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Abstract

The appearance of an object changes profoundly with
pose, camera view and interactions of the object with other
objects in the scene. This makes it challenging to learn de-
tectors based on an object-level label (e.g., “car”). We pos-
tulate that having a richer set of labelings (at different levels
of granularity) for an object, including finer-grained sub-
categories, consistent in appearance and view, and higher-
order composites – contextual groupings of objects consis-
tent in their spatial layout and appearance, can significantly
alleviate these problems. However, obtaining such a rich
set of annotations, including annotation of an exponentially
growing set of object groupings, is simply not feasible.

We propose a weakly-supervised framework for object
detection where we discover subcategories and the com-
posites automatically with only traditional object-level cat-
egory labels as input. To this end, we first propose an
exemplar-SVM-based clustering approach, with latent SVM
refinement, that discovers a variable length set of discrim-
inative subcategories for each object class. We then de-
velop a structured model for object detection that captures
interactions among object subcategories and automatically
discovers semantically meaningful and discriminatively rel-
evant visual composites. We show that this model produces
state-of-the-art performance on UIUC phrase object detec-
tion benchmark.

1. Introduction
Consider the image shown in Fig. 1, humans can provide

a rich set of semantic labelings for objects in such an image,
including the basic object-level categories, e.g., “person”,
the fine-grained object sub-categories, e.g., “rider” and the
visual contextual composite labels, e.g., “person riding bi-
cycle”. Such labelings thoroughly explain the appearance
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Figure 1. Labeling an Object: Humans can describe objects with
a rich set of semantic labelings. However, in most object detec-
tion benchmarks, only the basic-level category labels are provided,
e.g., person, bicycle. This could result in large intra-class vari-
ations in object recognition. In this paper, we detect basic-level
objects from images, and simultaneously discover the unobserved
labeling space that includes the low-level fine-grained subcategory
labels and the high-level visual composite labels.

variations of an object through not only the low-level pose
and viewpoint changes, but also its high-level relations to
other objects in this particular scene.

Traditional object detectors perpetually struggle with a
question of how to label an object. First, it is not possible
to annotate (or even enumerate) every sub-category and/or
composite relationship for an object category; this makes
supervised training for such entities difficult. Further, such
annotations are also often subjective and task specific. Sec-
ond, there is a clear gap between the semantic descriptions
and the discriminability of the labels for purpose of detec-
tion and classification. For example, human subjects tend to
use the word “blue” to describe the person in Fig. 1, but this
semantic label is not informative in classifying the instance
as a “person” from other possible object categories.

To avoid burdens of annotation and issues of subjectivity,
in most of the standard object detection benchmarks, only
the basic-level object category labels are provided, such as



Figure 2. An overview of our detection pipeline: In the training
phase (top row), we first discover the object subcategories from
each basic-level category, then we train subcategory classifiers in
the latent SVM framework. The relational model takes the outputs
of these subcategory classifiers as input, and carries out reasoning
on top of these responses from a structured perspective. In the test
phase (bottom row), we run the subcategory detectors to gener-
ate a set of bounding boxes. Then we use our learned relational
model to re-score these bounding boxes based on the object com-
positional relations and generate the final detection results. Our
model outputs both the bounding boxes of each object and the dis-
criminative object relations.

“person”, “bicycle”, “car” and “road”. However, without
more detailed labelings, basic-level object detectors usually
suffer from large intra-class variability. Object appearance
tends to change profoundly with pose, viewpoint variations
and object-object interactions. For example, persons look
quite different walking vs. sitting, from frontal view or side
view, and their appearances also change dramatically when
interacting with other objects (e.g., person riding a horse or
lying on a sofa has very different appearance from a generic
person walking). We believe the multi-level (contextual) se-
mantic labelings are key to resolving intra-class variations
within the basic-level object categories. Considering the
difficulties in obtain such labelings, we advocate a weakly
supervised setting where only the basic-level categories are
provided in training, and the fine-grained subcategories as
well as the high-level visual composites are automatically
discovered from the training data.

