occluding bodies.

The deformable matching process consists of three steps. Given sample points on the exemplar

and test image:

1) Obtain correspondences between exemplar and test image sample points

2) Estimate deformation of exemplar

3) Apply deformation to exemplar sample points

We perform a small number (maximum of 4 in experiments) of iterations of this process to

match an exemplar to a test image. Figure 2 illustrates this process.

1) Sample Point Correspondences: In the correspondence phase, for each pointpi on a given

shape, we want to find the “best” matching pointqj on another shape. This is a correspondence

problem similar to that in stereopsis. Experience there suggests that matching is easier if one

uses a rich local descriptor. Rich descriptors reduce the ambiguity in matching.

Theshape context was introduced by Belongie et al. [2] to play such a role in shape matching.

In later work [36], we extended the shape context descriptorby encoding more descriptive

information than point counts in the histogram bins. To eachedge pointqj we attach a unit

length tangent vectortj that is the direction of the edge atqj . In each bin we sum the tangent

vectors for all points falling in the bin. The descriptor fora pointpi is the histogram̂hi:

ĥk
i =

∑

qj∈Q

tj, whereQ = {qj 6= pi, (qj − pi) ∈ bin(k)} (1)
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(a) (b) (c)

Fig. 2. Iterations of deformable matching. Column (a) showssample points from the two figures to be matched. The bottom

figure (exemplar) in (a) is deformed into the shape of the top figure (test image). Columns (b,c) show successive iterations of

deformable matching. The top row shows the correspondencesobtained through the shape context matching. The bottom row

shows the deformed exemplar figure at each step. In particular, the right arm and left leg of the exemplar are deformed into

alignment with the test image.

Each histogram bin̂hk
i now holds a single vector in the direction of the dominant orientation

of edges falling in the spatial area bin(k). When comparing the descriptors for two points, we

convert thisd-bin histogram to a2d-dimensional vector̂vi, normalize these vectors, and compare

them using theL2 norm.

v̂i = 〈ĥ1,x
i , ĥ1,y

i , ĥ2,x
i , ĥ2,y

i , ..., ĥd,x
i , ĥd,y

i 〉 (2)

whereĥj,x
i and ĥj,y

i are thex andy components of̂hj
i respectively.

We call these extended descriptorsgeneralized shape contexts. Examples of these generalized

shape contexts are shown in Figure 3. Note that generalized shape contexts reduce to the original

shape contexts if all tangent angles are clamped to zero. As in the original shape contexts,

these descriptors are not scale invariant. In the absence ofsubstantial background clutter, scale

invariance can be achieved by setting the bin radii as a function of average inter-point distances.

Some amount of rotational invariance is obtained via the binning structure, as after a small

rotation sample points will still fall in the same bins. Fullrotational invariance can be obtained

by fixing the orientation of the histograms with respect to a local edge tangent estimate. In

this work we do not use these strategies for full scale and rotational invariance. This has the
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(a) (b) (c) (d)

Fig. 3. Examples of generalized shape contexts. (a) Input image. (b) Sampled edge point with tangents. (c) and (d) Generalized

shape contexts for different points on the shape.

drawback of possibly requiring more exemplars. However, there are definite advantages. For

example, people tend to appear in upright poses. By not having a descriptor with full rotational

invariance, we are very unlikely to confuse sample points onthe feet with those on the head.

We desire a correspondence between sample points on the two shapes that enforces the

uniqueness of matches. This leads us to formulate our matching of a test image to an exemplar

human figure as an assignment problem (also known as the weighted bipartite matching problem)

[37]. We find an optimal assignment between sample points on the test body and those on the

exemplar.

To this end we construct a bipartite graph. The nodes on one side represent sample points

from the test image, on the other side the sample points on theexemplar. Edge weights between

nodes in this bipartite graph represent the costs of matching sample points. Similar sample points

will have a low matching cost, dissimilar ones will have a high matching cost.ǫ-cost outlier

nodes are added to the graph to account for occluded points and noise - sample points missing

from a shape can be assigned to be outliers for some small cost. We use an assignment problem

solver to find the optimal matching between the sample pointsof the two bodies.

