
A Max-Margin Riffled Independence Model for Image Tag Ranking

Tian Lan and Greg Mori
School of Computing Science, Simon Fraser University, Canada

{tla58, mori}@cs.sfu.ca

Abstract

We propose Max-Margin Riffled Independence Model
(MMRIM), a new method for image tag ranking modeling
the structured preferences among tags. The goal is to pre-
dict a ranked tag list for a given image, where tags are or-
dered by their importance or relevance to the image con-
tent. Our model integrates the max-margin formalism with
riffled independence factorizations proposed in [10], which
naturally allows for structured learning and efficient rank-
ing. Experimental results on the SUN Attribute and La-
belMe datasets demonstrate the superior performance of
the proposed model compared with baseline tag ranking
methods. We also apply the predicted rank list of tags to
several higher-level computer vision applications in image
understanding and retrieval, and demonstrate that MMRIM
significantly improves the accuracy of these applications.

1. Introduction
Image understanding is a central problem in computer

vision and has been extensively studied over the past
decade. A number of recognition algorithms have been pro-
posed to simultaneously recognize multiple objects and at-
tributes from an image [5, 8, 7]. Most of these systems treat
all objects and attributes as equally important. However,
there is evidence humans do not perceive them as such.
Psychologists have shown that we tend to only memorize
the overall scene and a few visually important objects and
properties after looking at pictures [17]. Consider the image
shown in Fig. 1. Although more than a dozen of tags are as-
sociated with the image, it is arguable only a few of them are
perceptually important to humans. In this paper, our goal is
to rank tags according to their importance or relevance to
the image content. We demonstrate that tag ranking leads
towards better image understanding.

Predicting the importance of image content is a challeng-
ing problem in computer vision and has been addressed by
relatively small amount of work [21, 1]. Spain and Per-
ona [21] take an object-centric stance, predicting the impor-
tance of objects in an image. We consider a wider range

Figure 1: Image tag ranking. Not all tags associated with an
image are equally important. The goal of this paper is to rank tags
according to their importance or relevance to the image content.

of image tags including both objects and attributes. Berg et
al. [1] consider prediction of importance for objects, scenes
and attributes, and study the influence of relations among
objects in the same scene on people’s perception of impor-
tance in images, which is similar to our goals. However,
instead of modeling importance prediction as a binary de-
cision problem, we predict image tags with multiple impor-
tance levels.

Understanding tag importance in images can potentially
facilitate a variety of web-based applications that involve
image tags. With the increasing popularity of social photo
sharing websites like Flickr, tons of images with user-
specified tags are available. However, these massive quanti-
ties of tags are collected in extremely uncontrolled settings,
thus lots of irrelevant tags can be associated with images.
This limits the benefits of these tags in potential applica-
tions such as visual search and image organization. In com-
puter vision, a variety of methods has been developed to
explore the correspondences between tags and images, for
automatic image annotation [2, 3, 9, 20, 22]. However, none
of these methods considers the relevance of tags to the im-
age content. Our work is inspired by the recent research
that explores the ordering of tags associated with an image.
Hwang and Grauman [12, 13] observe that human taggers
usually name prominent tags first, and gradually expand to
irrelevant tags. This implicit cue is used to improve object

1



localization and image retrieval. Liu et al. [15] develop an
unsupervised tag ranking scheme on Flickr images with as-
sociated tag lists. Tag relevance is estimated based on prob-
ability density estimation followed by a random walk refine-
ment. In contrast to all of the above mentioned work, our
method directly learns the ordering of tags from the training
data. So when given a new image, our model can predict an
ordered list of tags for the image, where the tags are ranked
according to the importance to the image content.

In this paper, we address the problem of tag ranking.
Compared to the familiar problem of image ranking, tag
ranking outputs a rank list for each image, and the tags are
more closely correlated than images. For example, given
four tags “bear”, “furry”, “stripe” and “zebra”, knowing
“stripe” is preferable to “furry” will indicate that “zebra”
is preferable to “bear”. These complex and structured re-
lations can be represented by a densely connected graph,
where nodes are tags and edges indicate the pairwise inter-
actions between tags. This naturally forms a problem of
learning with structured output. Structured output learn-
ing has been utilized for document ranking [4] and image
ranking [19] for optimizing specific ranking measures. We
demonstrate it for tag ranking, a natural structured output
problem.