In this paper, we propose a novel framework for detect-
ing and labeling objects with basic object-level categories
and multiple automatically discovered semantic labelings.
The semantic labelings consist of lower-level object subcat-
egories as well as higher-level visual contextual composites,
modeling relationships that the object has with other objects
in the scene. Object subcategories are visual clusters that
capture a wide range of appearance variations of an object.
We propose an exemplar-SVM based clustering algorithm
to discover the subcategory labels. The subcategories are
then treated as mixture components in a latent SVM frame-
work, and refined during learning. Our model detects pos-
sibly multiple object instances in a single image and gen-
erates detailed fine-grained subcategory labels for each in-
stance. At the higher-level of our framework, we focus on
the reasoning about relationships between object subcate-
gories. Such reasoning generates sets of closely interact-

MULTI-COMPONENT OBJECT DETECTION
Model Clustering # of comp

Bourdev and Malik [1] SVM annotations fixed (300)
Divvala et al. [16] (part-based) LSVM appearance fixed (15)
Divvala et al. [17] (part-based) LSVM appearance fixed (25)
Felzenszwalb et al. [7] part-based LSVM aspect fixed (3)
Gu and Ren [11] part-based LSVM view fixed (4/8)
Gu et al. [10] SVM annotations 400-1000
Malisiewicz et al. [14] SVM none all exemplars
Our model part-based LSVM appearance data-driven

automatic spatial subcategory co-occurrence
Li et al. [13] automatic spatial object co-occurrence
Sadeghi et al. [15] none manual annotation

Discovery Patterns
VISUAL COMPOSITES

Table 1. Related Work: Our framework relates to both multi-
component object detection and, recently introduced, contextual
visual composite models. A notable difference is that we dis-
cover sub-categories and composite relationships automatically
from data (based on appearance and spatial layout).

ing objects that form visual composites, e.g., “person riding
horse”. Notably the structure of the composites, including
participating objects and their spatial layout, are discovered
automatically from data using a structured model formula-
tion. An overview of our approach is shown in Fig. 2.

Contributions: 1) We propose a spectrum of automatically
generated semantic labelings for object detections. These
labelings contain both lower-level subcategories and higher-
level visual composites. 2) We introduce a discriminative
clustering algorithm to discover the subcategories. 3) We
develop a structured model for object detection that cap-
tures interactions among object subcategories and automat-
ically discovers discriminative visual composites. We also
show that our discovered visual composites are semanti-
cally meaningful. 4) Our approach produces state-of-the-art
performance in an object detection benchmark that includes
a rich set of object interactions.

2. Related Work

Our work relates to a number of topics in object detec-
tion and recognition. We overview the closest literature in
Table 1 and discuss it further below.

Multi-component Object Detection: In order to deal with
significant intra-class variations that can not be tackled by
monolithic models, several influential approaches model-
ing multiple components of objects, i.e. subcategories, have
been introduced [1, 7, 10, 11, 14, 16]. Mixture compo-
nents were integrated into the deformable part models either
based on bounding box or appearance k-means clustering
in [7] and [16, 17] respectively. However, the number of
mixture components is pre-defined (fixed) and not inferred
from data. Gu and Ren [11] focus on modeling viewpoint
variations of objects and ignore other richer sources of intra-
class variations. Malisiewicz et al. [14] train an exemplar
SVM for each positive example. However, the generaliza-



tion ability of each model is limited. In this work, we use
exemplar SVM to discover an initial pool of subcategories
which we then refine, through merging, and train part-based
models for each resulting subcategory. Gu et al. [10] is sim-
ilar to our subcategory model. However, in [10] object re-
lationships are not modeled and hand annotated keypoints
and masks are used for clusterings, making the approach
considerably less scalable. Bourdev [1] introduces poselets
for person detection, but poselets encode visual composites
of parts rather than global objects and also require keypoint
annotation.

