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Abstract

We demonstrate that shape contexts can be used to quickhe prgearch for similar shapes. We
present two algorithms for rapid shape retrievapresentative shape contexts, performing comparisons
based on a small number of shape contexts, gnagemes, using vector quantization in the space of

shape contexts to obtain prototypical shape pieces.

Index Terms

shape, object recognition, optical character recognition

I. INTRODUCTION

We are interested in the use of shape for recognizing 3D tshjegpresented by a collection
of multiple 2D views. A satisfactory theory of shape repreagon would have a number of
desirable attributes:

1) It should support recognition based on exquisitely firfeedences e.g. distinguishing faces
of twins.

2) At the same time, it should support making coarse diso@tnons very quickly. Thorpe,
Fize and Merlot [1] showed that people, when presented withingage, can answer coarse
gueries such as presence or absence of an animal in as 4$itflBGans.

3) The approach should scale to deal with a large number dadcthj Biederman [2] has
argued that humans can distinguish on the orde300f)0 different objects.

4) It should be possible to acquire a representation of aecblgtegory from relatively few
examples i.e. there should be a good generalization ability

In this paper we develop further an approach based on thesemation okhape contexts,
introduced in Belongie et al. [3], which arguably satisfiegecia (1) and (4) above while (3) is
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yet only a distant possibility. The techniques we develoge ltan be used for (2), and attempt
to address the issues involved in (3), scaling to large nusnbeobjects.

The basic idea of shape contexts is illustrated in Fig. 1. #&pshs represented by a discrete set
of points sampled from the internal and external contourshenshape. These can be obtained
as locations of edge pixels as found by an edge detectongis a setP = {pi,...,pn},

p; € R?, of n points. Consider the set of vectors originating from a paéintll other sample
points on a shape. These— 1 vectors express the configuration of the entire shape vel&i
the reference point. One way to capture this informationsighe distribution of the relative
positions of the remaining — 1 points in a spatial histogram. Concretely, for a pginbn the

shape, compute a coarse histogranof the relative coordinates of the remaining- 1 points,

We=#{q#p : (q—p)ebink)} .

This histogram is defined to be tlskape context of p;. We use bins that are uniform in log-polar
space, making the descriptor more sensitive to positiomeafby sample points than to those of
points farther away. In the absence of background clutiershape context of a point on a shape
can be made invariant under uniform scaling of the shape alsadewThis is accomplished by
normalizing all radial distances by the mean distandsetween the:? point pairs in the shape.

As illustrated in Fig. 1, shape contexts will be different different points on a single shape
however corresponding (homologous) points on similar ee&pand.S’ will tend to have similar
shape contexts. By construction, the shape context at a gt on a shape is invariant under
translation and scaling. Shape contexts are not invariademuarbitrary affine transforms, but
the log-polar binning ensures that for small locally affinstattions due to pose change, intra-
category variation etc., the change in the shape contextriegpondingly small. In addition,
since the shape context descriptor gathers coarse infamfabm the entire shape it is relatively
insensitive to the occlusion of any particular part.

In contrast to the original work [3] on shape contexts, whiskdy? distance to compare shape
contexts, we now treat them as feature vectors and compane tisingL?-norm. The results
using theZ?-norm are comparable to those usigg distance and theé.?-norm is marginally
faster to compute.

We turn now to the use of shape contexts as part of a theoryjetiolecognition based on

shape matching. As stated eatrlier, it is desirable for suttteary to support both accurate fine
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Fig. 1. Shape contexts. (a,b) Sampled edge points of twoeshdp) Diagram of log-polar histogram bins used in compgutin
the shape contexts. We use 5 bins fag » and 12 bins ford. (d-f) Example shape contexts for reference samples marked
0,0,< in (a,b). Each shape context is a log-polar histogram of tt@dinates of the rest of the point set measured using the

reference point as the origin. (Dark=large value.)

discrimination, as well as rapid coarse discriminationisT$éuggests a two stage approach to
shape matching, namely:

1) Fast pruning: Given an unknown 2D query shape, we should be able to quigkheve
a small set of likely candidate shapes from a potentially Varge collection of stored shapes.
The present paper will introduce two algorithms for thiskgemn.