As with many challenging learning problems, learning to
rank tags involves intractably large state spaces, e.g. rank-
ing n tags results in n! possible permutations. In order to
achieve efficient inference, Huang and Guestrin [10] pro-
posed a generalized notion of probabilistic independence
on permutations (called riffled independence) for ranking
applications. Riffled independence for ranking is similar
to shuffling a deck of cards, one ranks two disjoint sets of
items independently, then interleaves the ranked items to-
gether to form a full ranking. The interleaving stage charac-
terizes riffled independence for rankings and distinguishes it
from other probabilistic independence assumptions. In [11],
a structure learning algorithm is proposed to automatically
discover groups of items that are riffled independently.

We propose a novel max-margin learning framework for
training tag ranking models with riffled independence as-
sumptions. We introduce an efficient inference algorithm
for predicting the rank list of tags. We call our approach the
Max-Margin Riffled Independence Model (MMRIM). To the
best of our knowledge, this is the first max-margin learning
framework designed for the problem of image tag ranking
modeling structured preferences among tags.

2. Riffled Independence for Rankings
We first cover background on the riffled independence

proposed in [10]. We use a simple example to illustrate this
idea. Suppose we have six tags associated with an image:
tree (T), furry (F), bear (B), grass (G), stripe (S) and zebra
(Z). Our goal is to sort the tags into an ordered list, which

(a) (b)

Figure 2: Illustration of the hierarchical riffle independent decom-
position algorithm [11]. The algorithm consists of two steps: (a)
top-down decomposition and (b) bottom-up ranking and interleav-
ing. “T, F, B, G, S, Z” represents six image tags “tree, furry, bear,
grass, stripe and zebra” respectively.

ends up in an intractably large state space of n! (6! in this
example) possible rankings for n items. The idea of rif-
fled independence is to decompose the original set of tags
into two subsets and rank them independently: {Z, B, S,
F} (which represents “animal”) and {T, G} (which repre-
sents “plant”). The two ranked subsets are then interleaved
to form a full ranking: {Z, B, S, G, F, T}. The intuition of
riffle independence is that the relative ranks of items in one
subset is independent from items in the other subset, e.g.
knowing “bear” ranks first gives no information on whether
“grass” is preferable to “tree”. This endeavor reduces the
state space to k!+(n−k)!+

(
n
k

)
if we consider two subsets

with k and n− k items respectively.
In order to automatically discover riffled independent

groupings of items from the data, Huang and Guestrin [11]
proposed the hierarchical riffle independent decomposition
algorithm. The algorithm first performs a top-down decom-
position that recursively partitions the full set of tags into
riffled independent groups (see Fig. 2 (a)). We continue to
use the same example to illustrate it. One can imagine that
“animal” is further decomposed into: “furry bear” ({F, B})
and “zebra with stripes” ({S, Z}). To generate a full rank-
ing, the algorithm then performs a bottom-up ranking and
interleaving (see Fig. 2 (b)). The algorithm first ranks “furry
bear” {B, F} and “zebra with stripes” {Z, S} independently,
then interleaves them to generate the ranking for “animal”
({Z,B, S, F}). Finally, “plant” is ranked as {G, T} and in-
terleaved with the rankings of the first subset to form a full
ranking: {Z, B, S, G, F, T}.

We can summarize this example with three important
riffle independence properties: 1) tags within each subset
have strong correlations. For example, knowing “stripe”
is preferable to “furry” indicates that “zebra” ranks higher
than “bear”. 2) The absolute rank of a tag in one subset
gives no information about the relative ranks of tags in an-
other subset. For example, knowing bear (B) ranks first
among all the six tags does not tell that grass (G) is preferred
to tree (T). Based on this intuition, one can rank tags in each
subset independently. 3) Tags from different subsets are re-

2



Figure 3: An example of the riffled independence graph struc-
ture. The graph structure is obtained from the riffled indepen-
dence tree in Fig. 2 (a). The structure consists of three levels,
where tags form into larger groups from bottom up. The bot-
tom level captures the preferences among tags within each leaf
set (blue lines), such as whether “tree” is preferable to “grass”.
The middle and top levels capture the preferences between tags in
different groups (red lines), such as whether “furry” in “animal” is
preferred over “grass” in “plant”, where the preference is not only
determined by their tag labels (“furry” versus “grass”), but also
the group preferences (“animal” versus “plant”). The full rank list
predicted from the tags is shown on the left side.

lated through group-level interactions. This interaction tells
whether one group is preferable to another.