Object Interactions: There is rich literature on model-
ing contextual interactions between objects, including [2, 4,
9, 12, 19]. The core difference between our approach and
these methods is that we model interactions among object
subcategories rather than the basic-level object categories.
This captures the subtle joint appearance changes between
objects caused by interactions. For example, when a person
partakes in an interaction with a bicycle, when riding, the
appearance of both the bicycle and the person exhibit view-
consistent appearance changes (e.g., the rider’s legs tend to
occlude specific parts of the bicycle and the bicycle creates
a highly textured background close to the rider’s legs).

Visual Composites: Recently, several works implicitly
model occlusions and interactions through entities that fall
between objects and scenes. This is often referred to as
“visual composites” – two or more closely interacting ob-
jects. Sadeghi et al. [15] manually annotate a list of vi-
sual phrases and train global phrase templates for detection.
In [13], higher-order visual composites are automatically
discovered based on the spatial/scale/aspect consistency of
objects. However, the appearance consistency of compos-
ite visual patterns are not taken into account. These global
template based approaches may require a separate template
for each combination of interacted objects, making scala-
bility problematic. In contrast, we use subcategories and
spatial relations to reason about object interactions. Desai
and Ramanan [3] propose phraselets, where human pose is
modeled together with interacting objects based on the con-
figurations of local patches. Notably, our work models in-
teractions among object subcategories.

3. Discovering Subcategories
Given a set of training images with basic-level object cat-

egory labels and bounding boxes, our goal is to discover
the fine-grained subcategories. The two key requirements
for good object subcategories are: (1) inclusivity – subcate-
gories should cover all, or most, variations in object appear-
ance and (2) discriminability – subcategories should be use-
ful for detecting the class. The standard solution is to em-
ploy some form of unsupervised clustering, such as k-means
on the object appearance feature vectors [16, 17]. However,

running k-means on objects usually does not produce good
clusters, particularly in terms of discriminability, due to the
low-level predefined (Euclidean) distance metric used by k-
means. In addition, manually defining the number of clus-
ters is often difficult. We argue that the number of subcat-
egories per object class should be driven by the appearance
variations within that class, not a fixed global parameter.
An alternative option is the unsupervised mid-level patch
discovery strategy proposed recently in [18]. The method
shows good performance in finding a set of representative
patches from unlabeled images.

Our approach is inspired by the recent success of ex-
emplar SVM [14]. We train a linear SVM for each exem-
plar. The exemplar is used as the single positive example,
while negative examples are sampled from images that do
not contain any instances of the exemplar’s class. We use
5 iterations of hard negative mining in training each classi-
fier. An exemplar is represented by a rigid HOG template,
and each classifier can be interpreted as a learned exemplar-
specific template. For each exemplar, we run the detector
on all other examples in the class. We consider detection
scores above −1 indicative of object presence. A cluster
is formed by the exemplar and its top k scoring detections.
We limit each cluster to only five members (k = 4) to keep
cluster homogeneity. Clusters with fewer than two mem-
bers are pruned. This process allows us to obtain a large
set of highly homogenous atomic clusters. We then merge
visually consistent clusters via affinity propagation [8]. We
define the (asymmetric) similarity from cluster s to cluster
r as: ds(r) = 1

N
∑
i

∑
j ws(i)

>xr(j), where xr(j) is the
HOG feature vector of the j-th example of the cluster r.
The weight term ws(i) is the learned template for the i-th
example of the cluster s. N is the normalization constant
computed as the number of examples in cluster r times the
number of examples in cluster s.

We compute similarities between every pair of the
atomic clusters. Then affinity propagation [8] is applied
where the atomic clusters are gradually merged into larger
clusters by a message-passing procedure. Unlike k-means,
affinity propagation does not require parameters that specify
a desired number of clusters, instead the number of clusters
is determined from the data. Affinity propagation also does
not require initialization of cluster centers. We run affin-
ity propagation for each basic-level category separately and
obtain the fine-grained subcategories. Figure 3 shows a vi-
sualization of several example subcategories. Note that, due
to our discriminative training strategy, objects within each
subcategory are highly consistent in appearance.

