
A Large Margin Framework for Single Camera Offline Tracking with Hybrid Cues

Bahman Yari Saeed Khanlooa, Ferdinand Stefanusa, Mani Ranjbara, Ze-Nian Lia, Nicolas Saunierb, Tarek Sayedc,
Greg Moria

aSchool of Computing Science, Simon Fraser University
bDept. of Civil, Geological and Mining Engineering, École Polytechnique de Montréal

cDept. of Civil Engineering, University of British Columbia

Abstract

We introduce MMTrack (max-margin tracker), a single-target tracker that linearly combines constant and adaptive
appearance features. We frame offline single-camera tracking as a structured output prediction task where the goal is to
find a sequence of locations of the target given a video. Following recent advances in machine learning, we discriminatively
learn tracker parameters by first generating suitable bad trajectories and then employing a margin criterion to learn
how to distinguish among ground truth trajectories and all other possibilities. Our framework for tracking is general,
and can be used with a variety of features. We demonstrate a system combining a variety of appearance features and a
motion model, with the parameters of these features learned jointly in a coherent learning framework. Further, taking
advantage of a reliable human detector, we present a natural way of extending our tracker to a robust detection and
tracking system. We apply our framework to pedestrian tracking and experimentally demonstrate the effectiveness of
our method on two real-world data sets, achieving results comparable to state-of-the-art tracking systems.

Keywords: tracking, trajectory optimization, structured prediction, conditional random fields, discriminative learning

1. Introduction

Superior tracking performance can be obtained by fus-
ing different cues together. The main intuition behind this
observation is that better performance is achieved because
the combination of different cues help the whole track-
ing system overcome individual failure mode of each single
cue [25, 26, 9, 30, 11, 18, 31, 5]. When combining a set
of cues, a principled framework for choosing the param-
eters for the combination is desirable. In this paper, we
present MMTrack (max-margin tracker), a single-target
tracker that uses the max-margin learning framework [28]
to combine cues.

As an example of a tracking system with multiple cues,
consider the scenario depicted in Fig. 1. The leftmost im-
age shows one input frame with the target object indicated
by a red bounding box, and three feature maps obtained
from different cues are shown next to the image. The cues
are used to locate the target object, and they can be based
on the target’s colour histogram, object class, or motion
pattern, among other information. These cues are used to
build feature maps, where a pixel in a feature map indi-
cates how likely the target is to be located at that pixel
location. As can be seen in Fig. 1, pixels corresponding to
the target location have relatively high values.

Given this information, our aim is to formulate a prin-
cipled framework to combine the cues by determining the
relative importance of each cue. Note that we do not re-
strict our cues to a certain feature class - we only require
the cues to produce a mapping from pixel locations to nu-

meric values indicating the possibility of the target being
located at some pixel location. Indeed, the cues can be
any combination of appearance features, motion features,
or even results of other simple trackers.

Combining the cues in this case is complicated by the
fact that the cues can be a combination of different and un-
related features. For example, it is not easy to relate a cue
built from the target’s colour histogram to another built
from the target’s dynamics, as they are based on two seem-
ingly independent models, namely the appearance model
and the motion model. Further, in determining the rela-
tive contributions of the cues, ideally we should consider
all the cues jointly rather than independently, as one cue’s
contribution should be considered with regard to all other
cues.

One approach for combining different sources of infor-
mation is to examine each cue separately, and weigh each
cue according to a reliability score that measures how well
the cue performs according to some predefined criteria.
The reliability measure can be computed online, for ex-
ample based on the distance between the cue’s current
feature map response to its average response [25], or it
can be trained offline by computing an error measurement
between the cue’s trajectory result to some pre-labelled
ground truth [26]. Combining the reliability measures of
different cues in this setting is problematic because each
measure is computed independently and thus they are not
directly comparable across different cues.

The cues can be fused within a probabilistic frame-

Preprint submitted to Computer Vision and Image Understanding January 30, 2012

work [30, 11, 18, 12, 17]. The simplest probabilistic
method for fusing the cues assumes conditional indepen-
dence between each cue’s observation model, thus allow-
ing the full joint observation model to be decomposed
as a product of each cue’s observation model [12, 17].
More sophisticated methods model the dependencies be-
tween appearance cues by decomposing the graphical mod-
els [30, 11], or by assuming sequential dependency between
the appearance features [18]. Inference in these models is
usually approximated with iterative sampling procedures.
In contrast with this line of work, we use a discriminative
margin-based learning criterion that aims for low tracker
error.

