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Abstract

In this paper we develop an algorithm for action recogni-
tion and localization in videos. The algorithm uses a figure-
centric visual word representation. Different from previous
approaches it does not require reliable human detection and
tracking as input. Instead, the person location is treated as
a latent variable that is inferred simultaneously with ac-
tion recognition. A spatial model for an action is learned
in a discriminative fashion under a figure-centric represen-
tation. Temporal smoothness over video sequences is also
enforced. We present results on the UCF-Sports dataset,
verifying the effectiveness of our model in situations where
detection and tracking of individuals is challenging.

1. Introduction

At a broad level, there are two prevalent approaches for
action recognition from video sequences. The first is sta-
tistical, gathering histograms of local space-time interest
points over videos. The second is structural, using hu-
man figure-centric representations which maintain spatial
arrangements of features with respect to the person. In
terms of output, many action recognition approaches do not
answer the question of where an action takes place in a
video, just that it does exist somewhere in the video. In
this paper we argue two points, that this action localization
is an important component of action recognition, and that
doing so can lead to better action classification accuracy.

Impressive action recognition results have been achieved
using bag-of-words statistical representations [14]. How-
ever, there are limitations in this representation of an ac-
tion, lacking important cues about the spatial arrangement
of features. Recent efforts have been made to extend
this representation, using relative arrangements of visual
words [20, 13]. Yet these representations still lack explicit
modeling of the human figure, and are limited to higher-
order statistics of visual word co-occurrences.

Figure 1: The goal of this paper is to learn a model using training
videos annotated with action labels and bounding boxes around
people performing the action. Given a new video, we can use the
model to simultaneously predict the action label of the video and
localize the person performing the action in each frame, including
a detailed discriminative region representation.

Structural approaches that use figure-centric representa-
tions rely on either a template matching strategy [21] or hu-
man detection and tracking as input [5]. Template matching
is arguably too brittle for unconstrained videos. Reliable
human detectors exist [8], though only for canonical upright
poses without occlusion. For recognizing more diverse cat-
egories of actions (e.g the UCF Sports dataset [19]), this
type of human detector is unreliable. Hence, many action
recognition approaches forego a human-centric representa-
tion in favour of a purely statistical approach.

In this paper we argue that building figure-centric struc-
tural information into an action representation is advanta-
geous, if it can be done robustly. Further, if one is to go
beyond just recognizing an action and proceed to localize
it within a video, it is essential to actually determine where
the action is taking place. The main contribution of this pa-
per is a representation that bridges between a bag-of-words
style statistical representation and this type of figure-centric
structural representation. To overcome the challenge of per-



son detection in complex actions, we do not pre-suppose the
existence of a human detector capable of producing an ac-
curate figure-centric representation. Instead, we treat the
position of the human as a latent variable in a discrimi-
native latent variable model, and infer it while simultane-
ously recognizing an action. We also move beyond a sim-
ple bounding box representation for the human figure and
learn a more detailed spatial model of an action, discrimi-
natively selecting which cells of a bounding box represen-
tation should be included as a model for an action. This
detailed action-aware representation explicitly models the
discriminative region within a bounding box and thus can
be more robust to background clutter. A similar representa-
tion is proposed recently to handle occlusion in object de-
tection [11].

2. Previous Work
The literature on vision-based action recognition is im-

mense. Weinland et al. [23] provide a recent survey; we
review closely related work here. Visual word representa-
tions, in the form of quantized interest point descriptors,
are common in the action recognition literature [18, 4, 14].
Beyond first-order bag-of-words representations, Ryoo and
Aggarwal [20] developed a matching kernel that considers
spatial and temporal relations between space-time interest
points. Kovashka and Grauman [13] consider higher-order
relations between visual words, each with discriminatively
selected spatial arrangements. Instead, our work endows vi-
sual word representations with a figure-centric frame of ref-
erence. We maintain a spatial coordinate system specifying
where features are with respect to the person, while these
other bag-of-words methods do not. Klaser [12] evaluates
bags-of-words features in different datasets with and with-
out a figure-centric representation obtained using a person
detector. Our work also uses a figure-centric visual word
representation, though with latent modeling of the person
location and a finer level of discriminatively chosen spatial
details.

