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Abstract

We demonstrate that shape contexts can be used to quickly prune a search for similar shapes. We

present two algorithms for rapid shape retrieval:representative shape contexts, performing comparisons

based on a small number of shape contexts, andshapemes, using vector quantization in the space of

shape contexts to obtain prototypical shape pieces.

Index Terms

shape, object recognition, optical character recognition

I. INTRODUCTION

We are interested in the use of shape for recognizing 3D objects, represented by a collection

of multiple 2D views. A satisfactory theory of shape representation would have a number of

desirable attributes:

1) It should support recognition based on exquisitely fine differences e.g. distinguishing faces

of twins.

2) At the same time, it should support making coarse discriminations very quickly. Thorpe,

Fize and Merlot [1] showed that people, when presented with an image, can answer coarse

queries such as presence or absence of an animal in as little as 150ms.

3) The approach should scale to deal with a large number of objects. Biederman [2] has

argued that humans can distinguish on the order of30000 different objects.

4) It should be possible to acquire a representation of an object category from relatively few

examples i.e. there should be a good generalization ability.

In this paper we develop further an approach based on the representation ofshape contexts,

introduced in Belongie et al. [3], which arguably satisfies criteria (1) and (4) above while (3) is
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yet only a distant possibility. The techniques we develop here can be used for (2), and attempt

to address the issues involved in (3), scaling to large numbers of objects.

The basic idea of shape contexts is illustrated in Fig. 1. A shape is represented by a discrete set

of points sampled from the internal and external contours onthe shape. These can be obtained

as locations of edge pixels as found by an edge detector, giving us a setP = {p1, . . . , pn},

pi ∈ R2, of n points. Consider the set of vectors originating from a pointto all other sample

points on a shape. Thesen − 1 vectors express the configuration of the entire shape relative to

the reference point. One way to capture this information is as the distribution of the relative

positions of the remainingn− 1 points in a spatial histogram. Concretely, for a pointpi on the

shape, compute a coarse histogramhi of the relative coordinates of the remainingn− 1 points,

hk
i = # {q 6= pi : (q − pi) ∈ bin(k)} .

This histogram is defined to be theshape context of pi. We use bins that are uniform in log-polar

space, making the descriptor more sensitive to positions ofnearby sample points than to those of

points farther away. In the absence of background clutter, the shape context of a point on a shape

can be made invariant under uniform scaling of the shape as a whole. This is accomplished by

normalizing all radial distances by the mean distanceα between then2 point pairs in the shape.

As illustrated in Fig. 1, shape contexts will be different for different points on a single shapeS;

however corresponding (homologous) points on similar shapesS andS ′ will tend to have similar

shape contexts. By construction, the shape context at a given point on a shape is invariant under

translation and scaling. Shape contexts are not invariant under arbitrary affine transforms, but

the log-polar binning ensures that for small locally affine distortions due to pose change, intra-

category variation etc., the change in the shape context is correspondingly small. In addition,

since the shape context descriptor gathers coarse information from the entire shape it is relatively

insensitive to the occlusion of any particular part.

In contrast to the original work [3] on shape contexts, whichusedχ2 distance to compare shape

contexts, we now treat them as feature vectors and compare them usingL2-norm. The results

using theL2-norm are comparable to those usingχ2 distance and theL2-norm is marginally

faster to compute.

We turn now to the use of shape contexts as part of a theory of object recognition based on

shape matching. As stated earlier, it is desirable for such atheory to support both accurate fine
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Fig. 1. Shape contexts. (a,b) Sampled edge points of two shapes. (c) Diagram of log-polar histogram bins used in computing

the shape contexts. We use 5 bins forlog r and 12 bins forθ. (d-f) Example shape contexts for reference samples markedby

◦, ⋄, ⊳ in (a,b). Each shape context is a log-polar histogram of the coordinates of the rest of the point set measured using the

reference point as the origin. (Dark=large value.)

discrimination, as well as rapid coarse discrimination. This suggests a two stage approach to

shape matching, namely:

1) Fast pruning: Given an unknown 2D query shape, we should be able to quickly retrieve

a small set of likely candidate shapes from a potentially very large collection of stored shapes.

The present paper will introduce two algorithms for this problem.

2) Detailed matching: Once we have a small set of candidate shapes, we can perform a more

expensive and more accurate matching procedure to find the best matching shape to the query

shape.