However, developing vision algorithms to track objects
such as pedestrians in realistic scenarios turns out to be a
non-trivial task. A robust pedestrian tracking algorithm
should be able to handle changes in pedestrians’ appear-
ance caused by human articulation or change in illumi-
nation. This suggests that the model should be updated
to reflect changes in the pedestrian’s pose. On the other
hand, by continually adapting, there is a possibility that a
small error in the pedestrian’s hypothesized location might
cause incorrect information to be absorbed by the appear-
ance model.

Over time, the errors may accumulate, and the object
model may not accurately reflect the target pedestrian’s
appearance anymore, causing the tracker to drift to an-
other object. Further, because there can also be multiple
pedestrians in the view at a time, the object tracking al-
gorithm should also be able to differentiate between dif-
ferent instances of the pedestrians. This task is especially
difficult if the pedestrians are similar in appearance. The
pedestrians may also interact, introducing issues such as
partial or full occlusion. Occlusions can also occur due to
interaction between the target and background objects, for
example when a tracked pedestrian walks behind a traf-
fic sign. Additionally, the tracker should also be able to
handle changes in scale caused by the pedestrian’s rela-
tive distance to the camera. A fully automatic pedestrian
tracking algorithm should also be able to automatically
initialize a new track when a pedestrian enters the scene,
and to terminate an existing track when a pedestrian exits
the scene.

In general, tracking algorithms predict a target’s loca-
tion by modeling two of its characteristics: its appearance
and its motion. The target’s appearance is represented by
an appearance model, which usually describes the target’s
shape or its distinctive features such as colour or texture.
Some common representation of a target’s shape are its
silhouette [32] or simple shapes such as ellipses [7, 4] or
rectangles [6, 2]. Appearance features that can be used
to describe a target include colour histograms [7, 4], tex-
ture [24, 2], and edges [22].

Whereas the appearance model describes what a target
looks like, the motion model, on the other hand, encodes
prior knowledge or assumptions about the target’s move-
ment patterns. A motion model serves to restrict the range

of possible target’s movement, and is useful because a tar-
get’s positional state usually does not change abruptly be-
tween consecutive frames. An example of a motion model
is the Brownian motion model adopted by Ross et al. [23],
which models the targets dynamics as Gaussians centered
on its previous state. Babenko et al. [2] use a simpler mo-
tion model that assumes the target to be equally likely to
appear at any location within a certain radius from its pre-
vious location. Another example of a motion model is the
constant heading model used in [1] that assumes the target
does not change its direction between a pair of consecutive
frames.

Most object tracking algorithms treat appearance and
motion models independently. The two models are usu-
ally integrated by using the motion model to guide the
search for the location that provides the best match to the
appearance model [2, 6, 7, 4].

Switching methods can also be used to select the best
cues out of a fixed pool of features at every frame.
A common formulation of this approach estimates the
foreground-background discriminability of the cues, and
selects the most discriminative cues either by quantifying
their discriminative power with a Fisher-like criterion [6],
or through an online boosting mechanism [2]. It should be
noted that the feature pools in both works are composed of
a single feature class, namely linear combination of RGB
channels [6] and Haar-like features [2].

In this paper we describe a method for building an auto-
mated detection and tracking system from multiple cues.
The method uses max-margin learning for structured out-
put to learn weights that combine features for tracking.
This learning can be used with a variety of features, and
unlike previous work jointly learns appearance and mo-
tion models in a unified framework. An initial version of
this work described the MMTrack approach [15]. In this
paper we include additional experiments and a fully auto-
matic human detection and tracking system built on top
of MMTrack.

The rest of this paper is organized as follows. In Section
2, we explain our choice of features that provide us with
cues for tracking. In Section 3, we intorduce our tracking
framework called Max-Margin Track (MMTrack) in the
context of pedestrian tracking. Section 4 describes the de-
tails of our margin-based parameter estimation. In Section
5, we show how MMTrack can be extended to build an au-
tomatic detection and tracking system. Section 6 presents
our qualitative and quantitative experimental results and
Section 7 concludes the paper and discusses further work.