2) Detailed matching: Once we have a small set of candidate shapes, we can perforonea m
expensive and more accurate matching procedure to find tentetching shape to the query
shape.

In this work we will not address the problem of scale estioratiShapes will be presented
in a setting that allows for simple estimation of scale via thean distance between points on
a shape. In a natural setting, multiscale search could berperd, or scale-invariant interest
point detection or segmentation could be used to estimatie.sc

The thrust of this paper is in Section IV where we develop twiteent algorithms for fast
pruning based on shape contexts, resulting in a shortligtelf candidate shapes to be evaluated
later by a more accurate and expensive procedure [3]. Thieseded by Section Il on past work

and Section Il on the structure of our matching framewonkSection V, we show experimental
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results on the ETH-80 object database [4], the Snodgrass r&l&favart drawings [5], and the
EZ-Gimpy CAPTCHA [6]. We conclude in Section VI.

1. PAST WORK

Past work on object recognition has developed the use of tajmmtues: appearance and
shape. The first group of work, on appearance based reamgnitiakes direct use of pixel
brightness values. The work of Turk and Pentland [7] is a prewample of this genre. Several
other approaches in this vein [8], [9] first attempt to find respondences between the two
images before doing the comparison. This turns out to beecaitthallenge as differential
optical flow techniques do not cope well with the large disbms that must be handled due to
pose/illumination variations. Errors in finding corresdence will cause downstream processing
errors in the recognition stage. As an alternative, theee aanumber of methods that build
classifiers without explicitly finding correspondencessiich approaches, one relies on a learning
algorithm having enough examples to acquire the apprapinatariances. These approaches have
been used for handwritten digit recognition [10], [11], daecognition [12], and isolated 3D
object recognition [13].

In contrast, techniques that perform recognition basechapes information attempt to capture
global structure of extracted edge or silhouette featusdbouettes have been described (and
compared) using Fourier descriptors [14], skeletons ddriusing Blum’s medial axis trans-
form [15], or directly matched using dynamic programmindthaAugh silhouettes are simple
and efficient to compare, they are limited as shape descsifito general 3D objects because
they ignore internal contours and are difficult to extraotirreal images. Other approaches [16]-
[18] treat the shape as a set of points in the 2D image, erttacsing, say, an edge detector.
Another set of methods compute correspondences between pdgts, such as the work of
Carlsson [19], which usesrder structure, and the work of Johnson and Hebert [20] and Chui
and Rangarajan [21].

Recent years have seen the emergence of hybrid approa@jeRf} that capture appearance
information through a collection of local image patchesa@hinformation is encoded via spatial
relationships between the local patches. The locationgherlocal patches are selected with
various interest point operators, and are representeereithraw pixel values [23] or histograms

of image gradients [22], [24], termed SIFT descriptors (Stavariant Feature Transform). This
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line of work has been demonstrated to be effective in detgcatelatively small numbers of
categories. However, the problem of scaling to large daedaf known objects with these
methods remains open. Of the approaches mentioned abevejdtk by Lowe [22] has gone
the furthest in addressing the issues of large datasetsagpmach involves efficiently matching
features by searching k-d trees with an algorithm calledstiERin-First” [26].

The algorithms we develop in this paper will be based on tlapslitontext point descriptor. In
particular, therepresentative shape contexts (Section IV-A) algorithm is related to the above work
on local patch models. The major differences are in the sobpiee descriptor and the locations
at which they are computed. Shape contexts are a relatiagdg Iscale point descriptor. With a
radius of approximately half the diameter of an object edwpe context captures information
from almost the entire shape. Second, the representatagestontexts are placed at randomly
selected edge points spread over the entire shape, as dpjposee interesting points selected
in the other approaches.

Other work on efficient shape-based retrieval includes thatSebastian et al. [27], who
improved the efficiency of shock-graph shape matching usirgparse-level matching phase.
Shakhnarovich et al. [28] used a variant of the “Locality Sewve Hashing” (LSH) of Indyk
and Motwani [29] to quickly retrieve human body shapes. Fean al. [30] also used LSH to
perform efficient retrieval of shapes; their work involved 8hape information obtained from

laser range scanners.