In this work we will not address the problem of scale estimation. Shapes will be presented

in a setting that allows for simple estimation of scale via the mean distance between points on

a shape. In a natural setting, multiscale search could be performed, or scale-invariant interest

point detection or segmentation could be used to estimate scale.

The thrust of this paper is in Section IV where we develop two different algorithms for fast

pruning based on shape contexts, resulting in a shortlist oflikely candidate shapes to be evaluated

later by a more accurate and expensive procedure [3]. This ispreceded by Section II on past work

and Section III on the structure of our matching framework. In Section V, we show experimental
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results on the ETH-80 object database [4], the Snodgrass & Vanderwart drawings [5], and the

EZ-Gimpy CAPTCHA [6]. We conclude in Section VI.

II. PAST WORK

Past work on object recognition has developed the use of two major cues: appearance and

shape. The first group of work, on appearance based recognition, makes direct use of pixel

brightness values. The work of Turk and Pentland [7] is a prime example of this genre. Several

other approaches in this vein [8], [9] first attempt to find correspondences between the two

images before doing the comparison. This turns out to be quite a challenge as differential

optical flow techniques do not cope well with the large distortions that must be handled due to

pose/illumination variations. Errors in finding correspondence will cause downstream processing

errors in the recognition stage. As an alternative, there are a number of methods that build

classifiers without explicitly finding correspondences. Insuch approaches, one relies on a learning

algorithm having enough examples to acquire the appropriate invariances. These approaches have

been used for handwritten digit recognition [10], [11], face recognition [12], and isolated 3D

object recognition [13].

In contrast, techniques that perform recognition based on shape information attempt to capture

global structure of extracted edge or silhouette features.Silhouettes have been described (and

compared) using Fourier descriptors [14], skeletons derived using Blum’s medial axis trans-

form [15], or directly matched using dynamic programming. Although silhouettes are simple

and efficient to compare, they are limited as shape descriptors for general 3D objects because

they ignore internal contours and are difficult to extract from real images. Other approaches [16]–

[18] treat the shape as a set of points in the 2D image, extracted using, say, an edge detector.

Another set of methods compute correspondences between edge points, such as the work of

Carlsson [19], which usesorder structure, and the work of Johnson and Hebert [20] and Chui

and Rangarajan [21].

Recent years have seen the emergence of hybrid approaches [22]–[25] that capture appearance

information through a collection of local image patches. Shape information is encoded via spatial

relationships between the local patches. The locations forthe local patches are selected with

various interest point operators, and are represented either as raw pixel values [23] or histograms

of image gradients [22], [24], termed SIFT descriptors (Scale Invariant Feature Transform). This
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line of work has been demonstrated to be effective in detecting relatively small numbers of

categories. However, the problem of scaling to large databases of known objects with these

methods remains open. Of the approaches mentioned above, the work by Lowe [22] has gone

the furthest in addressing the issues of large datasets. Theapproach involves efficiently matching

features by searching k-d trees with an algorithm called “Best-Bin-First” [26].

The algorithms we develop in this paper will be based on the shape context point descriptor. In

particular, therepresentative shape contexts (Section IV-A) algorithm is related to the above work

on local patch models. The major differences are in the scopeof the descriptor and the locations

at which they are computed. Shape contexts are a relatively large scale point descriptor. With a

radius of approximately half the diameter of an object each shape context captures information

from almost the entire shape. Second, the representative shape contexts are placed at randomly

selected edge points spread over the entire shape, as opposed to the interesting points selected

in the other approaches.

Other work on efficient shape-based retrieval includes thatby Sebastian et al. [27], who

improved the efficiency of shock-graph shape matching usinga coarse-level matching phase.

Shakhnarovich et al. [28] used a variant of the “Locality Sensitive Hashing” (LSH) of Indyk

and Motwani [29] to quickly retrieve human body shapes. Frome et al. [30] also used LSH to

perform efficient retrieval of shapes; their work involved 3d shape information obtained from

laser range scanners.

III. M ATCHING FRAMEWORK

The work by Belongie et al. [3] resulted in extremely good performance, e.g.99.4% accuracy

on the MNIST handwritten digit set, as well as on a variety of 3D object recognition problems.

However, applying this deformable matching algorithm to a large database of models would be

computationally prohibitive. To deal with this problem, wewill use a two stage approach to

object recognition: fast pruning followed by detailed matching.