2. Features for Tracking

The main focus of this paper is on a principled combi-
nation of multiple cues for offline single target tracking. In
order to ground the discussion of the learning framework
(Sec. 3) we first present the set of cues we use in our sys-
tem. However, the framework is general, and can be used

2

(a) (b) (c) (d)

Figure 1: A tracking scenario with multiple cues. (a) Input frame. (b) Person detector, (c) colour template, and (d) adaptive colour model
cues for tracking. We learn the parameters to a model that combines multiple cues for tracking.

with a variety of cues. For our system we choose a repre-
sentative set of cues that could be used in an offline tracker.
These cues include an object detector (HOG pedestrian
detector), an offline colour model (clustered colour his-
tograms), and online appearance models (templates). In
this section we motivate and describe this particular choice
of features. We note that this combination is effective in
practice, with experiments demonstrating that it can ob-
tain high quality tracks (Sec. 6).

2.1. Object Detector: HOG Score

The first cue we consider contains knowledge of the ob-
ject of interest, in this case pedestrians. We use informa-
tion from a reliable detector that can assist in localizing
a pedestrian that is being tracked. In particular, we use
the Histogram of Oriented Gradients (HOG) [8] trained
for human detection as we are interested in pedestrians in
this work.

We expect the HOG feature to be of help to the system
in discriminating between pedestrians and non-pedestrian
objects (e.g. car, tree, etc.). A generic object detector such
as this one can potentially reduce tracker drift, focusing
the tracker on the known class of object. However, the
generic detector is not tuned to a particular person, and
should be used in concert with a variety of other person-
specific cues. In our framework, we will learn how much
to rely on each individual cue, in this case deciding on
the relative importance of a generic object detector versus
other tracking cues.

We use the output of a linear SVM classifier that oper-
ates on HOG [8] as a feature to help our system differenti-
ate between pedestrians and other objects. The detection
is performed on a pyramid built on the input image with
varying scale. For each pixel, we take the maximum SVM
score over all scales resulting in a score map where the
peaks vote for presence of pedestrians. We then normalize
these scores so they fall within the range [0,1] and use the
final map as our feature. Fig. 2 illustrates an input image
along with the corresponding normalized HOG score map.

2.2. Offline Colour Model: Clustered Histograms

Although HOG scores can help the system differentiate
between pedestrians and other objects, they are not infor-
mative in distinguishing among different pedestrians, as

many pedestrians will potentially have high HOG scores.
Thus, features that convey identity, i.e. features that try
to uniquely respresent the appearance of a pedestrian,
are needed. We incorporate such features using a static
colour histogram for each person obtained from cluster-
ing. The main idea here is that by clustering the his-
tograms obtained from bounding boxes around the pedes-
trians throughout the video, we can gain a good insight
into the average appearance statistics of each of the peo-
ple. Thus, we will be able to model the changes instead
of trying to learn the appearance and so we would be able
to obtain a simple yet effective appearance model. Note
that these appearance features in our tracker contribute to-
wards gaining resistance against drift that often occurs in
tracking systems which only consider dynamically-updated
appearance models.

This feature is motivated by the work of Ramanan et
al. [21], who learn appearance models of articulated ob-
jects (animals, people) based on detection, and then use
them for tracking. Searching for targets and learning their
appearance as done in [21] is not practical in our problem
because we neither can assume a constant appearance nor
can we get a reliable segmentation or pose like in [27] and
[19] as pedestrians are far away from the camera. Instead,
we build rough descriptors and try to discriminate the ob-
ject of interest from surroundings. We use trackers built
on top of hierarchical colour histograms that describe how
the histograms of different parts of the bounding box en-
closing the pedestrian deviate from their mean over time.

The generation of the colour histogram distance features

(a) (b)

Figure 2: A frame and its corresponding HOG feature map. HOG
pedestrian detection responses are used as a feature in the combined
tracking model.

3

Figure 3: Colour histogram distance features generation: a) Nine histograms are computed over sections of the detected person’s bounding
box and the resulting histograms are concatenated to give a hierarchical description. b) all sampled histograms are clustered. c) Histogram
distance maps are then generated for every frame by sliding a window and computing the χ2-distance between the histogram of each of the
sections of the window to the cluster mean to which the target belongs.