3. Max-Margin Riffled Independence Model

In this section, we introduce the Max-Margin Riffled In-
dependence Model (MMRIM). A graphical representation
of the model is shown in Fig. 3. We first run the hierarchical
riffle independent decomposition algorithm [11] to discover
the structures as well as the latent groupings from the image
tags. We model two types of preferences (or interactions)
between image tags: preferences among tags (which we call
tag preferences) and preferences among groups (which we
call group preferences). We build a Riffled Independence
Model (RIM) to capture these preferences. Note that learn-
ing a RIM is the same as learning a Markov Random Field
(MRF), where a Structured SVM is applied. However, in-
ference in RIM is different from MRF (see Sec. 4).

3.1. Model Formulation

We first describe the notation used in this paper. The
input to our learning module is a set of 〈X,Y,R〉 triplets,
where X denotes an image, Y denotes the annotations
(tags) associated with the image, and R denotes the tag
ranks. Suppose there are V tags in an image, we write
xi for the feature vector for tag i. The entire image can
be represented as a collection of feature vectors X =
(x1, x2, . . . , xV ). The tags associated with the image are
represented as Y = (y1, y2, . . . , yV ), where yi ∈ Y is the
label of tag i andY is the set of all possible tag labels. Given
an image X with annotations Y , the output of our model is
tag ranks that arrange the annotations into an ordered list.

We map the rank list to a vector R = (r1, r2, . . . , rV ),
where ri ∈ R denotes the rank for tag i in the current im-
age andR denotes the set of ranks. The higher the rank, the
more this tag is relevant to the image.

We build a graph G = (V, E) to capture the preferences
among tags. The graph is obtained by running the hierar-
chical riffle independent decomposition algorithm [11]. An
example graph structure is shown in Fig. 3. The graph con-
sists of two types of edges: edges connect nodes in the leaf
sets (denoted by Ea) and edges connect nodes in the larger
subsets (denoted by Eb), where E = {Ea, Eb}. In Ea, all
pairs of tags within the same leaf set are connected (see the
blue lines in Fig. 3). In Eb, all pairs of tags from two differ-
ent groups are connected (see the red lines in Fig. 3).

Besides obtaining the graph structure G, the hierarchical
riffle independent decomposition algorithm also discovers
the latent groupings. Take Fig. 3 for example, furry (F),
bear (B), stripe (S) and zebra (Z) are grouped into “animal”,
while tree (T) and grass (G) are grouped into “plant”. The
group labels of the tags associated with an image are repre-
sented asH = (h1, h2, . . . , hV ), where hi ∈ H is the group
label of tag i and H is the set of all possible group labels.
Intuitively, group is a mid-level representation of tags, and
denotes a latent coalition of tags.

We define the score of labeling image X with tags Y in
the order of R as:

θ>Φ(X,Y,R) = α>φ(X,Y,R) + β>ψ(X,Y,R) (1)

where

α>φ(X,Y,R) =
∑

(i,j)∈E,ri>rj

(αyi · xi − αyj · xj) (2)

β>ψ(X,Y,R) =
∑

(i,j)∈Eb,ri>rj

(βhi
· xi − βhj

· xj) (3)

The potential functions in Eq. 2 and Eq. 3 capture tag pref-
erences and group preferences respectively. xi is the feature
vector of tag i, here we adopt a simpler approach by setting
xi to the output score of an independently trained classifier.
Intuitively, one can see that both Eq. 2 and Eq. 3 represent
the summation of weighted differences of the confidence
scores between every pair of tags, under the condition that
the i-th tag is ranked higher than the j-th tag (ri > rj).
αyi and βhi

are standard linear models for ranking tag yi
and group hi respectively. The potential function on groups
(Eq. 3) captures the intuition that the preferences of groups
(e.g.“animal” � “plant”) suggests the preferences of tags
(e.g. “bear” � “grass”).