Figure-centric template matching approaches based on
shape and motion features are another common strategy [21,
5]. As noted above, assuming reliable human detection and
tracking as input to action recognition is problematic. Lu
et al. [15] attempt to address the tracking component with
a generative probabilistic model for simultaneous tracking
and action recognition. Impressive results are shown for
small-scale human figures, performing actions in far-field
hockey videos. Our work is similar in spirit, though does
not require manual initialization of tracks and learns dis-
criminative models for actions with larger shape variations.

In this paper we develop an algorithm to both recog-
nize and localize actions in videos. Similar work has
been explored in the object recognition literature. The Im-
plicit Shape Model (ISM) and its extensions [10] have been

(a) (b) (c)

Figure 2: Background context for action recognition. The three
images taken from the UCF-Sports dataset [19] are from the
classes: diving, swinging (at the high bar) and swinging (on the
pommel) respectively. Context is unhelpful for distinguishing be-
tween the actions in (b) and (c), but essential to distinguish the
actions in (a) and (b).

widely used in object category detection and segmentation.
ISM is a generative model that determines possible object
locations and scales in a probabilistic Hough voting proce-
dure. ISM can be first used to find hypotheses and a dis-
criminative model is then applied to verify them and filter
out false positives. Maji and Malik [16] develop a max-
margin formulation of the Hough Transform. Felzenszwalb
et al. [8] develop the latent SVM that aligns parts while
learning a model. Fergus et al. [9] encode spatial infor-
mation of interest points and simultaneously localize and
recognize objects, using a generative model (pLSA). Dese-
laers et al. [2] learn models for objects using features inside
a bounding box. In our work, we use a latent variable to dis-
criminatively select which information inside the bounding
box is useful for our task. In addition, in contrast with all the
aforementioned object recognition work, we consider video
sequences and we explicitly enforce the temporal coherence
of actions across time.

3. Recognizing and Localizing Actions in Video
Our goal is to learn a model to both recognize and lo-

calize actions in videos, depicted in Fig. 1. We assume we
are given a training set of videos with action labels and per-
son locations. We train a model that can determine whether
an action occurs in an input video, and the spatio-temporal
locations in the video at which the action occurs. Robust
solutions will require that many sources of information are
brought to bear on the problem. In this paper we incor-
porate two sources in a unified model – a statistical scene
context representation and a structural representation of the
individual person.

Global statistical models for scene context are now part
of the standard toolkit for action recognition (e.g. Marsza-
lek et al. [17]). Much can be gained from background scene
recognition via a global statistical model – in our exper-
iments we show that this effect seems to dominate in a
widely-used dataset. However, as Fig. 2 illustrates, global
statistical models are not enough, and descriptors on the
person may be overwhelmed by the cloud of background
features. Clearly, a structural representation that considers a



figure-centric representation is needed here. It is needed not
only for differentiating actions where background scenes
are similar, but also for localizing the actions.

In this work, we combine a global scene model with a
figure-centric representation. One of the challenges in using
a figure-centric representation is the need for human detec-
tion and tracking in order to form an aligned representation.
We take inspiration from the commonly used LSVM-based
object detector [8], which implicitly searches for an align-
ment of images via latent variables. However, that detector
is not directly applicable to action recognition in videos. In
our work, we make several important modifications to adapt
it to this problem domain.

First, analysis of video sequences naturally leads one to
consider temporal continuity, or tracking constraints. We
use latent variables to represent the location of the person
performing the action in each frame. Our tracking con-
straint enforces the region of the video corresponding to
the person (represented by those latent variables) should
be consistent in appearance over time. Second, unlike the
relatively rigid objects (pedestrians, cars, etc.) for which
the LSVM-based detector works well, human figures per-
forming various actions undergo drastic changes in shape.
The global “root filter” template and set of parts described
with HOG features are insufficient to capture this variation.
Instead, we deploy a figure-centric bag-of-words represen-
tation combined with a flexible latent sub-region model to
capture this variation. Exact learning and inference in our
model are intractable. We develop efficient approximate
learning and inference algorithms.

3.1. Figure-Centric Video Sequence Model

We propose a discriminative figure-centric model that
jointly captures the relationship between the action label of
a video and the location of the person performing the action
in each frame. The location is represented by a bounding
box around the person, and a detailed shape mask that se-
lects certain regions within the bounding box. We divide
a bounding box into R cells, and introduce a latent vari-
able to discriminatively select which cells of a bounding
box representation are “on”. The action label of a video
and the bounding boxes of the person performing the action
are observed on training data (but not on test data). The dis-
criminative cells of each bounding box are treated as latent
variables in the model for both training and test data.