is as follows. We start by running a HOG person detector
over the entire video, and uniformly sampling a set of de-
tections. Based on the image evidence inside the bounding
box obtained from a HOG detection, nine histograms are
computed over different sections of a pedestrian’s body as
depicted in the second column of Fig. 3. Each histogram
consists of 30 bins with 10 bins for each of the R, G and
B channels. These nine histograms are then concatenated
together to give one histogram characterizing the person’s
appearance. Next, we cluster the sampled instances of his-
tograms of all the people in the video using the mean-shift
clustering algorithm. We then represent the target pedes-
trian using the mean of the cluster to which it belongs.
This is done using a simple search that measures the dis-
tance between the initial appearance and cluster centers
since we assume that the initial location of the pedestrian
is given. Finally, we compute one histogram distance map
for each of the nine body sections by computing, at each
pixel location, the χ2-distance between the histogram built
using the image observation within the corresponding sec-
tion of the bounding box centered at that pixel and the
mean of the cluster to which the target belongs. The re-
sulting maps have low values in areas with similar colour
to the target person’s and high values elsewhere. We ef-
ficiently compute the histogram distance maps using the
integral histogram technique [20].

In summary, these colour histogram distance features
enforce the similarity of a tracked person to a global fixed,
offline colour model. They measure the similarity of a
target location to a colour model obtained by mapping an
initial pedestrian location to a cluster. These features can
be used to combat drift, and weights on these features will
be learned in our algorithm. However, these features do
not adapt to changes in target appearance, which will be
handled by the final feature set.

2.3. Online Appearance Model: Templates

We use an online feature that models the target’s ap-
pearance. This appearance template feature will give clues
about a particular pedestrian at a finer level than the his-
togram distance features. We use two templates: a tem-
plate obtained from the image patch inside the bounding

box surrounding the given location of the target in the ini-
tial frame of the trajectory, and another template obtained
from the previous frame of the trajectory.

The initial template implements a constant appearance
model which is used to provide a fixed reference to the
person’s appearance, similar to the cluster center of the
colour histograms. However, the initial appearance tem-
plate describes the person’s appearance at a finer level of
detail than the histogram distance features. This template
acts as a memory template, which is stable by definition
and ensures that the tracker does not completely forget
about the appearance of the target when it first showed
up.

On the other hand, the previous frame template incor-
porates the idea of adaptive appearance modeling because
it mimics the appearance adaptation mechanism by en-
coding the expected amount of frame-to-frame change of
the tamplate during the inference, which helps the system
cope with some degree of object appearance changes over
time.

Distance maps are computed for each template by slid-
ing a window over the current frame and computing the
sum of absolute pixel value differences in all three colour
channels of each pixel belonging to that template, which is
efficiently performed using a modified integral image tech-
nique [29]. These maps are normalized so the values fall
in the range [0,1].

3. MMTrack: Learning to Combine Cues for Sin-
gle Target Tracking

In this section, we explain the details of our track-
ing algorithm in the context of pedestrian tracking. Our
tracker is comprised of three main components: constant
appearance model, adaptive appearance model, and mo-
tion model. The constant appearance model is used to
memorize the appearance of the target pedestrian in two
different detail levels whereas the adaptive model is used
to model the change in appearance. Finally, the motion
model favors specific movement patterns from one frame
to another. These components will be used to describe the

4

(a) (b) (c) (d)

Figure 4: a) Generic tracking approach where we build an appearance template τ for the target object while tracking. b,c,d) Our method:
clustering and a simple search followed by inference in a tree-structured CRF with shared parameters where the initial position, colour
(appearance) template and all the inputs given a priori. The plate notation refers to replicates of the same structure. The rectangles stand
for the factors of the model. We are showing only three frames of our temporal model for simplicity of presentation.

object of interest, and the margin-based learning described
in Section 4 will be used to combine them.

The rest of this section is organized as follows. Sec-
tion 3.1 provides details of our model for describing trajec-
tories. Section 3.2 outlines our trajectory representation
and section 3.3 explains our inference scheme for tracking.

3.1. Trajectory Modeling

As noted earlier, we are interested in offline tracking
where the goal is to obtain the whole trajectory in the en-
tire sequence at once. This is in contrast to online track-
ing algorithms that greedily pick the next best location
of the object at each frame. Thus, the tracking problem
in this setting is formulated as one of finding the opti-
mal trajectory y = (y(1), ...,y(T)) with the image sequence
x = (x(1), ...,x(T)) given. This general setting, illustrated
graphically in Fig. 4(a), requires us to build a template
τ to model the appearance of the object while trying to
find the best trajectory. We build a model for only a sin-
gle target, and do not explicitly consider joint tracking of
multiple targets in our model. Further, if there are mul-
tiple instances of the object of interest we identify and
track them one by one. For now, we assume that the ini-
tial location of the target is provided in the first frame of
the sequence. This assumption will be relaxed in Sec. 5,
when we describe a fully automatic detection and tracking
method.