3.2. Max-Margin Learning

Assume we are given a collection of training images
Xn, annotations Y n and rankings Rn, we want to train the
model parameters θ that tends to correctly predict the tag

3



ranks R∗. We formulate this as an optimization problem.

min
θ,ξ≥0

1

2
||w||2 + C

∑
n

ξn

θ>Φ(Xn, Y n, Rn)− θ>Φ(Xn, Y n, R∗) ≥ ∆ (Rn, R∗)− ξn,
∀n, (4)

where ∆ (Rn, R∗) is a loss function measuring the cost in-
curred by predicting R∗ when the ground truth is Rn. In
order to tractably solve the loss-augmented inference (of-
ten called finding the most violated constraint) in structured
SVM learning, the loss function needs to be decomposable
over the graph structure G. Here we introduce a new loss
function that is decomposable over the riffled independence
graph structure shown in Fig. 3.

Riffled independence tree loss: The loss function decom-
poses over the riffle independent graph structures in the fol-
lowing form:

∆ (Rn, R) =
∑

(i,j)∈Ea,rni >rnj

γ(r∗i>r∗j ) +
∑

(i,j)∈Eb,rni >rnj

γ(r∗i>r∗j )(5)

where γ(ri > rj) is 0 if ri > rj and 1 otherwise. The
first term shows the penalties on the rankings of the leaf
sets, and the second term is the penalties on the rankings
of the higher levels of the structure. This form of learning
problem is known as structural SVM, and many well-tuned
solvers can be applied to solve this problem. Here we use
the bundle optimization solver in [6].

4. Riffle Independent Tag Rank Prediction
Given the model parameters θ and tags Y , the inference

problem is to find the best rank list R∗ for an image I . It
requires solving the following optimization problem:

max
R∈R

θ>Φ(X,Y,R) (6)

For inference, we use a bottom-up strategy to generate the
full ranking R∗. Following the riffled independence prop-
erty, the inference consists of two stages: 1) Predict the
rankings independently for each leaf set. 2) Interleave
groups of ranked tags into larger groups recursively in a
stagewise fashion to generate the full ranking. An example
of the inference procedure is shown in Fig. 2 (b). In order
to better explain the inference procedure, we first split Eq. 2
into the following two potential functions:

α>φ(X,Y,R, Ea) =
∑

(i,j)∈Ea,ri>rj

(αyi · xi − αyj · xj) (7)

α>φ(X,Y,R, Eb) =
∑

(i,j)∈Eb,ri>rj

(αyi · xi − αyj · xj) (8)

where Eq. 7 and Eq. 8 respectively capture the preferences
among tags within the same leaf set, and from different

groups. Ea and Eb correspond to the blue links and red links
in Fig. 3 respectively.

Then we separate the inference problem into the follow-
ing two subsequent optimization problems:

max
Ra

α>φ(X,Y,Ra, Ea) (9)

max
R

α>φ(X,Y,R, Eb) + β>ψ(X,Y,R) (10)

Eq. 9 represents the first stage of inference, where tags
in each leaf set are ranked independently, and Ra denotes
the local rank lists of all leaf sets. Suppose that there are
K leaf sets, then Ra = {R1

a, . . . , R
K
a }, where Rka de-

notes then local rank list of the k-th leaf set. Similarly,
Ea = {E1a , . . . , EKa }, where Eka denotes the edges of the
k-th leaf set, and here we assume the tags in a leaf set
are fully connected. Since we infer the local rank list
for each leaf set independently, Eq. 9 can be written as:
maxRk

a
α>φ(X,Y,Rka, Eka ), for k = 1 to K. In the exam-

ple of Fig. 2 (b), this stage corresponds to ranking tags “B,
F”, “Z, S” and “G, T” independently in the three leaf sets.
The leaf sets have group labels “bear”, “zebra” and “plant
respectively.

Eq. 10 represents the interleaving stage of inference. Af-
ter the first stage, tags within each leaf set are ordered into
local rank lists. So the input to the second stage is the lo-
cal rank lists Ra, and the output is the full rank list R. In
this stage, groups of tags are recursively interleaved to form
larger groups in a stagewise fashion. We also refer to the
example of Fig. 2 (b): the tags in the groups “bear” and
“zebra” are interleaved to form the larger group “animal”,
then the tags in ‘animal” are interleaved with tags in “plant”
to form the full rank list.