[1l. M ATCHING FRAMEWORK

The work by Belongie et al. [3] resulted in extremely goodfpenance, €.999.4% accuracy
on the MNIST handwritten digit set, as well as on a variety Bf dbject recognition problems.
However, applying this deformable matching algorithm t@ayé database of models would be
computationally prohibitive. To deal with this problem, wall use a two stage approach to
object recognition: fast pruning followed by detailed nirahg.

In the following sections we first describe a new descriptat tis an extension of shape

contexts, and then develop fast pruning techniques baseal tinis descriptor.
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A. Generalized Shape Contexts

The spatial structure of the shape context histogram biith, a@ntral bins smaller than those
in the periphery, results in a descriptor that is more peeatsout the location of nearby features,
and less precise about those farther away. This same s&uwan be applied to construct a richer
descriptor, based on oriented edges. In this work, to eagh pdintg; we attach a unit length
tangent vector; that is the direction of the edge at. In each bin we sum the tangent vectors
for all points falling in the bin. The descriptor for a poiptis the histogranh;:

hl = Z tj, whereQ = {q; # pi, (¢; — pi) € bin(k)}

q;€Q
Each bin now holds a single vector in the direction of the dwnt orientation of edges in

the bin. When comparing the descriptors for two points, weved thisd-bin histogram to a

2d-dimensional vectof;, normalize these vectors, and compare them using.theorm:
B = (hhe BLY B2 20 fde fdey
dasc(hiy hy) = [0 — B5])2
where " and h’¥ are thex andy components ofi/ respectively.
We call these extended descripta@mneralized shape contexts. Note that generalized shape

contexts reduce to the original shape contexts if all tanhgegles are clamped to zero. Our

experiments in Section V will compare these new descripiotis the original shape contexts.

IV. FAST PRUNING USING SHAPE CONTEXTS

Given a large set of known shapes the problem is to determimehvof these shapes is most
similar to a query shape. From this set of shapes, we wish tckiguconstruct a shortlist
of candidate shapes which includes the best matching shisper. completing this coarse
comparison step one can then apply a more time consumingmamne accurate, comparison
technique to only the shortlist. We leverage the desceppower of shape contexts towards this
goal of quick pruning.

We propose two matching methods that address these isaubs.first methodrepresentative
shape contexts (RSCs), we compute a few shape contexts for the query shapatsampt to
match using only those. The second methd@pemes, uses vector quantization to reduce the
complexity of the shape contexts from 60-dimensional lgistms to quantized classes of shape

pieces.
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Fig. 2. Matching individual shape contexts. Three pointstloe query shape (left) are connected with their best matohes

two known shapesL? distances are given with each matching.

A. Representative Shape Contexts

Given two easily discriminable shapes, such as the outbhesfish and a bicycle, we do not
need to compare every pair of shape contexts on the objektoto that they are different. When
trying to match the dissimilar fish and bicycle, none of thephcontexts from the bicycle have
good matches on the fish — it is immediately obvious that theydiferent shapes. Figure 2
demonstrates this process. The first pruning methegresentative shape contexts, uses this
intuition.

In concrete terms, the matching process proceeds in thewioly manner. For each of the
known shapess;, we precompute a large numberabout 100) of shape contex{§(]§ D] =
1,2,...,s}. But for the query shape, we only compute a small numbér ~ 5 — 10 in
experiments) of shape contexts. To compute theslgape contexts we randomly selecgample
points from the shape via a rejection sampling method thedgasis the points over the entire
shape. We use all the sample points on the shape to fill thegnést bins for the shape contexts
corresponding to these points. To compute the distance between a query shape andvenkn
shape, we find the best matches for each of1tfSCs.