Note that the output of more specific filters, such as face or hand detectors, could easily be

incorporated into this framework. The matching cost between sample points can be measured in

many ways.

2) Deformation Model: Belongie et al. [2] used thin plate splines as a deformation model.

However, it is not appropriate here, as human figures deform in a more structured manner. We use

a 2d kinematic chain as our deformation model. The 2d kinematic chain has 9 segments: a torso
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(a) (b) (c)

Fig. 4. The deformation model. (a) Underlying kinematic chain. (b) Automatic assignment of sample points to kinematic

chain segments on an exemplar. Each different symbol denotes a different chain segment. (c) Sample points deformed using the

kinematic chain.

(containing head, waist, hips, shoulders), upper and lowerarms (linking elbows to shoulders,

and wrists to elbows), and upper and lower legs (linking knees to hips, and ankles to knees).

Figure 4(a) depicts the kinematic chain deformation model.Our deformation model allows

translation of the torso, and 2d rotation of the limbs aroundthe shoulders, elbows, hips and

knees. This is a simple representation for deformations of afigure in 2d. It only allows in-

plane rotations, ignoring the effects of perspective projection as well as out of plane rotations.

However, this deformation model is sufficient to allow for small deformations of an exemplar.

In order to estimate a deformation or deform a body’s sample points, we must know to which

kinematic chain segment each sample point belongs. On the exemplars we have hand-labelled

keypoints; we use these to automatically assign the hundreds of sample points to segments.

Sample points are assigned to segments by finding minimum distance to bone-line, the line

segment connecting the keypoints at the segment ends, for arm and leg segments. For the torso,

line segments connecting the shoulders and hips are used. A sample point is assigned to the

segment for which this distance is smallest.

Since we know the segmentS(pi) that each exemplar sample pointpi belongs to, given

correspondences{(pi, pi
′)} we can estimate a deformationD of the points{pi}. Our deformation

process starts at the torso. We find the least squares best translation for the sample points on
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the torso.

Dt = T̂ = arg minT

∑

pi,S(pi)=torso

‖T (pi) − pi
′‖2 (3)

T̂ =
1

N

∑

pi:S(pi)=torso

(pi
′ − pi), where N = #{pi : S(pi) = torso} (4)

Subsequent segments along the kinematic chain have rotational joints. We again obtain the least

squares best estimates, this time for the rotations of thesejoints. Given previous deformation̂D

along the chain up to this segment, we estimateDj as the best rotation around the joint location

cj :

Pj = {pi : S(pi) = j} (5)

Dj = Rθ̂,cj
= arg minRθ,cj

∑

pi∈Pj

‖Rθ,cj
(D̂ · pi) − pi

′‖2 (6)

θ̂ = arg minθ

∑

pi∈Pj

(D̂ · pi − cj)
T RT

θ (cj − p′i) (7)

θ̂ = arctan

∑

i qixq
′

iy −
∑

i qiyq
′

ix
∑

i qixq′ix +
∑

i qiyq′iy
, (8)

where qi = D̂ · pi − cj and q′i = p′i − cj (9)

Steps 2 and 3 in our deformable matching framework are performed in this manner. We

estimate deformations for each segment of our kinematic chain model, and apply them to the

sample points belonging to each segment.

We have now provided a method for estimating a set of keypoints using a single exemplar,

along with an associated score (the sum of shape context matching costs for the optimal assign-

ment). The simplest method for choosing the best keypoint configuration in a test image is to

find the exemplar with the best score, and use the keypoints predicted using its deformation as

the estimated configuration. However, with this simple method there are concerns involving the

number of exemplars needed for a general matching framework. In the following sections we

will address this by first describing an efficient method for scaling to large sets of exemplars, and

then developing a parts-based method for combining matching results from multiple exemplars.

IV. SCALING TO LARGE SETS OFEXEMPLARS

The deformable matching process described above is computationally expensive. If we have

a large set of exemplars, which will be necessary in order to match people of different body
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shapes in varying poses, performing an exhaustive comparison to every exemplar is not feasible.

Instead, we use an efficient pruning algorithm to reduce the full set of exemplars to a shortlist

of promising candidates. Only this small set of candidates will be compared to the test image

using the expensive deformable matching process.