4. Learning Subcategories
Given the set of subcategories obtained from the previ-

ous section, we learn a mixture model based on DPM [7],
where the mixture components correspond to subcategories



Figure 3. Subcategories: Subcategories are defined by object in-
stances that are tightly clustered in appearance space. The fig-
ure shows the discovered subcategories for some of the basic-level
object categories including horse, person, bicycle, car, bottle and
dog. We only show the first five examples in each subcategory.

of a basic-level object category. We first review the key
methodologies of learning the DPM detector, and then ex-
plain the details of their use in our mixture model.

DPM is trained from a set of labeled examples D =
(〈x1, y1〉 , . . . , 〈xn, yn〉), where yi ∈ {−1, 1}. The goal is
to learn model parameters w by minimizing the objective
function,

LD(w) =
1

2
||w||2 + C

n∑
i=1

max(0, 1− yifw(xi)) (1)

where fw(xi) is the score of the classifier w on example
xi. Here we write fw(x) = maxz∈Z(x) w

>Φ(x, z); z are
the latent variables and Z(x) are the set of possible latent
values for an example x. Since the optimization is non-
convex, the model parameters w and the latent variables z
are learned using an iterative approach [7].

Mixture models: It is straightforward to train DPM for
each subcategory independently [16]. However, one con-
cern is in calibrating the scores output by individual SVM
classifiers. In addition, subcategories discovered in the pre-
vious section might be noisy and should be cleaned up dur-
ing learning. In this work, we train the subcategory classi-
fiers in the latent SVM framework, where the training of the
classifiers are coupled and the subcategory labels are refined
in the latent step. The subcategory labels in our method cor-
respond to the mixture components in DPM.

In DPM, the mixture components are initialized accord-
ing to the examples’ aspect ratios and updated in the latent
step. However, the aspect ratio heuristic does not generalize
well to a large number of subcategories, and thus often fails
to provide a good initialization. Due to the non-convex na-
ture of latent SVM, initialization of subcategories is a key
step of learning a good detector. Here we naturally use the
subcategories discovered in the last section to initialize the
mixture components, and allow the subcategory labels to

refine during the latent step. To detect objects, we run the
learned classifiers independently for each component. The
output of this step is a set of candidate windows where each
window is associated with a fine-grained subcategory label.

5. Relational Model

Subcategory mixture models learned in the previous
section are good for dealing with appearance variations
present in a given object class, however, detection accuracy
for some, typically smaller and less-discriminative, object
classes may still be low. Contextual information of rela-
tionships between detections in an image can further boost
the performance of object detectors, as been shown in [13]
and [15]. Unlike these methods, however, we propose to
build contextual basic-level category models based on the
subcategory classifiers (not aggregate object detections, as
in [13], or composed templates [15]). This allows our model
to be attuned to visual and view-based correlations between
subcategories of objects.

We use a star model to represent an object, where the
object is connected to other objects in the vicinity of the de-
tection. Intuitively, this is similar to the part based model
in [7], and the objects in context are treated as parts. How-
ever, instead of treating all objects in the same image as
context, we introduce binary latent variables to discrimina-
tively select which objects have strong interactions with the
central object and should be included in our model. We call
the star graph that includes the candidate central object and
the contextual objects a visual composite. At the end of the
inference, our goal is to obtain a rich set of visual compos-
ites that are not only highly characteristic of the object class,
but also highly discriminative compared to other classes.

Representation: We begin by introducing the notations we
use in the rest of the paper. The input to our learning mod-
ule is N images accompanied with a set of 〈Xn, Yn〉 pairs,
n = 1, . . . , N . Here we write Xn = {xi : i = 1, . . . ,Mn}
as the representation of the n-th image, where Mn is the
total number of detected bounding boxes for this image
and xi is the feature vector of the i-th bounding box. Let
Yn = {yc,i : c = 1, . . . , C, and i = 1, . . . ,Mn} be the
entire label set for image Xn, where C is the total num-
ber of object categories in the dataset and yc,i ∈ {0, 1} is
a variable indicating if the i-th bounding box contains an
object of the c-th category. Let pi ∈ {1, . . . ,K} be the
indicator variable showing the subcategory detector that se-
lect the i-th bounding box, where K is the total number of
subcategories in our dataset. An object hypothesis is rep-
resented by a star graph, which specifies an object bound-
ing box and a set of bounding boxes of contextual objects.
Assuming the central object’s index is i, we use Li to rep-
resent the indices of contextual objects in an image where
Li = {j : j ∈ {1, . . . ,Mn}\i}.