We further assume that the appearance of the object
in the initial frame is representative and reliable. Also,
we further assume that an upper bound for the length
T of the track is given. Moreover, in general τ is a high
dimensional continuous variable and learning and inference
for this loopy graph is intractable.

Instead of reasoning over the entire space of appear-
ance models for τ , we use the clustering and discretization
procedure for colour models described in Sec. 2.2. The

procedure is as follows: we use the detector to find D de-
tections (all instances) of objects in the video segment of
interest and group them into K clusters. Note that vari-
able τ is now discretized to K distinct vectors i.e. cluster
centers each of which ideally represents an individual ob-
ject. Given that the initial location is reliable, we find for
each object the cluster τ̂ ∈ τ ′ = {τ1, ..., τK} which is the
closest to the appearance template built in the first frame
for that object. With the average appearance template τ̂
given, we end up with a tree-structured model for which
learning and inference is practical. These simple steps,
when done in sequence, aim at approximating the original
problem. The steps are shown in Fig. 4(b), 4(c) and 4(d).
Note that step (b) is performed once whereas steps (c) and
(d) are repeated independently for each object.

Our scoring function, which measures the goodness of
trajectories, is a mapping in the form of F (x,y; w) :
X T × YT → R that maps a sequence of frames x =
(x(1), ...,x(T)) and a trajectory y = (y(1), ...,y(T)) to a
real number. Each location y(t) is a discrete variable which
is to be assigned to one of the image pixels and w is a set of
weights that parameterize the features extracted from the
frames. The scoring function is decomposed into two con-
tributions: transition model and observation model. The
transition model in our problem is summarized by the
motion model which describes the spatial relationship be-
tween the locations of the target in two consecutive frames.
The observation model is a measure of compatibility be-
tween a location and the observed features at that pixel
location. We define the score of a trajectory as

F (x,y; w, τ) =

T∑
t=2

FT (y(t−1),y(t); wT)

+

T∑
t=2

FO(x(1),x(t−1),x(t),y(1),y(t−1),y(t); wO, τ) (1)

5

where FT (·) and FO(·) are linear models describing transi-
tion and observation contributions respectively. These po-
tential functions are parameterized by wT and wO whose
concatenation we denote by w.

3.1.1. Observation Model

The observation model includes several features whose
weighted combination votes for the presence of the target
pedestrian. These features include HOG score that helps
with discriminating between humans and other objects,
and colour histogram distance and appearance templates
that describe how the pedestrian looks like and how its
appearance varies over time. Thus, the observation model
at time t decomposes into the following contributions

FO(·; wO, τ) = wH
TΦH(x(t),y(t))

+ wC
TΦC(x

(t),y(t), τ)

+ wP
TΦP(x(t−1),x(t),y(t−1),y(t))

+ wF
TΦF (x(1),x(t),y(1),y(t)) (2)

where we have defined

ΦC(x
(t),y(t), τ) = dχ2(ΨC(x

(t),y(t)), τ), (3)

and ΦH(·), ΦC(·), ΦP(·) and ΦF (·) denote the joint fea-
ture representation functions that return HOG score, χ2

distance between different parts of the colour histogram
ΨC and their corresponding part of mean appearance τ ,
and the difference between appearance templates of the
previous frame and the first frame to the current frame
respectively. We concatenate all the observation weights
to give wO = [wC ; wH; wF ; wP]

T
. Intuitively, wO weighs

the observation features i.e. the trackers at each pixel to
give a map that ideally peaks at the body center of the
target pedestrian.

3.1.2. Transition Model

Similar to the observation model, we define the transi-
tion model as

FT (y(t−1),y(t); wT) = wT
TΦT (y(t−1),y(t)), (4)

where FT (·) is a symmetric motion model. The motion
model discretizes the distance travelled between two con-
secutive frames into a number of bins that represent con-
centric circles centered at the previous location. So, we
have

ΦT (y(t−1),y(t)) = bin(||y(t−1) − y(t)||2), (5)

bink(d′) = 1[bd′c=k], k = 0, ..., bdmaxc. (6)

in which we bin the Euclidean distance between the 2d im-
age locations of y and y′, 1[.] is the indicator function and
bin(·) acts as a selection operator that generates a vector
of length dmax + 1 with all the elements set to 0 except
one being 1. The upper bound dmax on the travelled dis-
tance from one frame to the next one is estimated from
the data. Note that the symmetric motion model results
in wT being a disk-like, constant position motion prior
which is learned jointly with all other parameters.