In particular, we use therepresentative shape contexts pruning algorithm [38] to construct

this shortlist of candidate exemplars. This method relies on the descriptive power of just a few

shape contexts. Given a pair of images of very different human figures, such as a tall person

walking and a short person jogging, none of the shape contexts from the walking person will

have good matches on the jogging one – it is immediately obvious that they are different shapes.

The representative shape contexts pruning algorithm uses this intuition to efficiently construct a

shortlist of candidate matches.

In concrete terms, the pruning process proceeds in the following manner. For each of the

exemplar human figure shapesSi, we precompute a large numbers (about 800) of shape contexts

{SCj
i : j = 1, 2, . . . , s}. But for the query human figure shapeSq, we only compute a small

numberr (r ≈ 5−10 in experiments) of representative shape contexts (RSCs). To compute these

r RSCs we randomly selectr sample points from the shape via a rejection sampling methodthat

spreads the points over the entire shape. We use all the sample points on the shape to fill the

histogram bins for the shape contexts corresponding to these r points. To compute the distance

between a query shape and an exemplar shape, we find the best matches for each of ther RSCs.

The distance between shapesSq andSi is then:

dS(Sq, Si) =
1

r

r
∑

u=1

dGSC(SCu
q , SC

m(u)
i )

Nu

(10)

wherem(u) = arg minjdGSC(SCu
q , SCj

i ) (11)

Nu is a normalizing factor that measures how discriminative the representative shape context

SCu
q is:

Nu =
1

|S| ∑

Si∈S dGSC(SCu
q , SC

m(u)
i ) (12)

whereS is the set of all shapes. We determine the shortlist by sorting these distances. Figure IV

shows some example shortlists. Note that this pruning method, as presented, assumes that the

human figure is the only object in the query image, as will be the case in our experiments.

However, it is possible to run this pruning method in cluttered images [38].

October 2, 2005 DRAFT



11

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Fig. 5. Example shortlists. Column (a) shows query image, columns (b-k) columns show shortlist of candidate matches from

representative shape context pruning. Exemplars in poses similar to the human figure in the query image are retrieved.

V. USING PART EXEMPLARS

Given a set of exemplars, we can choose to match either entireexemplars or parts, such

as limbs, to a test image. The advantage of a parts-based approach that matches limbs is that

of compositionality, which saves us from an exponential explosion in the required number of

exemplars. Consider the case of a person walking while holding a briefcase in one hand. If we

already have exemplars for a walking motion, and a single exemplar for holding an object in

the hand, we can combine these exemplars to produce correct matching results. However, if we

were forced to use entire exemplars, we would require a different “holding object and walking”

exemplar for each portion of the walk cycle. Using part exemplars prevents the total number of

exemplars from growing to an unwieldy size. As long as we can ensure that the composition

of part exemplars yields an anatomically correct configuration we will benefit from this reduced
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number of exemplars.

The matching process is identical to that presented in the preceding section. For each exemplar,

we deform it to the shape of the test image. However, instead of assigning a total score for an

exemplar, we give a separate score for each part on the exemplar. This is done by summing the

shape context matching costs for sample points from each part. In our experiments (Figure 8)

we use 6 “limbs” as our parts: arms (consisting of shoulder, elbow, and wrist keypoints) and

legs (hip, knee, and ankle), along with separate head and waist parts.

With N exemplars we haveN estimates for the location of each of the 6 limbs. Each of

theseN estimates is obtained using the deformable matching process described in the previous

section. We will denote bylji the jth limb obtained by matching to theith exemplar, and its

shape context matching score (obtained from the deformablematching process) to beLj
i . We

now combine these individual matching results to find the “best” combination of these estimates.

It is not sufficient to simply choose each limb independentlyas the one with the best score. There

would be nothing to prevent us from violating underlying anatomical constraints. For example,

the left leg could be found hovering across the image disjoint from the rest of the body. We

need to enforce theconsistency of the final configuration.