Note that in cluttered images many of the RSCs contain nodég, ar are not located on the

shapes;. Hence, for each of the known shapgswe find the best RSCs, the ones with the

April 4, 2005 DRAFT



&
o

(@) (b)

Fig. 3. (a) Line drawings. (b) Sampled points with shapentel&ak = 100 shapemes were extracted from a known set of
260 shapes 26000 generalized shape contexts). Note the similarities in stmaplabels (2,41 on left side, 24,86,97 on right
side) between similar portions of the shapes.

smallest distances. Call this set of indig&s The distance between shapggsand S; is then:

1« daso(SCy, SCT™)y

ueG;

wherem(u) = arg min ;dgsc(SCg, Scij)

N, is a normalizing factor that measures how discriminative tbpresentative shape context

SCy is:
1

Ny = =
S|

Y dasc(SCy, SCM)

SR

where$ is the set of all shapes. We determine the shortlist by spthese distances.

B. Shapemes

The second matching method uses vector quantization orh#pescontexts. Withs| known
shapes, and shape contexts computes sample points on these shapes, the full set of shape
contexts for the known shapes consists|®f- s d-dimensional vectors. A standard technique
in compression for dealing with such a large amount of datseistor quantization. Vector

guantization involves clustering the vectors and thenasgmting each vector by the index of
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the cluster that it belongs to. We call these clusshegpemes — canonical shape pieces. Figure 3
shows the representation of sample points as shapeme.labels

To derive these shapemes, all of the shape contexts fromnberkset are considered as
points in ad-dimensional space. We perforlameans clustering to obtaith shapemes.

We represent each known view as a collection of shapemes &bin shape context is
quantized to its nearest shapeme, and replaced by the sbdpbet (an integer if1, ..., k}).
A known view is then simplified into a histogram of shapemefiencies. No spatial information
amongst the shapemes is stored. We have reduced eachioalletts shape contextsd(bin
histograms) to a single histogram withbins.

In order to match a query shape, we simply perform this sanworeguantization and
histogram creation operation on the shape contexts frongtleey shape. We then find nearest

neighbours in the space of histograms of shapemes.

V. RESULTS

We use the ETH-80 Object Database, the Snodgrass & Vandelwardrawings, and the
EZ-Gimpy CAPTCHA as our test sets. In the following subsmtiwe present graphs showing
the performance of the two methods on these test sets. Tiphgot error rate vs. pruning
factor (on alog scale). The error rate computation assumes a perfect etbtaiatching phase.
That is, a query shape produces an error only if there is ncecily matching shape in the
shortlist obtained by the pruning method. The abscissa oh ehthe graphs shows the pruning
factor, defined to béS|/length(Shortlist). For example, with$| = 260 known shapes, if the
pruning factor is 26 then the shortlist has 10 shapes in it.

In general the representative shape contexts method perfbetter at large pruning factors
— particularly when dealing with occlusion. Missing a caupf shape contexts won'’t spoil the
matching. However, the vector quantization used in shapatnes buy us computational speed,

and using all of the shape contexts in this manner allows loor gates to be obtained.

A. ETH-80

The first experiment involves the ETH-80 database [4]. Thalwese consists of 80 unique
objects, each from one of 8 classes. Each object is repegsént41 views spaced evenly over

the upper viewing hemisphere. We prepared a set of knowreshapselecting one object from
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ETH-80: best results
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Fig. 4. Error rate vs. pruning factor on ETH-80 dataset, ayed across 10 runs. Comparison of results for best paramete
settings for each of the 4 methods is shown. Error bars ar@emhfor clarity, but the standard deviation is small. Theximaum

standard deviation over all runs is 0.54%.

each of the 8 classes, and using all of its views in the trgisiet, a total of 328 images. The
images of the remaining 9 objects from each class were usedtast set. This experiment
was repeated 10 times, each time selecting a different setioing objects. We use an edge
detector [31] to extract line features from the images. €hedges are then sampled to create
point features for use in shape contexts.

We ran experiments using the two pruning methods. Rep@sentshape contexts pruning
was done using 4, 8, 12, and 16 shape contexts and genersliapd contexts. In each of these
experiments, the beétof the RSCs (i.e. 3, 6, 9, and 12) were used to compute the mgtchst.
Shapeme pruning was performed with quantization to 25, 50,180, 125, and 150 shapemes,
again using both types of shape contexts. Results are peesenFigure 4.

Both of the pruning methods are successful: for exampleuaipg factor of approximately
40 (shortlist of length 8) can be obtained with an error rdt@@%o for the representative shape
contexts method (16 RSCs using generalized shape contarts)14% for the shapeme method
(150 shapemes using generalized shape contexts).