5.1. Finding Candidate Visual Composites

In training, we discover a set of discriminative visual
composites automatically. We define visual composites as
consisting of two or more objects. Objects that belong to the
same composite should co-occur frequently and conform
to certain spatial and scale relationships that are consistent
across images. Based on this definition, only a subset of
objects in an image can be part of a visual composite. Our
goal is to discover such composites that exhibit consistently
occurring object layout patterns in a set of images.

Consider a visual composite, represented by a star graph.
The key insight is that based on our definition, contex-
tual objects windows (leaves of the graph) should all have
consistent layout with the central object window; in other
words, contextual objects should be able to consistently pre-
dict a bounding box for the central object under considera-
tion. With that as an insight, at training time, we first learn
spatial layout relationships between potential contextual ob-
jects and central object. Based on these learned relations an
initial graph of a visual composite is constructed (by only
considering object detections that are consistent in predict-
ing considered central object’s bounding box).

We start by fitting a three component Gaussian mixture
(MoG) model to pairs of (bounding boxes of) objects that
co-occur in training images. The three component MoG al-
lows us to model various spatial and scale aspects of the
object-object relationship. Notably, we can easily produce
a hypothesis for a bounding box of a central object by con-
ditioning the learned mixture model on the bounding box
of a contextual object. Given an image, we can use this
model to determine the set of possible contextual objects for
each central object window. Given a central object window
we consider contextual objects to be windows that, given
a learned spatial Gaussian mixture model, can predict the
central object window to > 0.3 overlap (VOC criterion).

During training, we iterate over all true positive activa-
tions (responses of the detector that are within 0.5 overlap
to the true object annotation), and in this way obtain the vi-
sual composites (central object + contextual objects) that
have tight spatial configuration coupling.

During testing, however, the ground truth object cate-
gories are not provided, thus we do not know if a detection
window is a true positive or not. If we naively include all
spatially consistent detection windows as contextual objects
for a given candidate central object, we may include many
false positives and thus hurt the performance. Thus dur-
ing inference, we introduce a binary latent variable for each
candidate contextual window to discriminatively select if it
will be included in our composite object model. For an ob-
ject window i, we use hi to denote the binary latent vari-
ables for all contextual objects with indices in the set Li.
Note, during training we assume hi is known (see above).

5.2. Model Formulation

We construct models for each basic-level object category
separately. For modeling the c-th basic-level object cate-
gory, the score associated with a bounding box i is:

Sc(xi, yc,i,hi) = α>pixi·yc,i+
∑
j∈Li

β>pjdij ·hij+
∑
j∈Li

γ>pipjxj ·hij

(2)

Root model α>pixi · yc,i: We simply use the output of the
subcategory detector as the single feature. To learn biases
between different subcategories, we append a constant 1
to make xi two-dimensional. αpi is the two-dimensional
weight that corresponds to the subcategory class of the i-th
bounding box. If the bounding box is labeled as background
(yc,i = 0), then the potential of the root model is set to zero.

Context model β>pjdij · hij: We write dij = [xj , gij ] to
represent the objects in context, where xj is the appearance
feature (detection score) of the j-th bounding box and gij is
the spatial feature computed based on the relative position
and scale of the j-th bounding box w.r.t. the i-th bounding
box using the Gaussian distribution described in the previ-
ous section. hij is a binary latent variable that determines
whether the contextual object is discriminative and should
be included into the context model.

Co-occurrence model γ>pipjxj ·hij: This term captures the
“prior” over subcategory combinations. The intuition is that
certain pairs of subcategories tend to co-occur while others
do not, for example, a bicycle with side view tends to co-
occur with a rider with the same viewpoint, and a horse
tends to co-occur with a horse rider instead of a person
walking.