We now explain how we solve the two-stage inference
problem. In the first stage, the problem of finding optimal
local rank listRka for the k-th leaf set can be formulated into
an integer linear programming (ILP) problem. We introduce
variables zijst for all edges (i, j) ∈ Eka : zijst = 1 if the i-th
and j-th tags are assigned with ranks s and t respectively,
and zero otherwise. We use φij to represent the potential
function in Eq. 2 that involve the edge (i, j) ∈ Eka . The ILP
can be written as:

max
z

∑
(i,j)∈Eka

M∑
s=1

M∑
t=1

φijzijst (11a)

s.t. ∀i ∈ Vka
M∑
s=1

zis = 1, zis ∈ {0, 1} (11b)

∀(i, j) ∈ Eka zijst ≤ zis, zijst ≤ zjt (11c)
∀(i, j) ∈ Eka zijst ≥ zis + zjt − 1 (11d)
∀(i, j) ∈ Eka zijst ≥ 0, ∀s > t zijst = 0 (11e)

where M is the total number of ranks. The constraints in
Eq. 11b guarantee that every tag is assigned to only one

4



rank. The constraints in Eq. 11c-11e correspond to the lin-
earization of the quadratic constraint zijst = zis · zjt. We
use the GNU Linear Programming Kit (GLPK) to solve the
ILP. Note that here we do not enforce the mutual exclusivity
constraints which ensure tags i and j map to different ranks.
This is because in terms of image tag ranking, it is common
that two tags are equally important to an image according
to human’s perception.

After we obtain the local rank lists Ra for each leaf set,
we can solve the optimization problem in Eq. 10, where we
interleave the groups of ranked tags into larger groups in a
stagewise fashion. In Fig. 2, this corresponds to interleaving
the rank list of “bear” and “zebra”, and finally interleaving
“animal” and “plant” to form the full rank list. For each
“interleaving” operation, we simply enumerate all possible
rankings and find the optimal one. For example, suppose
that two ranked groups have k and n − k tags respectively,
and M is the total number of ranks, then the “interleaving”
operation involves enumerating over

(
M
k

)
+
(
M
n−k
)

possible
states.

The inference is particularly efficient for tag ranking,
which takes around 0.1 sec per image with 15 tags in MAT-
LAB on a 2.8GHZ CPU 8GB RAM PC. In contrast, ranking
tags over a fully connected graph takes around 5 min per
image under the same settings.

5. Applications of Tag Ranking
We have described an algorithm for learning a model

(MMRIM) for tag ranking. The most direct application is
to use the model to rank the randomly permuted tags asso-
ciated with each testing image, which we call tag ranking.
However, not all images in the real world are annotated.
Thus we also use the model to simultaneously predict the
tag list and rank the tags for an unannotated image. We
call this task image auto-annotation. Furthermore, we also
demonstrate that the predicted rank list of tags help improve
higher-level computer vision tasks, such as image retrieval
and tag-based image search. We define the four different
applications as follows:

• Tag Ranking: Given an image and its associated tag
list, our goal is to rank the tags according to their im-
portance or relevance to the image content.

• Image Auto-Annotation: Automatically predict the tag
list for a given image without any annotations. Com-
pared to the existing work on image auto-annotation,
our method further provides a ranked tag list.

• Image Retrieval: Given a novel query image, we first
use our model to predict an ordered list of tags for
it. Then we use the χ2 kernels described in [12] to
compute the similarities between the features of the
query image and all images in the database. Images

are ranked based on the similarities. Now we describe
the details of extracting features from an image. We
construct the feature vector by concatenating the im-
age features and the rank features. The details of im-
age features will be introduced in the next section. The
rank features are computed in the following:

η =
1∑
i ri

[r1, . . . , rV ] (12)

where ri denotes the rank for tag i in the query image,
and V is the total number of tags associated with the
query image. We expect the top ranked images share
similar importance levels of objects and attributes with
the query image rather than only similar categories.

• Relative Tag-based Image Search: Existing keyword
based image search methods restrict queries to cate-
gorical labels (e.g. “ocean, mountain, tree, ship”), and
thus fail to capture the semantic relationships between
tags. We propose to use relative tags as queries. As
opposed to the presence of tags, relative tags indicate
the strength of a tag w.r.t. the other tags, e.g. “more
ocean than mountain, more ship than tree”. Relative
tags are more informative and descriptive compared to
the traditional keywords. Given relative queries, e.g.
“more ocean than mountain, more ship than tree”, we
will be able to depict a picture in mind with detailed
importance levels of tags, e.g. “a ship in an ocean,
backed by trees and mountains”.