Each training video I is associated with an action la-
bel y. Suppose the video contains τ frames represented
as I = (I1, I2, . . . , Iτ ), where Ii denotes the i-th frame
of the video. We use L = (l1, l2, . . . , lτ ) to denote the
set of bounding boxes in the video, one per each frame.
The i-th bounding box li is a 4-dimensional vector repre-
senting location, height, and width of the bounding box.
We use λ(li; Ii) to denote the feature vector extracted

from the patch defined by li in the frame Ii. We assume
λ(li; Ii) is the concatenation of three vectors, i.e. λ(li; Ii) =
[xi; gi; ci]. Here xi and gi denote the appearance fea-
ture (codeword from k-means quantized HOG3D descrip-
tors [12]) and spatial locations of interest points in the
bounding box li respectively. ci denotes the holistic feature
of the patch, here we use a color histogram.

To encode which sub-regions of the bounding box are
important for an action, we introduce a matrix z = {zij},
1 ≤ i ≤ τ, 1 ≤ j ≤ R. An entry zij = 1 means the j-th
cell in the i-th frame is discriminative and thus “turned on”,
and zij = 0 otherwise. In other words, z specify the dis-
criminative regions inside each bounding box. We treat z as
latent variables and infer them automatically when learning
model parameters.

The configurations of bounding boxes in a video are not
independent. For example, bounding boxes of neighboring
frames tend to be similar in terms of image appearance, lo-
cation and size. To capture this intuition, we assume that
there are connections between bounding boxes in neighbor-
ing frames. Intuitively speaking, this will enforce a track-
ing constraint that states bounding boxes on the action of
interest should move smoothly over time. We use a chain-
structured undirected graph G = (V, E) to represent the
configurations of bounding boxes L in a video. A vertex
vi ∈ V corresponds to the configuration li of the bound-
ing box in the i-th frame. An edge (vi, vi+1) ∈ E corre-
sponds to the dependency between two neighboring bound-
ing boxes li and li+1.

Inspired by the latent SVM [8, 25], we use the fol-
lowing scoring function to measure the compatibility be-
tween a video I, an action label y and the configurations
of bounding boxes L that localize the person perform-
ing the action in each frame of the video: fθ(L, y, I) =
maxz θ

>Φ(z, L, y, I), where θ are the model parameters,
and Φ(z, L, y, I) is a feature vector defined on z, L, y, I.
The model parameters have three parts θ = {α, β, γ}, and
θ>Φ(z, L, y, I) is defined as:

θ>Φ(z, L, y, I) =
∑
i∈V

α>φ(li, zi, y, Ii)

+
∑

i,i+1∈E
β>ψ(li, li+1, zi, zi+1, Ii, Ii+1) + γ>η(y, I) (1)

The details of the potential functions in Eq. 1 are described
in the following.

Unary Potential α>φ(li, zi, y, Ii): For the i-th frame Ii,
this potential function measures the compatibility between
the action label y, the configuration of the bounding box li,
and the discriminative cells of the bounding box zi. Recall
that we divide a bounding box into R cells, zi is a vector
that denotes whether each cell in the bounding box li is dis-



criminative or not. We define the potential function as:

α>φ(li, zi, y, Ii) = (2)
Y∑
a=1

R∑
j=1

K∑
w=1

∑
v∈N (j)

α>aw · 1(y = a) · 1(xiv = w) · bin(giv) · zij

whereN (j) denotes the set of interest points in the j-th cell,
we use bin(·) to denote the feature vector that bins the rel-
ative location of an interest point with respect to the center
of the bounding box. Hence bin(giv) is a sparse vector of
all zeros with a single one for the bin occupied by giv . Let
Y denote the number of action labels, K denote the num-
ber of codewords, B denote the number of bins, then the
parameter α is a matrix of size Y ×K ×B, where an entry
αawr can be interpreted as how much the model prefers to
see a “discriminative” interest point in the r-th bin when its
codeword is w and the action label is a.