In the following sections we first describe a new descriptor that is an extension of shape

contexts, and then develop fast pruning techniques based upon this descriptor.
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A. Generalized Shape Contexts

The spatial structure of the shape context histogram bins, with central bins smaller than those

in the periphery, results in a descriptor that is more precise about the location of nearby features,

and less precise about those farther away. This same structure can be applied to construct a richer

descriptor, based on oriented edges. In this work, to each edge pointqj we attach a unit length

tangent vectortj that is the direction of the edge atqj . In each bin we sum the tangent vectors

for all points falling in the bin. The descriptor for a pointpi is the histogram̂hi:

ĥk
i =

∑

qj∈Q

tj, whereQ = {qj 6= pi, (qj − pi) ∈ bin(k)}

Each bin now holds a single vector in the direction of the dominant orientation of edges in

the bin. When comparing the descriptors for two points, we convert thisd-bin histogram to a

2d-dimensional vector̂vi, normalize these vectors, and compare them using theL2 norm:

v̂i = 〈ĥ1,x
i , ĥ1,y

i , ĥ2,x
i , ĥ2,y

i , ..., ĥd,x
i , ĥd,y

i 〉

dGSC(ĥi, ĥj) = ||v̂i − v̂j||2

whereĥj,x
i and ĥj,y

i are thex andy components of̂hj
i respectively.

We call these extended descriptorsgeneralized shape contexts. Note that generalized shape

contexts reduce to the original shape contexts if all tangent angles are clamped to zero. Our

experiments in Section V will compare these new descriptorswith the original shape contexts.

IV. FAST PRUNING USING SHAPE CONTEXTS

Given a large set of known shapes the problem is to determine which of these shapes is most

similar to a query shape. From this set of shapes, we wish to quickly construct a shortlist

of candidate shapes which includes the best matching shape.After completing this coarse

comparison step one can then apply a more time consuming, andmore accurate, comparison

technique to only the shortlist. We leverage the descriptive power of shape contexts towards this

goal of quick pruning.

We propose two matching methods that address these issues. In the first method,representative

shape contexts (RSCs), we compute a few shape contexts for the query shape and attempt to

match using only those. The second method,shapemes, uses vector quantization to reduce the

complexity of the shape contexts from 60-dimensional histograms to quantized classes of shape

pieces.
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Fig. 2. Matching individual shape contexts. Three points onthe query shape (left) are connected with their best matcheson

two known shapes.L2 distances are given with each matching.

A. Representative Shape Contexts

Given two easily discriminable shapes, such as the outlinesof a fish and a bicycle, we do not

need to compare every pair of shape contexts on the objects toknow that they are different. When

trying to match the dissimilar fish and bicycle, none of the shape contexts from the bicycle have

good matches on the fish – it is immediately obvious that they are different shapes. Figure 2

demonstrates this process. The first pruning method,representative shape contexts, uses this

intuition.

In concrete terms, the matching process proceeds in the following manner. For each of the

known shapesSi, we precompute a large numbers (about 100) of shape contexts{SCj
i : j =

1, 2, . . . , s}. But for the query shape, we only compute a small numberr (r ≈ 5 − 10 in

experiments) of shape contexts. To compute theser shape contexts we randomly selectr sample

points from the shape via a rejection sampling method that spreads the points over the entire

shape. We use all the sample points on the shape to fill the histogram bins for the shape contexts

corresponding to theser points. To compute the distance between a query shape and a known

shape, we find the best matches for each of ther RSCs.

Note that in cluttered images many of the RSCs contain noisy data, or are not located on the

shapeSi. Hence, for each of the known shapesSi we find the bestk RSCs, the ones with the
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Fig. 3. (a) Line drawings. (b) Sampled points with shapeme labels.k = 100 shapemes were extracted from a known set of

260 shapes (26000 generalized shape contexts). Note the similarities in shapeme labels (2,41 on left side, 24,86,97 on right

side) between similar portions of the shapes.

smallest distances. Call this set of indicesGi. The distance between shapesQ andSi is then:

dS(Q, Si) =
1

k

∑

u∈Gi

dGSC(SCu
Q, SC

m(u)
i )

Nu

wherem(u) = arg minjdGSC(SCu
Q, SCj

i )

Nu is a normalizing factor that measures how discriminative the representative shape context

SCu
Q is:

Nu =
1

|S| ∑

Si∈S dGSC(SCu
Q, SC

m(u)
i )

whereS is the set of all shapes. We determine the shortlist by sorting these distances.