5.3. Inference

We assume that the bounding box labels yc,i are inde-
pendently inferred, and our inference is exact. For an object
window i, our inference corresponds to solving the follow-
ing optimization problem:

(ŷc,i, ĥi) = arg max
yc,i,hi

Sc(xi, yc,i,hi) (3)

For the bounding box i, the inference is on a star graph
where we jointly infer the presence or absence of the c-th
category yc,i as well as the corresponding binary latent vari-
ables hi of the contextual objects. This is very simple exact
inference as yc,i and hi are all binary variables and we can
enumerate all possible values of the random variables and
find the optimal solution. Note that we constrain hi to an
all-zero vector when yc,i = 0, which means we do not con-
sider object interactions with background. We emphasize
that our inference procedure returns both object labels and
the visual composites that tells the closely related contex-
tual objects for each object window.



Figure 4. Subcategory Templates: Examples of learned three ob-
ject categories: bicycle, horse and person (one category per row).
For each template, we show the best match from the UIUC phrase
training set. For object categories, bicycle, bottle, car, chair, dog,
horse, person and sofa, the number of discovered subcategories
(through affinity propagation) for our mixture models are: 13, 6,
15, 6, 13, 12, 59 and 13 respectively. Due to space limitation, we
only show some of the templates.

5.4. Structure Learning

Given N training images with a set of bounding boxes
X and the corresponding object category indicator labels
Y . We would like to train the model parameter θ that tends
to produce the correct object labels. Here we train mod-
els independently for each basic-level object category. The
following objective function is for learning the model pa-
rameter θc for the c-th category:

min
θc,ξ≥0

1

2
||θc||2 + C

N∑
n=1

Mn∑
i=1

ξni

Sc(x
n
i , y

n
c,i,h

n
i )− Sc(xni , ŷnc,i, ĥni ) ≥ ∆ (ync,i, ŷ

n
c,i)− ξ

n
i ,

∀i,∀n, (4)

where the loss function ∆ is a 0-1 loss that measures the dif-
ference between the ground-truth object category indication
yc,i and the inferred variable ŷnc,i, i.e., ∆ (ync,i, ŷ

n
c,i) = 1 if

ŷnc,i 6= ync,i, and 0 otherwise. This form of learning problem
is known as structural SVM, and many well-tuned solvers
can be applied to solve this problem. Here we use the bun-
dle optimization solver in [5].

We note that during training the contextual binary vari-
ables hi are observable based on the ground truth visual
composites (see Section 5.1). We experimented with let-
ting hi be latent during learning, however, saw somewhat
inferior performance which we attribute to resulting non-
convexity in the objective.

6. Experiments
We present results of object detection on a standard ob-

ject benchmark dataset: UIUC phrase dataset [15]. The
UIUC phrase dataset contains 2796 images which consist
of a subset of PASCAL images and images for phrases col-
lected from the web. The images are labeled with 8 of the

20 PASCAL categories, and a list of 17 visual phrases such
as person riding bicycle, dog lying on sofa, etc. In this pa-
per, we train our object models using only the basic-level 8
category labels. We use the training-testing split avaialble
at http://vision.cs.uiuc.edu/phrasal/.

We picked UIUC phrase because it contains a rich set
of visual composites (phrases plus a few higher-order com-
posites such as person drinking bottle sitting in a chair). It
also contains a subset of PASCAL images and uses famil-
iar PASCAL object categories, PASCAL on the other hand
contains few composites. The use of UIUC phrase dataset
also allows us to compare our results to competing methods.
We compare our results to state-of-the-art performance re-
sults of [13, 15], as well as the detection performance of
our subcategory classifiers. We further apply the proposed
method to image retrieval with visual phrase queries, and
show that our method significantly outperforms baselines.

6.1. Object Detection

Table 2 compares results of our method with leading
approaches on the UIUC phrase dataset. The approaches
we compared against are: 1) Deformable part-based model
(DPM) [7]; 2) Object context: a contextual re-scoring
scheme used in [7]; 3) Phrase context: object detection out-
puts are re-scored using the phrase template trained by man-
ually defined phrases [15]; 4) Group context [13], object
detection outputs are re-scored using automatically discov-
ered groups of objects. To fairly compare with the reported
results, we use the same version of deformable part models
to train our subcategory classifiers [6].