Pairwise Potential β>ψ(li, li+1, zi, zi+1, Ii, Ii+1):
This potential function measures the compatibility between
two neighboring frames and assesses how likely they are
to contain the same person. The compatibility is measured
in terms of three factors: similarity of bounding boxes,
similarity of discriminative regions and similarity of patch
appearances. More formally, it is written as:

β>ψ(li, li+1, zi, zi+1, Ii, Ii+1) = β1 · s(zi, zi+1) +
β2 ·m(ci, ci+1) + β3 ·m(li, li+1) (3)

where the first term s(zi, zi+1) describes the shape sim-
ilarity between the discriminative regions in the i-th and
i+ 1-th bounding box, which is computed as s(zi, zi+1) =
1 − 1

R

∑R
j=1 |zij − zi+1,j |. The second term m(ci, ci+1)

measures the similarity between the color histograms of the
patches defined by the i-th and i+1-th bounding box, where
m is a similarity function, here we use the reciprocal value
of L2 distance. The third term denotes the similarity be-
tween the i-th and the i + 1-th bounding box in terms of
three cues: location, aspect ratio and area. β is a vec-
tor of model parameters that control the relative contribu-
tions of these three terms. In essence, this potential func-
tion tries to enforce a tracking constraint that two neighbor-
ing frames should have similar bounding boxes (in terms of
location, aspect ratio and area), similar shaped discrimina-
tive regions, and the image patches from the two bounding
boxes are also similar.

Global Action Potential γ>η(y, I): Many action
classes can be distinguished by scene context. To capture
this, we also include a potential function that is a global
template model measuring the compatibility between the
action label y and a global feature vector of the whole video.
It is parameterized as:

γ>η(y, I) =
∑
a∈Y

γ>a 1(y = a) · x0 (4)

where x0 is a feature vector extracted from the whole video
I. Here we use a statistical bag-of-words style representa-
tion for the whole video. The parameter γa is a template for
the action class a.

4. Learning and Inference
We now describe how to infer the action label given the

model parameters (Sec. 4.1), and how to learn the model
parameters from a set of training data (Sec. 4.2). In train-
ing, the action labels and bounding boxes around people
performing the action are provided. At test time, this infor-
mation is unavailable and must be inferred.

4.1. Inference

Given the model parameters θ, the inference problem is
to find the best action label y∗ and the best configurations of
bounding boxes L∗ that localize the person performing the
action in each frame of a video I. The inference problem
requires solving the following optimization problem:

max
y

max
L

fθ(L, y, I) = max
y

max
L

max
z
θ>Φ(z, L, y, I) (5)

We can enumerate all the possible y ∈ Y . For a fixed
y, we need to solve an inference problem of maximizing L
and z as follows:

max
L

max
z
θ>Φ(z, L, y, I) (6)

The optimization problem in Eq. 6 is in general NP-hard
since it involves a combinatorial search. One possible solu-
tion is to use an iterative method as follows: (1) holding L
fixed, find the optimal z; (2) holding z, finding the optimal
L. These two steps are repeated until convergence. How-
ever, this solution is still not efficient in practice, since the
second step of the method requires searching over all the
locations and scales of the bounding boxes in each frame
of the video. Further, we have to do it during every it-
eration. This is very computationally expensive. So we
further develop an approximation scheme to speed up this
step. The intuition of the approximation scheme is to start
the configuration space L to be L, which denotes all possi-
ble locations and scales of bounding boxes in each frame.
During each iteration, we gradually shrink L by picking the
search spaces that are most likely to contain the true loca-
tions/scales/aspect ratios of bounding boxes. At the begin-
ning, we still need to do an exhaustive search of all possible
locations/scales/aspect ratios. But in subsequent iterations,
we only need to search over smaller and smaller sets of pos-
sible locations/scales/aspect ratios. The details of the infer-
ence method are as follows.

We initialize z to be a matrix with every entry equals
to one, which means all the cells in the bounding boxes
are “turned on” in the model. Initially, we set the search



space of the configurations L to be L, i.e. all possible lo-
cations, scales, and aspect ratios of the bounding boxes in
each frame of a video. We then iterate the following two
steps, and reduce the search space of L in each iteration
until a final configuration L∗ is achieved:

1. Holding the variables z fixed, find the set L′ of the top
κ% scored configurationsL according to the score function:
θ>Φ(z, L, y, I) by exhaustively searching over L and sort-
ing the scores. Then shrink the search space as L ← L′.

2. Enumerate all possible configurations L ∈
L, and optimize the variable z according to: z =
arg maxL∈L,z′ θ>Φ(z′, L, y, I).