B. Shapemes

The second matching method uses vector quantization on the shape contexts. With|S| known

shapes, and shape contexts computed ats sample points on these shapes, the full set of shape

contexts for the known shapes consists of|S| · s d-dimensional vectors. A standard technique

in compression for dealing with such a large amount of data isvector quantization. Vector

quantization involves clustering the vectors and then representing each vector by the index of
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the cluster that it belongs to. We call these clustersshapemes – canonical shape pieces. Figure 3

shows the representation of sample points as shapeme labels.

To derive these shapemes, all of the shape contexts from the known set are considered as

points in ad-dimensional space. We performk-means clustering to obtaink shapemes.

We represent each known view as a collection of shapemes. Each d-bin shape context is

quantized to its nearest shapeme, and replaced by the shapeme label (an integer in{1, . . . , k}).

A known view is then simplified into a histogram of shapeme frequencies. No spatial information

amongst the shapemes is stored. We have reduced each collection of s shape contexts (d bin

histograms) to a single histogram withk bins.

In order to match a query shape, we simply perform this same vector quantization and

histogram creation operation on the shape contexts from thequery shape. We then find nearest

neighbours in the space of histograms of shapemes.

V. RESULTS

We use the ETH-80 Object Database, the Snodgrass & Vanderwart line drawings, and the

EZ-Gimpy CAPTCHA as our test sets. In the following subsections we present graphs showing

the performance of the two methods on these test sets. The graphs plot error rate vs. pruning

factor (on alog scale). The error rate computation assumes a perfect detailed matching phase.

That is, a query shape produces an error only if there is no correctly matching shape in the

shortlist obtained by the pruning method. The abscissa on each of the graphs shows the pruning

factor, defined to be|S|/length(Shortlist). For example, with|S| = 260 known shapes, if the

pruning factor is 26 then the shortlist has 10 shapes in it.

In general the representative shape contexts method performs better at large pruning factors

– particularly when dealing with occlusion. Missing a couple of shape contexts won’t spoil the

matching. However, the vector quantization used in shapemes does buy us computational speed,

and using all of the shape contexts in this manner allows low error rates to be obtained.

A. ETH-80

The first experiment involves the ETH-80 database [4]. The database consists of 80 unique

objects, each from one of 8 classes. Each object is represented by 41 views spaced evenly over

the upper viewing hemisphere. We prepared a set of known shapes by selecting one object from
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Fig. 4. Error rate vs. pruning factor on ETH-80 dataset, averaged across 10 runs. Comparison of results for best parameter

settings for each of the 4 methods is shown. Error bars are omitted for clarity, but the standard deviation is small. The maximum

standard deviation over all runs is 0.54%.

each of the 8 classes, and using all of its views in the training set, a total of 328 images. The

images of the remaining 9 objects from each class were used asa test set. This experiment

was repeated 10 times, each time selecting a different set oftraining objects. We use an edge

detector [31] to extract line features from the images. These edges are then sampled to create

point features for use in shape contexts.

We ran experiments using the two pruning methods. Representative shape contexts pruning

was done using 4, 8, 12, and 16 shape contexts and generalizedshape contexts. In each of these

experiments, the best3
4

of the RSCs (i.e. 3, 6, 9, and 12) were used to compute the matching cost.

Shapeme pruning was performed with quantization to 25, 50, 75, 100, 125, and 150 shapemes,

again using both types of shape contexts. Results are presented in Figure 4.

Both of the pruning methods are successful: for example, a pruning factor of approximately

40 (shortlist of length 8) can be obtained with an error rate of 10% for the representative shape

contexts method (16 RSCs using generalized shape contexts), and 14% for the shapeme method

(150 shapemes using generalized shape contexts).

Figure 5 shows some shortlists on the ETH-80 dataset using the representative shape contexts

pruning method. Many of the errors on this dataset involve objects that have the same coarse

shape. For example, the shape matching process deems the tomatoes and apples to be very

similar. Relying solely on coarse shape, without cues such as colour and texture, it is difficult

to differentiate between the members of these groups of objects.
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Fig. 5. Shortlists for the ETH-80 dataset using the representative shape contexts method. The first column is the query object.