6. Experiments
We test our model on two datasets: SUN Attribute [16]

and LabelMe [18]. The SUN Attribute dataset contains
14,340 images and 102 scene attributes spanning from ma-
terials, surface properties, lighting, functions and affor-
dances, to spatial envelope properties. The LabelMe dataset
consists of mostly office and street scenes of 3825 images
with an average of 23 tags per image. Different from SUN
Attribute where tags correspond to attributes, the tags in
LabelMe are objects. For both datasets, we evaluate our
method on the four different scenarios outlined above.

Implementation details. We first show how to construct
the ground truth tag ranks. Tags for both datasets were
collected in previous work. In SUN Attribute, the num-
ber of positive labels (votes) each attribute received from
AMT workers is provided [16]. The number of votes indi-
cates how confident an attribute presents in an image, and
we use it as the ground truth tag ranks. In this way, each
tag in an image is labeled with one of four importance lev-
els: Most Relevant (3 votes), Relevant (2 votes), Less Rel-
evant (1 vote) and Irrelevant (0 votes). We construct the
tag list for an image by using the attributes receive more
than zero votes. In order to mimic real annotations from

5



the Internet, we further add three noisy tags to the tag list
of each image. The noisy tags are randomly sampled from
the tags that receive zero votes. For LabelMe, we use the
3825 images compiled in [13], where the tag rank list as-
sociated with each image are also provided. We quantize
the tag rank list associated with each image into three lev-
els: Most Relevant, Relevant and Less Relevant. We also
randomly sample three irrelevant tags and add them to the
tag list of each image. Thus tag lists for both datasets are
labeled with four importance levels, from Irrelevant to Most
Relevant (|R| = 4).

Following [16], we extract four types of image features:
Gist, HOG 2×2, self-similarity, and geometric context color
histogram for the SUN Attribute Dataset. We train an SVM
classifier for each attribute. Our SVM classifiers use a com-
bination of kernels generated from the four types of fea-
tures (see [23] for feature and kernel details). For LabelMe,
we extract three types of image features: Gist, color his-
tograms, and bag-of-words histograms following [12]. We
train SVM classifiers with χ2 kernels on these features for
each tag (see [12] for feature and kernel details). We use
the output score of an independently trained classifier as the
tag’s feature vector of our model (xi in Eq. 2).

We use the Normalized Discounted Cumulative Gains
(NDCG) [4] to measure the performance of the tag rank-
ing approaches. It is defined as: NDCG@K =
1
Z

∑K
i=1

2rel(i)−1
log(1+i) . Where K is called truncation level, Z is

the normalization constant to make sure the optimal ranking
gets an NDCG score of 1, and rel(i) is the relevance of the
i-th ranked instance.

Baselines. In order to comprehensively evaluate the per-
formance of the proposed model, we define the following
baseline methods to compare with. For the first baseline
(called “SVM”), we ignore the tag relations and directly use
the classifier scores for ranking. To obtain the tag rank list
for an image, we directly sort the output scores of SVM
classifiers for each tag. For the second baseline (called
“rankSVM”), we use the rankSVM [14] solver for learn-
ing. To obtain the rank list for an image, we sort the output
scores obtained from the individual tag rankers. The poten-
tial function for an individual tag ranker is: αyi · xi, where
xi is the feature vector of the i-th tag and yi is the tag cate-
gory label.

In the following, we show the experimental results of our
method for each of the four scenarios outlined above.

6.1. Tag Ranking

We compare the NDCG scores of our method and the
baselines in Fig. 4. Here we use four relevance levels for
computing NDCG: Most relevant, Relevant, Less relevant
and irrelevant. We can see that our method significantly out-
performs the baselines on both datasets. At the truncation
level of 4 (NDCG@4), we see our method yields around

(a) (b)

Figure 4: Comparison of tag ranking results of different methods
on SUN Attribute dataset and Labelme dataset respectively.