These two steps are repeated until only one configuration
is left in the search space L. The optimization problem in
step 1 is done by exhaustive search over L. Since the search
space L shrinks at every iteration, the exhaustive search is
expensive only in the first few iterations. The optimization
problems in step 1 and step 2 are standard MAP inference
problems in undirected graphical models. We use standard
belief propagation to solve them.

In practice, in order to reduce the initial search space L,
we train a HOG detector [1] on our training set that detects
people of any action class. We evaluate the scores returned
by the HOG detector for all possible bounding boxes in a
video frame I and then use the top 100 bounding boxes ac-
cording to their scores as the initial search space L for a
video frame. Essentially this very rough person detector
(with 100 false positives per frame) acts as a saliency op-
erator. Typically, the top 100 bounding boxes cover all the
regions that could possibly contain people and allow us to
quickly discard many background regions. This procedure
greatly reduces the running time of inference.

4.2. Learning

Given a set of N training examples 〈In, Ln, yn〉 (n =
1, 2, . . . , N), we would like to train the model parameter θ
that tends to produce the correct action label y and localize
the person performing the action for a new test video I. Note
that the bounding boxes L of the person performing the ac-
tion are observed on training data, but the discriminative
regions in each bounding box (or equivalently the variables
z) are unobserved and will be automatically inferred.

We adopt the latent SVM framework [8, 25] for learning.

min
θ,ξ≥0

1
2
||w||2 + C

N∑
n=1

ξn (7a)

s.t. fθ(yn, Ln, In)− fθ(y, L, In) ≥
∆(y, yn, L, Ln)− ξn,∀n,∀y,∀L (7b)

where ∆(y, yn, L, Ln) measures the joint loss between
the ground-truth action label and bounding boxes (yn, Ln)
compared with the hypothesized ones (y, L). The joint

loss ∆(y, yn, L, Ln) should reflect how well the hypoth-
esized action label y and bounding boxes L match the
ground truth yn and Ln. We define the joint loss as a
weighted combination of recognition loss and localization
loss ∆(y, yn, L, Ln) = µ∆0/1(y, yn) + (1− µ)∆(L,Ln),
where 0 ≤ µ ≤ 1 balancing the relative contributions of
these two terms. In our experiments, we set µ to be 0.5.
The recognition loss ∆0/1 is a 0-1 loss that measures the
difference between the ground-truth action label yn and a
hypothesized action label y, i.e. ∆0/1(y, yn) = 1 if y 6= yn,
and ∆0/1(y, yn) = 0 otherwise.

The localization loss ∆(L,Ln) measures the difference
between the scales/locations/aspect ratios of the ground-
truth bounding boxes Ln and the hypothesized bounding
boxes L. This loss function is in turn defined as the sum
over a set of local losses on each frame: ∆(L,Ln) =
1
τ

∑
i ∆i(Li, Lni ), where τ is the number of frames in a

video. We use the intersection over union loss used in
the PASCAL VOC challenge [6] as the localization loss:
∆i(Li, Lni ) = 1 − Area(Li∩Ln

i )
Area(Li∪Ln

i ) , where the quality of lo-
calization is measured based on the amount of area over-
lap between the predicted bounding box Li and the ground
truth bounding box Lni in the i-th frame. Area(Li ∩ Lni )
is the area of intersection of the two bounding boxes, while
Area(Li ∪ Lni ) is the area of their union.

We use the non-convex bundle optimization in [3] to
solve Eq. 7. In a nutshell, the algorithm iteratively builds
an increasingly accurate piecewise quadratic approximation
to the objective function. During each iteration, a new lin-
ear cutting plane is found via a subgradient of the objective
function and added to the piecewise quadratic approxima-
tion. We omit the details due to space constraints.

5. Experiments
We present results of both action recognition and local-

ization on the UCF-Sports dataset [19] to demonstrate the
effectiveness of our model, especially in situations where
detection and tracking of individuals are challenging.

5.1. Experimental Settings and Baselines

The UCF-Sports dataset [19] contains 150 videos from
10 action classes: diving, golf swinging, kicking, lifting,
horse riding, running, skating, swinging (on the pommel
horse and on the floor), swinging (at the high bar), and
walking. The videos are taken from real sports broadcasts.
Bounding boxes around the person performing the action of
interest in each frame are also available.