Our method achieves state-of-the-art in terms of mean
average precision across 8 object categories on this bench-
mark. In particular, for 4 object categories: car, dog, horse
and person, our method significantly improves on state-of-
the-art [7, 13] by 5.5%, 9.4%, 11.2% and 12.1% respec-
tively. Note that our method does not use phrase annotations
as in [15], but achieves significantly better performance.
There are two main reasons for the improved performance
in our method: 1) We discover highly consistent subcate-
gories. The trained subcategory classifiers are highly dis-
criminative and address intra-class variations among basic-
level categories. This is demonstrated by the performance
gain of subcategory classifiers in Table 2. Some of the
learned subcategory templates are visualized in Figure 4. 2)
Modeling visual composites improve performance for some
hard-to-detect object categories such as bottle and chair. We
think the poor performance of classifying bottle and chair
by our subcategory classifiers is mainly due to over-fitting.
We have fewer training examples for these two classes, and
further dividing these examples into subcategories will eas-
ily over-fit the data. In this case, the context of visual com-
posites is important. For example, a person with a pose of
sitting will help detect a chair below him. The visual com-



bike bottle car chair dog horse person sofa mAP
DPM [7] 57.0 7.0 25.8 11.1 5.6 49.3 25.7 14.1 24.5

Object context [7] 58.8 9.3 33.1 13.4 5.0 53.7 27.9 19.8 27.6
Phrase context [15] 60.0 9.3 32.6 13.6 8.0 53.5 28.8 22.5 28.5
Group context [13] 63.5 10.7 32.5 13.2 8.0 54.6 30.6 24.9 29.8

Our subcategory model 63.7 3.0 37.7 4.7 14.1 67.0 45.2 23.7 32.4
Our full model 63.9 9.4 38.1 9.8 17.4 65.8 42.7 24.4 33.9

Table 2. Detection results on UIUC phrase: Table compares average precisions (AP) for all 8 categories and the mean AP (mAP) across
categories; leading approach is in bold. Our method achieves state-of-the-art in mean AP and outperforms [13, 15] in 5 out of 8 categories.

posites will also prune some false positives that violate typ-
ical spatial configurations. A detailed discussion of visual
composites is provided in the next section.

6.2. Visual Composites

Fig. 5 visualizes our detection results along with the pre-
dicted visual composites. For example, in Fig. 5 (a), a con-
fident “person” response together with a tight spatial lay-
out helps boost the bicycle detection. Compared to phrases,
higher order composites can be more effective because mul-
tiple confident contextual object responses in tight spatial
layout with the single central object detection tend to be
more reliable and indicative. Fig. 6 (top right) shows a com-
posite of person riding bicycle with a car nearby, where the
confident responses of car and person will jointly boost the
detection of the bicycle.

Visual phrase retrieval: Since the UIUC phrase dataset
is annotated with visual phrases, we wish to evaluate how
well our method performs in applications designed for those
phrases even without phrase annotations during training.
However, our method is not directly applicable to visual
phrase detection as in [15], since the output of our method
are bounding boxes of objects instead of visual phrases.
Here we evaluate our method in image retrieval with visual
phrase queries. Instead of answering question of where is
the visual phrase, we focus on whether an image contains
the visual phrase.

UIUC phrase contains annotations of 12 visual phrases
that describe interactions between two objects (e.g., per-
son lying on sofa). We evaluate performance by using each
visual phrase as the query. We compare our method with
deformable part models [7] and our subcategory detectors.
All of the three methods are trained with the same annota-
tions – only the basic-level object categories are provided.
Since these methods cannot make a distinction between
phrases composed of the same objects (e.g., “person lying
on sofa” versus “person sitting on sofa”), while evaluating
the retrieval performance for a query (e.g., “person lying on
sofa”), we remove all images from the test set which con-
tain other queries that are composed of the same objects
(e.g., “person sitting on sofa” ).