Consider again the case of using part exemplars to match the figure of a person walking while

holding a briefcase. Given a match for the arm grasping the briefcase, and matches for the rest

of the body, we know that there are constraints on the distance between the shoulder of the

grasping arm and the rest of the body. Motivated by this, the measure of consistency we use

is the 2d image distance between the bases (shoulder for the arms, hip for the legs) of limbs.

We form a tree structure by connecting the arms and the waist to the head, and the legs to the

waist. For each link in this tree, we compute theN2 2d image distances between all pairs of

bases of limbs obtained by matching with theN different exemplars. We now make use of the

fact that each whole exemplar on its own is consistent. Consider a pair of limbs(lui , l
v
j ) – limb

u from exemplari and limb v from exemplarj, with (u, v) being a link in the tree, such as

left hip - waist. Using the limbs from these two different exemplars together is plausible if the

distances between their bases is comparable to that of each of the whole exemplars. We compare

the distanceduv
ij between the basesbu

i and bv
j of these limbs with the two distances obtained

when taking limbsu andv to be both from exemplari or both from exemplarj. We define the

consistency costCuv
ij of using this pair of limbs(lui , l

v
j ) together in matching a test image to be
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a function of the average of the two differences, scaled by a parameterσ:

duv
ij = ‖bu

i − bv
j‖ (13)

Cuv
ij = 1 − exp

(

−
|duv

ij − duv
ii | + |duv

ij − duv
jj |

2σ

)

(14)

Note that the consistency costCuv
ii for using limbs from the same exemplar across a tree link

is zero. As the configuration begins to deviate from the consistent exemplars,Cuv
ij increases. We

define the total costS(x) of a configurationx = (x1, x2, ..., x6) ∈ {1, 2, . . . , N}6 as the weighted

sum of consistency scores and shape context limb scoresLj

xj :

S(x) = (1 − wc)
6

∑

j=1

Lj

xj + wc

∑

links:(i,j)

Cij

xixj (15)

The relative importance between quality of individual scores and consistency costs is determined

by wc. Both wc and σ (defined above) were determined manually. Note that when using part

exemplars, shape contexts are still computed using sample points from whole exemplars. In our

experiments we did not find the use of shape context limb scores from whole exemplars to be

problematic, possibly due to the coarse binning structure of the shape contexts.

There areN6 possible combinations of limbs from theN exemplars. However, we can find

the optimal configuration inO(N2) time using a dynamic programming algorithm along the tree

structure.

Moreover, an extension to our algorithm can produce the topK matches for a given test

image. Preserving the ambiguity in this form, instead of making an instant choice, is particularly

advantageous for tracking applications, where temporal consistency can be used as an additional

filter.

VI. ESTIMATING 3D CONFIGURATION

We use Taylor’s method [3] to estimate the 3d configuration ofa body given the keypoint

position estimates. Taylor’s method works on a single 2d image, taken with an uncalibrated

camera.

It assumes that we know:

1) the image coordinates of keypoints(u, v)

2) the relative lengthsl of body segments connecting these keypoints

3) a labelling of “closer endpoint” for each of these body segments
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4) that we are using a scaled orthographic projection model for the camera

In our work, the image coordinates of keypoints are obtainedvia the deformable matching

process. The “closer endpoint” labels are supplied on the exemplars, and automatically transferred

to an input image after the matching process. The relative lengths of body segments are fixed

in advance, but could also be transferred from exemplars.

We use the same 3d kinematic model defined over keypoints as that in Taylor’s work.

We can solve for the 3d configuration of the body{(Xi, Yi, Zi) : i ∈ keypoints} up to some

ambiguity in scales. The method considers the foreshortening of each body segment to construct

the estimate of body configuration. For each pair of body segment endpoints, we have the

following equations:

l2 = (X1 − X2)
2 + (Y1 − Y2)

2 + (Z1 − Z2)
2 (16)

(u1 − u2) = s(X1 − X2) (17)

(v1 − v2) = s(Y1 − Y2) (18)

dZ = (Z1 − Z2) (19)

=⇒ dZ =
√

l2 − ((u1 − u2)2 + (v1 − v2)2)/s2 (20)

To estimate the configuration of a body, we first fix one keypoint as the reference point and

then compute the positions of the others with respect to the reference point. Since we are using

a scaled orthographic projection model theX and Y coordinates are known up to the scale

s. All that remains is to compute relative depths of endpointsdZ. We compute the amount of

foreshortening, and use the user-supplied “closer endpoint” labels from the closest matching

exemplar to solve for the relative depths.