Reported results [19, 22, 24, 13, 12] on this dataset use
Leave-One-Out (LOO) cross validation, cycling each ex-
ample as a test video one at a time. There are two issues
with using LOO on this dataset. First, it is not clear how
parameters (e.g. regularizer weightings) are set. Second,
there are strong scene correlations among videos in certain



C value 0.1 1 10 100 1000
accuracy 0.434 0.466 0.643 0.819 0.819

Table 1: Accuracies of the bag-of-words model with different C
parameters (LOO).

Method Accuracy
global bag-of-words 63.1
local bag-of-words 65.6

spatial bag-of-words with ∆0/1 63.1
spatial bag-of-words with ∆joint 68.5

latent model with ∆0/1 63.7
our approach 73.1

Table 2: Mean per-class action recognition accuracies (splits).

Method Accuracy
Kovashka et al. [13] 87.3

Klaser [12] 86.7
Wang et al. [22] 85.6
Yeffet et al. [24] 79.3

Rodriguez et al. [19] 69.2
global bag-of-words 81.9

our approach 83.7

Table 3: Mean per-class action recognition accuracies (LOO).

classes; many videos are captured in exactly the same loca-
tion. With LOO, the learning method can exploit this corre-
lation and memorize the background instead of learning the
action. As evidence, we tested the performance of a bag-
of-words model [22] using a linear kernel with different C
parameters (Table 1). We can see the regularizer weighting
C greatly affects the results. The best accuracy is achieved
when the learning method focuses on the training error in-
stead of a large margin (C = 1000). Essentially, the focus
is on memorizing the training examples. To help alleviate
these problems, we split the dataset by taking one third of
the videos from each action category to form the test set,
and the rest of the videos are used for training. This will
reduce the chances of videos in the test set sharing the same
scene with videos in the training set1.

In order to comprehensively evaluate the performance of
the proposed model in terms of both action recognition and
localization, we define the following baseline methods to
compare with. The first two baseline methods only do ac-
tion recognition, while the last two baseline methods can
do both action recognition and localization. We extract the
HOG3D features for interest points detected by dense sam-
pling, using the code from the author’s website2, with the
parameter settings following [22]. For all methods we use a
4000 word codebook, and the number of cells (R) is set to

1The training-testing split is available at our website http://www.
sfu.ca/˜tla58

2http://lear.inrialpes.fr/people/klaeser/software

81.
Global bag-of-words: The first baseline is an SVM clas-
sifier on the global feature vector x0 with a bag-of-words
representation for a video, which is similar to [22].
Local bag-of-words: The second baseline is similar to the
first one. The only difference is that the bag-of-words his-
togram is computed using only the interest point descriptors
within the person’s bounding box in a video. Note that in
this baseline, ground truth bounding boxes are also used at
test time. So strictly speaking, this is not a practical method.
We include it here only for comparison purposes.
Spatial bag-of-words: The third baseline is similar to our
proposed method. The difference is that it does not use the
latent variables z to select the discriminative regions. In
other words, z are fixed to be all ones. For this baseline, we
report the results of using both the classification loss (∆0/1)
and the joint loss of localization and classification (∆joint).
Latent model with ∆0/1: The last baseline is equivalent to
our proposed method, except that it uses the classification
loss (∆0/1) in learning. The comparison with this baseline
will demonstrate that it is helpful to choose a loss function
that jointly considers action recognition and localization.

Since the first two baseline methods do not perform
action localization, we only evaluate them for the action
recognition task. The other baselines are evaluated in terms
of both action recognition and localization. For simplicity,
we use a linear kernel for both SVM and latent SVM, and
the SVM classifier is implemented using LIBLINEAR [7].

5.2. Experimental Results

Action Recognition: We summarize mean per-class ac-
tion recognition accuracies in Table 2. We can see that
our method significantly outperforms the baseline methods.
Baselines using the 0/1 classification loss (spatial bag-of-
words with ∆0/1 and latent model with ∆0/1) do not show
much improvement over the global bag-of-words. We be-
lieve this is due to the fact that ∆0/1 does not enforce cor-
rect localizations during training. The localization results
at test time can be arbitrary, which in turn do not provide
much useful information for recognition. We can see signif-
icant improvement when optimizing the joint loss of recog-
nition and localization (spatial bag-of-words with ∆joint and
our approach). In addition, by introducing the latent vari-
ables to suppress the non-discriminative regions inside each
bounding box, our approach works significantly better than
the baseline (spatial bag-of-words with ∆joint) in the same
framework but without using latent variables. Per-class
accuracies of our method and the baseline global bag-of-
words are compared in Fig. 3.