Figure 5 shows some shortlists on the ETH-80 dataset usagefiresentative shape contexts
pruning method. Many of the errors on this dataset involveab that have the same coarse
shape. For example, the shape matching process deems th&oésmand apples to be very
similar. Relying solely on coarse shape, without cues sischadour and texture, it is difficult
to differentiate between the members of these groups otctshje
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Fig. 5. Shortlists for the ETH-80 dataset using the reprasige shape contexts method. The first column is the quejgcob

Remaining 5 columns show closest matches to each querytobjec

B. Shodgrass & Vanderwart

The second experiment uses the Snodgrass & Vanderwart fegirg)s [5]. This dataset
contains line drawings of 260 commonly occurring objectiseyl are a standard set of objects
that have been frequently used in the psychophysics contynfamitests with human subjects.
Since the images are line drawings, no preprocessing pHasdge extraction is needed. We
sample points from the line drawings directly, and use edted oriented filters to estimate local
tangent directions.

The Snodgrass & Vanderwart dataset has only one image pectobje use these original
images as the known set, and create a synthetic distorteaf gmiages for querying. The thin
plate spline (TPS) model [32] is used to create these distmtIn a 2D view of a class of
3D object there are two sources of variation: pose changeirdralclass change. We use the
non-linear TPS model to simulate both of these types of tianasimultaneously. We apply a
random TPS warp of fixed bending energy to a reference grid,use this warp to transform
the edge points of a line drawing.

In addition to distortions, we test the ability of our prugimethods to handle occlusion. We
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take the set of TPS-distorted objects and subject them torarocclusions. The occlusions are
generated using a linear occluding contour. The query tdbjacFigure 6 show some distorted
and occluded Snodgrass & Vanderwart images. Note that tbleiding contour is included —
we will sample points from it when creating the shape costext

The 260 original Snodgrass & Vanderwart images were useldeagdining set. We generated
5200 distorted and occluded images (20 per original imageu$e as a test set. The occluded
images were split into levels of difficulty according to thergentage of edge pixels lost under
occlusion. The same set of test parameters as in the expesroa the ETH-80 dataset were
used. Figures 6 and 7 show the results for our two pruning oclsth

In the low occlusion setting<{ 10% occlusion), the shapeme method can achieve a pruning
factor of~ 100 (shortlist of length 3 out of 260 images) with an error ratd 0% (150 shapemes,
original shape contexts), while the representative shaptegts method has an error rate of 4%
(16 RSCs, original shape contexts).

With extremely difficult levels of occlusion (20%-30% and¥3810%), RSCs can obtain large
amounts of pruning with reasonable error rates, while sinageare able to operate at low error
rates with moderate pruning as they efficiently use all shageexts on a query shape.

Note that on this dataset, the generalized shape contexfsripeslightly worse than the
original shape context descriptors. The reason for thikas the synthetic TPS distortions used
to create the test set corrupt the tangent vectors used ergleaed shape contexts. The random

TPS distortions contain local scale warps that deform thgeat vectors greatly.

C. EZ-Gimpy

A CAPTCHA is a program [6] that can generate and grade testsniost humans can pass,
but current computer programs can’t pass. CAPTCHA stand&fompletely Automated Public
Turing test to Tell Computers and Humans Apart”. Manuel Bugroup has designed a number
of different CAPTCHAs. EZ-Gimpy (Figure 8) is a CAPTCHA bdsen word recognition in
the presence of clutter. The task is to identify a single waottsen from a known dictionary,
that has been distorted and placed in a cluttered image.

The CAPTCHA datasets provide more than just a colourful togbfem to work on. They
present challenging clutter since they are intended to fiiewdt for computer programs. More

importantly, these datasets are large. There are 561 whedsneed to be recognized in EZ-
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Fig. 6. Shortlists for the distorted and occluded Snodg8a¥anderwart dataset using the representative shape dsmethod.
The first column is the query object. Remaining 5 columns shimsest matches to each query object.