Remaining 5 columns show closest matches to each query object.

B. Snodgrass & Vanderwart

The second experiment uses the Snodgrass & Vanderwart line drawings [5]. This dataset

contains line drawings of 260 commonly occurring objects. They are a standard set of objects

that have been frequently used in the psychophysics community for tests with human subjects.

Since the images are line drawings, no preprocessing phase of edge extraction is needed. We

sample points from the line drawings directly, and use elongated oriented filters to estimate local

tangent directions.

The Snodgrass & Vanderwart dataset has only one image per object. We use these original

images as the known set, and create a synthetic distorted setof images for querying. The thin

plate spline (TPS) model [32] is used to create these distortions. In a 2D view of a class of

3D object there are two sources of variation: pose change andintra-class change. We use the

non-linear TPS model to simulate both of these types of variation simultaneously. We apply a

random TPS warp of fixed bending energy to a reference grid, and use this warp to transform

the edge points of a line drawing.

In addition to distortions, we test the ability of our pruning methods to handle occlusion. We
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take the set of TPS-distorted objects and subject them to random occlusions. The occlusions are

generated using a linear occluding contour. The query objects in Figure 6 show some distorted

and occluded Snodgrass & Vanderwart images. Note that the occluding contour is included –

we will sample points from it when creating the shape contexts.

The 260 original Snodgrass & Vanderwart images were used as the training set. We generated

5200 distorted and occluded images (20 per original image) for use as a test set. The occluded

images were split into levels of difficulty according to the percentage of edge pixels lost under

occlusion. The same set of test parameters as in the experiments on the ETH-80 dataset were

used. Figures 6 and 7 show the results for our two pruning methods.

In the low occlusion setting (≤ 10% occlusion), the shapeme method can achieve a pruning

factor of≈ 100 (shortlist of length 3 out of 260 images) with an error rate of10% (150 shapemes,

original shape contexts), while the representative shape contexts method has an error rate of 4%

(16 RSCs, original shape contexts).

With extremely difficult levels of occlusion (20%-30% and 30%-40%), RSCs can obtain large

amounts of pruning with reasonable error rates, while shapemes are able to operate at low error

rates with moderate pruning as they efficiently use all shapecontexts on a query shape.

Note that on this dataset, the generalized shape contexts perform slightly worse than the

original shape context descriptors. The reason for this is that the synthetic TPS distortions used

to create the test set corrupt the tangent vectors used in generalized shape contexts. The random

TPS distortions contain local scale warps that deform the tangent vectors greatly.

C. EZ-Gimpy

A CAPTCHA is a program [6] that can generate and grade tests that most humans can pass,

but current computer programs can’t pass. CAPTCHA stands for “Completely Automated Public

Turing test to Tell Computers and Humans Apart”. Manuel Blum’s group has designed a number

of different CAPTCHAs. EZ-Gimpy (Figure 8) is a CAPTCHA based on word recognition in

the presence of clutter. The task is to identify a single word, chosen from a known dictionary,

that has been distorted and placed in a cluttered image.

The CAPTCHA datasets provide more than just a colourful toy problem to work on. They

present challenging clutter since they are intended to be difficult for computer programs. More

importantly, these datasets are large. There are 561 words that need to be recognized in EZ-
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Fig. 6. Shortlists for the distorted and occluded Snodgrass& Vanderwart dataset using the representative shape contexts method.

The first column is the query object. Remaining 5 columns showclosest matches to each query object.

Gimpy. Also, since the source code for generating these CAPTCHAs is available (“P” forpublic),

we have access to a practically infinite set of test images. This is in contrast with many object

recognition datasets in which the number of objects is limited, and it is difficult to generate

many reasonable test images. However, there are definitely limitations to this dataset in terms of

studying general object recognition. Most notably, these are 2D objects and there is no variation

due to 3D pose. In addition, there are no shading and lightingeffects in synthetic images of

words.

For our experiments, a training set of the 561 words, each presented undistorted on an

uncluttered background, was constructed. We applied the representative shape contexts pruning

method, using the 561 words as our objects, followed by detailed matching (using the method of

Belongie et al. [3]) to recognize the word in each EZ-Gimpy image. This algorithm is referred to

as “Algorithm B” in our previous work on breaking CAPTCHAs [33]. Two details are different
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Fig. 7. Error rate vs. pruning factor on Snodgrass dataset. (a,b) Variation in performance with respect to amount of occlusion

in test image. (c) Comparative results for all different methods. Results for best parameter settings from each method are shown.

from those in the first two experiments. First, we constructed generalized shape contexts that

are tuned to the shape of words: they are elliptical, with an outer radius of about 4 characters

horizontally, and3
4

of a character vertically. Second, the texture gradient operator [31] was used

to select the placement of the RSCs, while Canny edge detection is used to find edge pixels to

fill the bins of the shape contexts.