Moreover, Taylor notes that the minimum scalesmin can be estimated from the fact thatdZ

cannot be complex.

s ≥

√

(u1 − u2)2 + (v1 − v2)2

l
(21)

This minimum value is a good estimate for the scale since one of the body segments is often

perpendicular to the viewing direction.
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VII. EXPERIMENTS

We demonstrate results of our method applied to three domains – video sequences of walking

people from the CMU MoBo Database, a speed skater, and a running cockroach. In all of these

video sequences, each frame is processed independently – nodynamics are used, and no temporal

consistency is enforced.

Each of these experiments presents a challenge in terms of variation in pose within a restricted

domain. In the case of the MoBo Database, substantial variation in clothing and body shape are

also present. We do not address the problem of background clutter. In each of the datasets either

a simple background exists, or background subtraction is used, so that the majority of extracted

edges belong to the human figure in the image.

A. CMU MoBo Database

The first set of experiments we performed used images from theCMU MoBo Database [39].

This database consists of video sequences of number of subjects, performing different types of

walking motions on a treadmill, viewed from a set of stationary cameras. We selected the first

10 subjects (numbers 04002-04071), 30 frames (frames numbered 101-130) from the “fastwalk”

sequence for each subject, and a camera view perpendicular to the direction of the subject’s

walk (vr03 7). Marking of exemplar joint locations, in addition to “closer endpoint” labels,

was performed manually on this collection of 300 frames. Background subtraction was used to

remove most of the clutter edges found by the edge detector.

We used this dataset to study the ability of our method to handle variations in body shape and

clothing. A set of 10 experiments was conducted in which eachsubject was used once as the

query against a set of exemplars consisting of the images of the remaining 9 subjects. For each

query image, this set of 270 exemplars was pruned to a shortlist of length 10 using representative

shape contexts. Deformable matching to localize body joints is only performed using this shortlist.

In our un-optimized MATLAB implementation, deformable matching between a query and an

exemplar takes 20-30 seconds on a 2 GHz AMD Opteron processor. The representative shape

contexts pruning takes a fraction of a second, and reduces overall computation time substantially.

Note that on this dataset keypoints on the subject’s right arm and leg are often occluded, and

are labelled as such. Limbs with occluded joints are not assigned edge points in the deformable

matching, and instead inherit the deformation of limbs further up the kinematic chain. Occluded
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joints from an exemplar are not transferred onto a query image, and are omitted from the 3d

reconstruction process.

Figure 6 shows sample results of 2d body joint localization and 3d reconstruction on the

CMU MoBo dataset. The same body parameters (lengths of body segments) are used in all 3d

reconstructions. With additional manual labelling, thesebody parameters could be supplied for

each exemplar and transferred onto the query image to obtainmore accurate reconstructions.

More results of 2d joint localization are shown in Figure 7. Given good edges, particularly on

the subject’s arms, the deformable matching process performs well. However, in cases such as

the 3rd subject in Figure 7, the edge detector has difficulty due to clothing. Since the resulting

edges are substantially different from those of other subjects, the joint localization process fails.

Figure 8 shows a comparison between the parts-based dynamicprogramming approach and

single exemplar matching. The parts-based approach is ableto improve the localization of joints

by combining limbs from different exemplars. The main difficulty encountered with this method

is in the reuse of edge pixels. A major source of error is matching the left and right legs of

two exemplars to the same edge pixels in the query image. Thisreuse is a fundamental problem

with tree models.

B. Speed Skating

We also applied our method to a sequence of video frames of a speed skater. We chose 5

frames for use as exemplars, upon which we hand-labelled keypoint locations. We then applied

our method for configuration estimation to a sequence of 20 frames. Results are shown in

Figure 9.

Difficulties are encountered as the skater’s arm crosses in front of her body. More exemplars

would likely be necessary at these points in the sequence where the relative ordering of edges

changes (i.e. furthest left edge is now the edge of thigh instead of the edge of the arm).