We use the same heuristic to combine the object detector
scores for retrieval. For example, given a query of “per-

Phrase Names DPM [7] Subcat. Full Model
Person lying on sofa 1.0 2.8 2.8
Person sitting on sofa 4.6 9.0 12.4
Person riding bicycle 67.4 86.5 86.9
Person next to bicycle 45.9 59.3 68.0

Person riding horse 78.3 85.8 85.7
Horse and rider jumping 15.7 70.5 71.3

Person next to horse 27.9 28.2 27.4
Person drinking bottle 8.4 2.5 2.1
Person sitting on chair 11.0 10.3 10.7

Person next to car 18.7 36.1 35.6
Bicycle next to car 20.7 56.7 54.2
Dog lying on sofa 4.6 18.4 20.4

mAP 24.3 38.9 39.8
Table 3. Phrase query based image retrieval results: Compar-
ison of average precisions (AP) for all 12 visual phrases and the
mean AP (mAP) across categories; leading approach is shown in
bold. Our method significantly outperforms the baseline and the
full model improves over our subcategory model.

son riding bicycle”, we first apply both “person” detector
and “bicycle” detector on the testing images. Then a testing
image will be scored by the sum of the maximum person
detector score and maximum bicycle detector score on this
image. Note, detector scores across object categories have
been normalized to the same scale by logistic regression.

Summary of results is in Table 3. Our method again
achieves remarkable improvement over the baseline. Note
that our method does not require any visual phrase annota-
tions, and is trained purely on basic-level object categories,
but can still reliably retrieve a list of visual phrases: “Per-
son riding bicycle”, “Person riding horse” and “Horse and
rider jumping”. The biggest performance gap is on “Horse
and rider jumping”: our method increases the average pre-
cision from 15.7% (DPM) to 70.5%. We believe this is
because our method automatically discovers subcategories
corresponding to “horse rider” and “jumping horse” and
learns discriminative subcategory templates. Our full model
also further improves the results of subcategory classifiers,
particularly in the phrases with tight spatial configurations,
such as “Person sitting on sofa” and “Horse and rider jump-
ing”. Our method does not perform well for “person drink-
ing bottle”. We believe this is because our subcategory clas-
sifiers for bottle over-fit (see Section 6.1), and the response
of bottle detector during testing is often low; notably, it can



Figure 5. Object and visual composite detection: The central
objects, object we want to re-score, are shown in red (only the
top 3 detection responses are visualized), and the automatically
discovered contextual objects in blue; green rectangles label the
visual composites. For each detection response, we also show the
confidence score before and after applying our relational model
denoted by s : t, where s is the output of subcategory detector
and t is the output of our full model. We use dashed line to de-
note the responses suppressed by our relational model, solid line
for boosted responses. For example, in (a), a confident “person”
response together with tight spatial layout boosts the “bicycle”
score from 0.99 to 1.31 while the false positive bicycle response
above the person is suppressed; (b) shows an example of “person-
bottle” composite. Although the true positive bottle response is
decreased, the gap between true positive and false positive bottles
is increased.

easily be dominated by the high response of person since
the confidence score of “person drinking bottle” is obtained
by summing “max” scores of person and bottle.

7. Conclusion

In this paper, we propose a multi-level framework for
detecting and labeling objects with basic object-level cate-
gories and multiple automatically discovered semantic la-
belings including the fine-grained subcategories as well as
the high-level visual composites. Our framework is weakly
supervised where only the basic-level categories are pro-
vided in training. Our experiments on the UIUC phrase
dataset show that the proposed method outperforms multi-
ple state-of-the-art methods in object detection, and the au-
tomatically discovered visual composites are semantically
meaningful. We further show that our method can be ap-
plied to retrieve images with visual phrase queries even
without visual phrase annotations during training, with sig-
nificant improvement over baselines.

Figure 6. Visual composite examples: The central objects are in
red, contextual objects are in blue. For clarity, we omit to show
relative spatial configuration. As can be seen, composites are of-
ten are semantically meaningful. Besides visual phrases, we also
discover higher-order composites such as: person-bicycle-car and
person-bicycle-person (see examples of the second row).
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