We generated 200 examples of the EZ-Gimpy CAPTCHA. Of these examples, 9 were used

for tuning parameters in the texture gradient modules. The remaining 191 examples were used

as a test set. Examples of the EZ-Gimpy CAPTCHA images used, and the top matching words

are shown in Fig. 8, the full set of test images and results canbe viewed athttp://www.cs.

sfu.ca/˜mori/research/gimpy/ez/ . In 92% (176/191) of these test cases, our method

identified the correct word. This success rate compares favourably with that of Thayananthan et

al. [34] who perform exhaustive search using Chamfer matching with distorted prototype words.

Of the 15 errors made, 9 were errors in the RSC pruning. The pruning phase reduced the

561 words to a shortlist of length 10. For 9 of the test images the correct word was not on the

shortlist. In the other 6 failure cases, the deformable matching selected an incorrect word from

the shortlist.

The generalized shape contexts are much more resilient to the clutter in the EZ-Gimpy images

than the original shape contexts. The same algorithm, run using the original shape contexts,

attains only a 53% success rate on the test set.
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(a) horse (b) jewel (c) weight (d) sound (e) rice (f) space

Fig. 8. Results on EZ-Gimpy images. The best matching word isshown below each image.

VI. CONCLUSION

Previous work on shape matching via a deformable template-based framework has been very

successful for object recognition. However, these methodsare too expensive computationally to

be used on a large scale object database. We have shown how a shape context-based pruning

approach can assist by constructing an accurate shortlist in order to reduce this computational

expense. We proposed two methods of matching – one using a small number of representative

shape contexts, and the other based on vector quantization of shape contexts into shapemes.

We also presented generalized shape contexts (GSCs), an extension to shape contexts which

makes use of local tangent information at point locations. These descriptors contain more detailed

information about the shape, and when the local tangent can be reliably estimated they outperform

the original shape contexts.

The GSC is similar to Lowe’s SIFT descriptor, which also aggregates edge orientations into

a histogram. However, the spatial structure of the histogram bins of GSCs is very different

from that of SIFT features. GSCs are large in scale, while SIFT features are local descriptors.

SIFT features use a regular grid for histogram bins, and disregard information far away from

the center of the descriptor, using a Gaussian weighting to discount sample points. In contrast,

the outermost bins of GSCs are largest in size, reflecting positional uncertainty of useful coarse

shape cues.

We demonstrated the effectiveness of representative shapecontexts and shapemes, two effi-

cient pruning mechanisms based on shape contexts and GSCs, in experiments on the ETH-80,

Snodgrass & Vanderwart, and EZ-Gimpy datasets.
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[8] M. Lades, C. Vorbrüggen, J. Buhmann, J. Lange, C. von derMalsburg, R. Wurtz, and W. Konen, “Distortion invariant

object recognition in the dynamic link architecture,”IEEE Trans. Computers, vol. 42, no. 3, pp. 300–311, March 1993.

[9] T. Cootes, D. Cooper, C. Taylor, and J. Graham, “Active shape models - their training and application,”Computer Vision

and Image Understanding, vol. 61, no. 1, pp. 38–59, Jan. 1995.

[10] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,”Proceedings

of the IEEE, vol. 86, no. 11, pp. 2278–2324, November 1998.

[11] C. Burges and B. Schölkopf, “Improving the accuracy and speed of support vector machines,” inNIPS, 1997, pp. 375–381.

[12] B. Moghaddam, T. Jebara, and A. Pentland, “Bayesian face recognition,”Pattern Recognition, vol. 33, no. 11, pp. 1771–

1782, November 2000.

[13] H. Murase and S. Nayar, “Visual learning and recognition of 3-D objects from appearance,”Int. Journal of Computer

Vision, vol. 14, no. 1, pp. 5–24, Jan. 1995.