7.5% improvement over both rankSVM and SVM on SUN
Attribute; a 1.7% improvement over rankSVM and 3.5%
improvement over SVM on LabelMe. In comparison, the
improvements on LabelMe are relatively smaller than SUN
Attribute. This is because the ground truth ranks on two
datasets are provided according to different strategies. The
ground truth ranks in SUN Attribute are obtained by voting
the presence of the attributes, the process is controlled and
important attributes normally receive more votes. But for
LabelMe, the tag ranks provided in [13] are obtained in a
less controlled setting, by the order in which tags are added
to the image. The order usually reflects the importance of
tags but is subjective to the AMT workers. Some visualiza-
tions of the tag ranking results for MMRIM and rankSVM
are shown in Fig. 5.

6.2. Image Auto-Annotation

In the first experiment, we assume each image is asso-
ciated with a list of annotations. Now we demonstrate that
our method is also capable of predicting an ordered list of
tags for an unannotated image. In this scenario, rather than
reordering the given annotations during testing, we assume
each image is associated with the whole tag vocabulary, and
predict an ordered list of the whole vocabulary for each test-
ing image. We expect to rank the most relevant tags to the
top and irrelevant tags to the bottom of the rank list. In this
case, inference is carried out over the whole vocabulary for
each image. In practice, in order to increase the efficiency,
we reduce the search space (R in Eq. 6) by the following
strategy. For each testing image, we calculate the χ2 sim-
ilarities between the testing image and all training images
based on their image features, and use the annotations from
the top k neighbors to construct the search space R̃ for the
testing image. Here we set k to 5. This procedure greatly
reduces the running time of inference.

Fig. 6 (a),(b) shows the comparison of our method and
the baselines in terms of Precision at K. Our method out-
performs all baselines, and its Prec@4 score is 6.0% and
1.0% better than the second best method (SVM) on SUN
Attribute and LabelMe respectively. In order to compare
with [12], we also report the auto-annotation accuracy using
F1 score on LabelMe with the same experimental settings.

6



Figure 5: Examples of tag ranking results using our method and rankSVM on SUN Attribute. The tags are ordered according to the
relevance to the image content. We use red, orange and blue to denote three ground truth ranking levels: most relevant, relevant and less
relevant, respectively. Due to space constraint, we only visualize the top 9 tags for each image.

Method F1 score
SVM 0.4621

Rank SVM 0.4352
Our method 0.5162

best result in [12] 0.4585

Table 1: Comparison of image auto-annotation accuracies (F1
score) on LabelMe dataset.

We can see that our method is significantly better than the
best result reported in [12].

6.3. Image Retrieval

We use all test images as queries and all training images
as the database. The ground truth ranking is obtained by
sorting the images in the database according to the agree-
ment between the ground truth rank features of the database
image and the query image. In SUN Attribute, we compute
the agreement as: rel(i) = 〈η(i),η(q)〉

‖η(i)‖‖η(q)‖ , where rel(i) rep-
resents the relevance of the i-th ranked instance and η is the
rank feature (Eq. 12). In LabelMe, we use the strategy in-
troduced in [12] (called “tag rank similarity”) to compute
the ground truth ranking.

Fig. 6 (c),(d) plots the comparison of NDCG scores of
our method and the baselines. Again, our method outper-
forms the baselines noticeably on both datasets. In order
to show that the rank features η in Eq. 12 improve im-
age retrieval, we develop a baseline “visual” by only using
image features to compute the χ2 similarities 1. Our ap-
proach clearly improves over the baseline “visual”. SVM
and rankSVM are similar to “visual” on SUN Attribute, and

1For image retrieval, we use the features provided by the authors of [12]
and the baseline “visua” defined in this paper is the same as the baseline
“visual-only” defined in [12]. In discussions with the authors of [12] we
were unable to clarify the source of the difference in results.

slightly better than “visual” on LabelMe. This is likely due
to the inaccuracies of rank features predicted by SVM and
rankSVM.

6.4. Relative Tag based Image Search

A relative tag query consists of M pairs of tags with
preferences, e.g. {“ocean � mountain”, “natural � man-
made”}. We consider queries with double and triple pairs
of tags, and we generate the query set by randomly sam-
pling from the tags in the training set. In the end, we obtain
200 queries for each query type.