In order to compare our methods with the state-of-the
art on the UCF sports dataset, we also report our results
in the LOO setup in Table 3 (though this setup has prob-
lems as stated previously). Our method still outperforms

http://www.sfu.ca/~tla58
http://www.sfu.ca/~tla58


Figure 3: (Best viewed in color) Per-class action classification ac-
curacies of our approach and global bag-of-words. Swinging1 and
swinging2 represent the action classes swinging (on the pommel
horse and on the floor) and swinging (at the high bar) respectively.

(a) (b)

Figure 4: (Best viewed in color) Comparison of action localization
performance. (a) ROC curves, when σ is set to 0.2. (b) The com-
parison of area under ROC (AUC) measures in terms of different
σ. σ is the threshold that determines whether a video is correctly
localized (see text for explanation).

the baseline of global bag-of-words, with a smaller gap than
splitting the dataset. The accuracy of our method is slightly
lower than [13] and the best result reported in [22] and [12],
we think it is for two reasons: 1) the strong scene correla-
tion between training and test videos in LOO induces the
learning method to recognize the background instead of the
action, 2) the use of linear versus complex kernels.
Action Localization: Since the first two baselines (global
bag-of-words and local bag-of-words) cannot perform ac-
tion localization, we only evaluate the last three baselines
(spatial bag-of-words with ∆0/1, spatial bag-of-words with
∆joint and latent model with ∆0/1) and our approach for
action localization in Table 2. Our evaluation criterion is
as follows: we compute an “intersection-over-union” score
for each frame in a video according to: O(Li, Lni ) =
Area(Li∩Ln

i )
Area(Li∪Ln

i ) , where Li denotes the predicted bounding box
for the i-th frame, and Lni is the ground truth bounding
box for the i-th frame. The localization score O(L,Ln)
for a video is computed by taking an average of the scores
O(Li, Lni ) of all the frames in a video: O(L,Ln) =
1
τ

∑
iO(Li, Lni ), where τ is the number of frames in a

video. if the score O(L,Ln) is larger than σ, then the video

is considered as correctly localized.
Given a test video I, our model returns |Y| scores ac-

cording to fθ(y, L, I), where y ∈ Y . We take each action
class as the positive class at one time, and we use the scores
fθ(y, L, I) to produce ROC curves for each positive class.
A video is considered as being correctly predicted if both
the predicted action label y∗ and the localization L∗ match
the ground truth. Due to space limitations, we only visu-
alize the average action localization performance of all the
action categories in terms of ROC curves, which is com-
puted when σ is set to 0.2. We also evaluate the area under
ROC (AUC) measure, with σ varying from 0.1 to 0.5, in a
step of 0.1. The curves are shown in Fig. 4.

The localization score O(L,Ln) for each video is com-
puted by taking an average over the “intersection-over-
union” scores of all the frames. If we consider a person
as being correctly localized based on “intersection-over-
union” score larger than 0.5 (see the evaluation criterion
in the PASCAL VOC [6]), the threshold σ = 0.2 can be
roughly interpreted as a video is correctly localized if on
average 40% of the frames are correctly localized. σ = 0.5
means almost all the frames in a video are correctly local-
ized, which is a very stringent criterion.

We can draw similar conclusions for the action localiza-
tion results: optimizing a joint loss leads to better local-
ization and using the latent variables to suppress the non-
discriminative regions inside each bounding box also im-
proves the action localization performance.

We visualize the localization results and the learnt dis-
criminative regions inside each bounding box (or equiva-
lently latent variables z) for each action category in Fig. 5
(see the figure caption for detailed explanation).

6. Conclusion

We have presented a discriminative model for joint ac-
tion localization and recognition in videos. We use a figure-
centric visual word representation. Different from previous
approaches that require human detection and tracking as in-
put, we treat the position of the human as a latent variable in
a discriminative latent variable model, and infer it while si-
multaneously recognizing an action. We also move beyond
a simple bounding box representation for the human figure
and learn a more detailed spatial model of an action, dis-
criminatively selecting which cells of a bounding box repre-
sentation should be included as a model for an action. Our
experimental results demonstrate that our proposed model
outperforms other baseline methods in both action localiza-
tion and recognition.
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