Gimpy. Also, since the source code for generating these @QARSS is available (“P” forpublic),
we have access to a practically infinite set of test images iShn contrast with many object
recognition datasets in which the number of objects is &diitand it is difficult to generate
many reasonable test images. However, there are definn@hations to this dataset in terms of
studying general object recognition. Most notably, these2d objects and there is no variation
due to 3D pose. In addition, there are no shading and lighgffects in synthetic images of
words.

For our experiments, a training set of the 561 words, eaclsepted undistorted on an
uncluttered background, was constructed. We applied theesentative shape contexts pruning
method, using the 561 words as our objects, followed by detanatching (using the method of
Belongie et al. [3]) to recognize the word in each EZ-Gimpyge. This algorithm is referred to
as “Algorithm B” in our previous work on breaking CAPTCHAS3B Two details are different
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Snodgrass & Vanderwart: Representative Shape Contexts (SC) Snodgrass & Vanderwart: shapemes (SC) Snodgrass & Vanderwart: best results
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Fig. 7. Error rate vs. pruning factor on Snodgrass dataagi) {/ariation in performance with respect to amount of sicin

in test image. (c) Comparative results for all different hoels. Results for best parameter settings from each metiecghawn.

from those in the first two experiments. First, we constrdigjeneralized shape contexts that
are tuned to the shape of words: they are elliptical, with ateoradius of about 4 characters
horizontally, and%1 of a character vertically. Second, the texture gradientaipe [31] was used
to select the placement of the RSCs, while Canny edge deteistiused to find edge pixels to
fill the bins of the shape contexts.

We generated 200 examples of the EZ-Gimpy CAPTCHA. Of theseneles, 9 were used
for tuning parameters in the texture gradient modules. Bmearning 191 examples were used
as a test set. Examples of the EZ-Gimpy CAPTCHA images usweti{tee top matching words
are shown in Fig. 8, the full set of test images and resultsbeaviewed ahttp://www.cs.
sfu.ca/"mori/research/gimpy/ez/ .In 92% (176/191) of these test cases, our method
identified the correct word. This success rate comparesufatty with that of Thayananthan et
al. [34] who perform exhaustive search using Chamfer matchiith distorted prototype words.

Of the 15 errors made, 9 were errors in the RSC pruning. Thaipguphase reduced the
561 words to a shortlist of length 10. For 9 of the test imagesdorrect word was not on the
shortlist. In the other 6 failure cases, the deformable matcselected an incorrect word from
the shortlist.

The generalized shape contexts are much more resilienetoldtter in the EZ-Gimpy images
than the original shape contexts. The same algorithm, rumguke original shape contexts,

attains only a 53% success rate on the test set.
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(a) horse (b) jewel (c) weight (d) sound (e) rice (f) space

Fig. 8. Results on EZ-Gimpy images. The best matching wokh@avn below each image.

VI. CONCLUSION

Previous work on shape matching via a deformable templased framework has been very
successful for object recognition. However, these metladgoo expensive computationally to
be used on a large scale object database. We have shown haapea abntext-based pruning
approach can assist by constructing an accurate shortlistder to reduce this computational
expense. We proposed two methods of matching — one using lh remaber of representative
shape contexts, and the other based on vector quantizdtisimape contexts into shapemes.

We also presented generalized shape contexts (GSCs), emsixt to shape contexts which
makes use of local tangent information at point locatiortesE descriptors contain more detailed
information about the shape, and when the local tangenteaeliably estimated they outperform
the original shape contexts.

The GSC is similar to Lowe’s SIFT descriptor, which also aggtes edge orientations into
a histogram. However, the spatial structure of the histogkans of GSCs is very different
from that of SIFT features. GSCs are large in scale, whileTSdatures are local descriptors.
SIFT features use a regular grid for histogram bins, andedead information far away from
the center of the descriptor, using a Gaussian weightingswodnt sample points. In contrast,
the outermost bins of GSCs are largest in size, reflectingipoal uncertainty of useful coarse
shape cues.

We demonstrated the effectiveness of representative stpiexts and shapemes, two effi-
cient pruning mechanisms based on shape contexts and Gs€speriments on the ETH-80,

Snodgrass & Vanderwart, and EZ-Gimpy datasets.
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