C. Cockroach Video Sequence

The final dataset consisted of 300 frames from a video of a cockroach running on a transparent

treadmill apparatus, viewed from below. These data were collected by biologists at U.C. Berkeley

who are studying their movements. The research that they areconducting requires the extraction

of 3d joint angle tracks for many hours of footage. The current solution to this tracking problem
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Fig. 6. Results on MoBo dataset. Top row shows input image with recovered joint positions. Middle row shows best matching

exemplar, from which joint positions were derived. Bottom row shows 3d reconstruction from different viewpoint. Only joint

positions marked as unoccluded on the exemplar are transferred to the input image. Joint positions are marked as red dots, black

lines connect unoccluded joints adjacent in the body model.Note that background subtraction is performed to remove clutter

in this dataset.

is manual labour. In each frame of each sequence, a person manually marks the 2d locations of

each of the cockroach’s joints. 3d locations are typically obtained using stereo from a second,

calibrated camera.

Such a setting is ideal for an exemplar-based approach. Evenif every 10th frame from a

sequence needs to be manually marked and used as an exemplar,a huge gain in efficiency could

be made.

As a preliminary attempt at tackling this problem, we applied the same techniques that we

developed for detecting human figures to this problem of detecting cockroaches. The method

and parameters used were identical, aside from addition of two extra limbs to our model.

We chose 41 frames from the middle 200 frames (every5th frame) as exemplars to track

the remainder of the sequence. Again, each frame was processed independently to show the

efficacy of our exemplar-based method. Of course, temporal consistency should be incorporated

in developing a final system for tracking.
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Fig. 7. Results on MoBo dataset. Each pair of rows shows inputimages with recovered joint positions above best matching

exemplars. Only joint positions marked as unoccluded on theexemplar are transferred to the input image. Note that background

subtraction is performed to remove clutter in this dataset.

Figure 10 shows some results for tracking using the parts-based method. Results are shown

for the first 24 frames, outside of the range of the exemplars,which were selected from frames

50 through 250.
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Fig. 8. Comparison between single exemplar and dynamic programming. Top row shows results obtained matching to a single

exemplar, bottom row uses dynamic programming to combine limbs from multiple exemplars. Third column shows an example

of reuse of edge pixels to match left and right legs at same location.

Fig. 9. Results on speed skater sequence. Frames 6-8, 10-12,and 14-16 are shown. Exemplars for the sequence are frames

5,9,13, and 17.

VIII. C ONCLUSION

The problem of recovering human body configurations in a general setting is arguably the most

difficult recognition problem in computer vision. By no means do we claim to have solved it here;

much work still remains to be done. In this paper we have presented a simple, yet apparently

October 2, 2005 DRAFT



20

Fig. 10. Results on cockroach sequence. Every second frame of the first 24 frames of the video sequence is shown. The

parts-based method was used, with 41 exemplars, every5
th frame starting at frame 50.

effective, approach to estimating human body configurations in 3d. Our method matches using

2d exemplars, estimates keypoint locations, and then uses these keypoints in a model-based

algorithm for determining the 3d body configuration.

We have shown that using full-body exemplars provides useful context for the task of localizing

joint positions. Detecting hands, elbows or feet in isolation is a difficult problem. A hand is not

a hand unless it is connected to an elbow which is connected toa shoulder. Using exemplars

captures this type of long-range contextual information. Future work could incorporate additional

attributes such as locations of labelled features such as faces or hands in the same framework.

However, there is definitely a price to be paid for using exemplars in this fashion. The number

of exemplars needed to match people in a wide range of poses, viewed from a variety of camera

positions, is likely to be unwieldy. Recent work by Shakhnarovich et al. [40] has attempted to

address this problem of scaling to a large set of exemplars byusing locality sensitive hashing

to quickly retrieve matching exemplars.

The opposite approach to exemplars, that of assembling human figures from a collection of

low-level parts (e.g. [20]–[22], [41]) holds promise in terms of scalability, but as noted above,

lacks the context needed to reliably detect these low-levelparts. We believe that combining these

two approaches in a sensible manner is an important topic forfuture work.
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