Monitoring Creatures Great and Small: Computer Vision Systems for Looking at Grizzly Bears, Fish, and Grasshoppers

Greg Mori, Maryam Moslemi, Andy Rova, Payam Sabzmeydani, Jens Wawerla

Simon Fraser University

VAIB workshop - December 7, 2008

Captivating Cinema

video: Prof. Larry Dill, SFU Biological Sciences

Computer Vision for Data Collection

- "Looking at Animals" problems
 - Sifting through video to find animals
 - Determining what the animals are up to
 - Classifying species of animals
- Symbiotic relationship
 - Natural scientists receive data
 - Computer scientists receive
 - real-world datasets
 - ground truth for quantifiable success/failure

Outline

- Detection of animals in video
 - Grizzly bears
- Analyzing animal behaviours
 - Grasshoppers
- Recognizing animal species
 - Fish

Outline

- Detection of animals in video
 - Grizzly bears
- Analyzing animal behaviours
 - Grasshoppers
- Recognizing animal species
 - Fish

Grizzly Bear Monitoring

- New eco-tourism site on salmon spawning river
 - Grizzly bears feed on salmon
 - Will human presence negatively impact bears?
- "Bearcam" deployed to watch bears on-site in northern Yukon

Grizzly Bear Monitoring

- New eco-tourism site on salmon spawning river
 - Grizzly bears feed on salmon
 - Will human presence negatively impact bears?
- "Bearcam" deployed to watch bears on-site in northern Yukon

Ni'iinlii Njik Park

Bearcam

Bearcam system recorded approx. 4h video per day for 15 days

Bear Detection

- Bears have distinct shape and pattern of motion
 - extract image gradients and background difference
 - build classifier to detect bears

Classifier

pos. gradient

neg. gradient

pos. back. sub.

neg. back. sub.

- Build bear detector using variant of AdaBoost (Viola-Jones)
 - A set of weak learners is built from thresholded background subtraction and gradient features

$$h_t(x) = p_t f_t(x) < p_t \theta_t$$

Results

- Crop windows from video frames
- Training set
 - 451 windows containing bears
 - 45100 without bears
- Test set
 - 400 bear windows
 - 40000 without

Results on Frames

- Run classifier on entire frame, take highest response
- Same training set
 - bootstrap negative set
- Test set

/8M

SFU Vision and Media Lab

- 405 frames with at least I bear
- I 6000 with none
- detect 76% at 0.001 FPPI
- detect 88% at 0.01 FPPI

Outline

- Detection of animals in video
 - Grizzly bears
- Analyzing animal behaviours
 - Grasshoppers
- Recognizing animal species
 - Fish

Understanding Insect Actions

- How are grasshoppers' actions affected by spiders?
 - Predator-prey relationship
- Environment variables
 - Temperature
 - Light

SFU Vision and Media Lab

- Presence of food
- Collect data on grasshopper movement rates and actions
 - Lab environment, glass case
 - Calibrated stereo cameras

Top CameraBottom Camera

 Background subtraction tracker in each camera

78M

SFU Vision and Media Lab

Clustering with Action Features

- Smooth the 3D track
- For each non-overlapping window of size w of track compute the difference between x(t) and $x(t+\Delta t)$
- Use spectral clustering on these features

Clustering Results

- Cluster purity measured
- 3530 hand-labelled frames

Clustering Visualization

- Take all frames in "jump" cluster
- Show all such clips in one shorter video
 - Minimize spatial/temporal overlap of clips
 - Rav-Acha, Pritch, Peleg CVPR06

J8M

SFU Vision and Media Lab

Clustering Visualization

- Take all frames in "jump" cluster
- Show all such clips in one shorter video
 - Minimize spatial/temporal overlap of clips
 - Rav-Acha, Pritch, Peleg CVPR06

JSM

SFU Vision and Media Lab

Outline

- Detection of animals in video
 - Grizzly bears
- Analyzing animal behaviours
 - Grasshoppers
- Recognizing animal species
 - Fish

Counting Fish

- Biologists have many hours of underwater video footage
 - Require count of fish by species
 - Use as proxy for tiger shark count
 - Currently, people must watch and manually identify/count
 - Automatic system could save many hours of labour

Challenges

- Video has limited resolution and is interlaced
- Underwater lighting has shifts in intensity and color
- Plants and sediment can cause false positives when detecting movement
- Fish appear with arbitrary locations and poses

Method overview

- I. Preprocess video frames to crop candidate subimages
- 2. Find correspondences between unknown images and known fish template images
- 3. Warp unknown images into alignment with the templates
- 4. Use support vector machines (SVMs) to classify the unknown images by fish species

Warping examples

(a) test image

(b) template

(c) warped test image

(d) test image

(e) template

(f) warped test image

(i) warped test image

(g) test image

78M

SFU Vision and Media Lab

(h) template

Experimental results

Automatic classification of 320 handcropped video frames of two fish species

SVM kernel	no warping	warped
linear	84%	90%
polynomial	81%	86%

some misclassifications

Acknowledgements

Canada Foundation for Innovation Fondation canadienne pour l'innovation

- graduate students
- natural scientist collaborators
 - Prof. Dill, Prof. Rothley, S. Marshall, G. Dutton
- funding from Canada Foundation for Innovation / BC Knowledge Development Fund
 - Scientific Data Acquisition, Transmission, and Storage (SDATS) project

Thank you