[14] C. Zahn and R. Roskies, “Fourier descriptors for plane closed curves,”IEEE Trans. Computers, vol. 21, no. 3, pp. 269–281,

March 1972.

[15] D. Sharvit, J. Chan, H. Tek, and B. Kimia, “Symmetry-based indexing of image databases,”J. Visual Communication and

Image Representation, 1998.

[16] G. Borgefors, “Hierarchical chamfer matching: A parametric edge matching algorithm,”IEEE Trans. PAMI, vol. 10, no. 6,

pp. 849–865, 1988.

[17] D. Huttenlocher, R. Lilien, and C. Olson, “View-based recognition using an eigenspace approximation to the Hausdorff

measure,”PAMI, vol. 21, no. 9, pp. 951–955, Sept. 1999.

[18] D. Gavrila and V. Philomin, “Real-time object detection for smart vehicles,” inProc. 7th ICCV, 1999, pp. 87–93.

[19] S. Carlsson, “Order structure, correspondence and shape based categories,” inShape Contour and Grouping in Computer

Vision. Springer LNCS 1681, 1999, pp. 58–71.

April 4, 2005 DRAFT



16

[20] A. E. Johnson and M. Hebert, “Recognizing objects by matching oriented points,” inCVPR, 1997, pp. 684–689.

[21] H. Chui and A. Rangarajan, “A new algorithm for non-rigid point matching,” inCVPR, vol. 2, June 2000, pp. 44–51.

[22] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”Int. Journal of Computer Vision, vol. 60, no. 2,

pp. 91–110, 2004.

[23] R. Fergus, P. Perona, and A. Zisserman, “Object class recognition by unsupervised scale-invariant learning,” inProceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, 2003, pp. 264–271.

[24] G. Dorko and C. Schmid, “Selection of scale invariant neighborhoods for object class recognition,” inProc. 9th Int. Conf.

Computer Vision, 2003, pp. 634–640.

[25] Y. Amit, D. Geman, and K. Wilder, “Joint induction of shape features and tree classifiers,”IEEE Trans. PAMI, vol. 19,

no. 11, pp. 1300–1305, November 1997.

[26] J. Beis and D. Lowe, “Shape indexing using approximate nearest-neighbour search in highdimensional spaces,” inProc.

IEEE Comput. Soc. Conf. Comput. Vision and Pattern Recogn., 1997, pp. 1000–1006.

[27] T. Sebastian, P. N. Klein, and B. B. Kimia, “Shock-basedindexing into large shape databases,” inEuropean Conference

on Computer Vision, vol. 3, 2002, pp. 731–746.

[28] G. Shakhnarovich, P. Viola, and T. Darrell, “Fast pose estimation with parameter sensitive hashing,” inProc. 9th Int. Conf.

Computer Vision, vol. 2, 2003, pp. 750–757.

[29] P. Indyk and R. Motwani, “Approximate nearest neighbors: Towards removing the curse of dimensionality,” inACM

Symposium on Theory of Computing, 1998, pp. 604–613.

[30] A. Frome, D. Huber, R. Kolluri, T. Bulow, and J. Malik, “Recognizing objects in range data using regional point descriptors,”

in Proc. 8th Europ. Conf. Comput. Vision, vol. 3, 2004, pp. 224–237.

[31] D. Martin, C. Fowlkes, and J. Malik, “Learning to find brightness and texture boundaries in natural images,”NIPS, 2002.

[32] F. L. Bookstein, “Principal warps: thin-plate splinesand decomposition of deformations,”IEEE Trans. PAMI, vol. 11,

no. 6, pp. 567–585, June 1989.

[33] G. Mori and J. Malik, “Recognizing objects in adversarial clutter: Breaking a visual captcha,” inProc. IEEE Comput. Soc.

Conf. Comput. Vision and Pattern Recogn., vol. 1, 2003, pp. 134–141.

[34] A. Thayananthan, B. Stenger, P. H. S. Torr, and R. Cipolla, “Shape context and chamfer matching in cluttered scenes,” in

Proc. Conf. Computer Vision and Pattern Recognition, vol. I, Madison, USA, June 2003, pp. 127–133.

[35] G. Mori, S. Belongie, and J. Malik, “Shape contexts enable efficient retrieval of similar shapes,” inProc. IEEE Comput.

Soc. Conf. Comput. Vision and Pattern Recogn., vol. 1, 2001, pp. 723–730.

April 4, 2005 DRAFT