Fig. 6 (e)-(h) shows the comparison of our method and
the baselines in terms of NDCG scores. From the figure, it is
clear that MMRIM is better than the other methods for both
types of queries, at all values of K. At a truncation level of
40 (NDCG@40) for double and triple pairs of queries, MM-
RIM is respectively, 2.1% and 2.2% better than SVM, the
second best method in SUN Attribute, and 5.1% and 3.1%
better than rankSVM, the second best method in LabelMe.

7. Conclusion

We have presented the Max-Margin Riffled Indepen-
dence Model (MMRIM) that integrates the max-margin cri-
terion and riffled independence partitions within the same
framework for image tag ranking. Furthermore, our ap-
proach models the correlations between different tags lead-
ing to improved tag ranking performance. Besides tag rank-
ing, we also apply our model to three higher-level com-
puter vision applications: image auto-annotation, image re-
trieval and relative tag based image search. Our experimen-
tal results on two benchmark datasets demonstrate that our
method makes consistent improvements over the baselines.

7



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6: Performance of different methods in higher-level computer vision applications including: image auto-annotation ((a),(b)), image
retrieval ((c),(d)), relative image search ((e)-(h)).

References
[1] A.C.Berg, T. Berg, H. D. III, J. Dodge, A. Goyal, X. Han,

A. Mensch, M. Mitchell, A. Sood, K. Stratos, and K. Yam-
aguchi. Understanding and predicting importance in images.
In CVPR, 2012.

[2] K. Barnard, P. Duygulu, D. Forsyth, N. de Freitas, D. M.
Blei, and M. I. Jordan. Matching words and pictures. JMLR,
2003.

[3] T. L. Berg, A. C. Berg, J. Edwards, and D. Forsyth. Who’s
in the picture. In NIPS. 2004.

[4] O. Chapelle, Q. Le, and A. Smola. Large margin optimiza-
tion of ranking measures. In NIPS Workshop on Learning to
Rank, 2007.

[5] C. Desai, D. Ramanan, and C. Fowlkes. Discriminative mod-
els for multi-class object layout. In ICCV, 2009.

[6] T.-M.-T. Do and T. Artieres. Large margin training for hid-
den markov models with partially observed states. In ICML,
2009.

[7] A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth. Describing
objects by their attributes. In CVPR, 2009.

[8] C. Galleguillos, A. Rabinovich, and S. Belongie. Object cat-
egorization using co-occurrence, location and appearance. In
CVPR, 2008.

[9] M. Guillaumin, T. Mensink, J. Verbeek, and C. Schmid.
Tagprop: Discriminative metric learning in nearest neighbor
models for image auto-annotation. In ICCV, 2009.

[10] J. Huang and C. Guestrin. Riffled independence for ranked
data. In NIPS, 2009.

[11] J. Huang and C. Guestrin. Learning hierarchical riffle inde-
pendent groupings from rankings. In ICML, 2010.

[12] S. J. Hwang and K. Grauman. Accounting for the relative
importance of objects in image retrieval. In BMVC, 2010.

[13] S. J. Hwang and K. Grauman. Reading between the lines:
Object localization using implicit cues from image tags. In
CVPR, 2010.

[14] T. Joachims. Training linear SVMs in linear time. In
SIGKDD, 2006.

[15] D. Liu, X.-S. Hua, L. Yang, M. Wang, and H.-J. Zhang. Tag
ranking. In WWW, 2009.

[16] G. Patterson and J. Hays. Sun attribute database: Discover-
ing, annotating, and recognizing scene attributes. In CVPR,
2012.

[17] R. Rensink, J. ORegan, and J. Clark. To see or not to see:
the need for attention to perceive changes in scenes. Psychol.
Sci., 1997.

[18] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Free-
man. LabelMe: A database and web-based tool for image
annotation. IJCV, 2008.

[19] B. Siddiquie, R. S. Feris, and L. S. Davis. Image ranking and
retrieval based on multi-attribute queries. In ICCV, 2011.

[20] R. Socher and L. Fei-Fei. Connecting modalities: Semi-
supervised segmentation and annotation of images using un-
aligned text corpora. In CVPR, 2010.

[21] M. Spain and P. Perona. Measuring and predicting object
importance. IJCV, 2010.

[22] Y. Wang and G. Mori. A discriminative latent model of im-
age region and object tag correspondence. In NIPS. 2010.

[23] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba.
Sun database: Large-scale scene recognition from abbey to
zoo. In CVPR, 2010.

8