3.2. Trajectory Representation

As noted earlier, we require a combined feature repre-
sentation in order to build our scoring function. We encode
a trajectory-video pair (x,y) using a function Φ(·), whose
components we introduced previously, that compactly rep-
resents their statistics. Recall that this representation is
decomposed in the same way that the model parameter
vector does, namely Φ = [ΦH; ΦC ; ΦP ; ΦF ; ΦT].

This final combination of all cues, aggregated over all
frames of a trajectory, form the representation Φ(·) for a
trajectory. The weights w needed to score a trajectory will
be set using the learning procedure. We next describe how
to perform inference in this model – which is necessary to
apply it to tracking as well as the aforementioned learning.

3.3. Tracking as Inference

In our setting, tracking amounts to performing inference
in our conditional temporal model given the video and
parameters w, i.e. finding the highest scoring trajectory.
Note that if we were to solve the general problem shown
in Fig. 4(a), we would need to find

ŷ = argmax
y,τ

F ′(x,y, τ ; w) (7)

where F ′(·) would be a scoring function that requires de-
scribing the appearance of a particular object and finding
the optimal trajectory simultaneously. However, we do not
do so. Instead, we perform inference using the sub-models
in Fig. 4(c) and Fig. 4(d) for each object:

τ̂ = argmin
τ∈τ ′

||ΨC(x(1),y(1))− τ ||
2

2, (8)

ŷ = argmax
y

F (x,y; w, τ̂). (9)

Obviously, exhaustive search for the optimal trajectory is
not reasonable. We efficiently solve this problem using a
modified version of the Viterbi algorithm which is given
by the following dynamic program

M
(t)
(lC) = max

lN

(
M

(t−1)
(lN) + FT (ŷ(t−1) = lN , ŷ

(t) = lC)
)

+FO(., ŷ(t) = lC), t = 2, ..., T, lN ∈ N (lC),

M
(1)
(linit) = 0, ∀l 6= linit ,M

(1)
(l) = −∞.

(10)

In fact, back to our CRF model depicted in Fig. 4(d),
we are interested in maximizing the conditional

p(y|x; w, τ) ∝ exp(F (x,y; w, τ)) (11)

namely finding the maximum of the log-posterior of the
paths (i.e. terminating pixels marginalized over time)
given the parameters with the prior for initial location y(1)

set to 1 and all other pixels set to 0. Note that we are using
a binding prior that sets to zero the posterior over trajec-
tories that do not start from the initial location. Each ele-
ment M

(t)
(p) corresponds to a pixel and indicates the score of

6

the highest scoring trajectory that originates at the initial
location linit and terminates at pixel p at time t. A trace-
back from the final most scoring location is done to recover
the track. In our notation, lC and lN refer to the current
hypothesized location and its neighboring location(s) re-
spectively. We just search the neighborhood N (lC) when
trying to find the next possible location instead of doing
a full search. Note that this local search is valid since it
complies with the nature of the movements of humans as a
pedestrian is not expected to jump to a pixel which is far
away from the current location. Namely, we are finding an
exact solution in the space of ”valid” trajectories.

As we will point out later, we need to run our tracker
in the original resolution since all the trackers to which we
will be comparing our system are doing the same. How-
ever, performing inference in high resolutions turns out
to be computationally prohibitive even with local search
and integral histogram optimizations. Thus, we resort to
approximate inference. So, we perform beam search and
only consider the H top-scoring hypotheses and discard
the rest. This allows us to produce the tracking results
in the original resolution while keeping the inference feasi-
ble. Obviously, beam search will return suboptimal results
because it does not explore the whole hypothesis space.
However, experimental results show that our approximate
inference scheme works well in practice.

4. Margin Criterion For Learning

The learning task is to find a set of parameters that can
discriminate between a compatible video-trajectory pair
and all other trajectories. Learning the model parame-
ters in this problem setting is challenging since we do not
have negative examples. In other words, we do not know
how a “bad” trajectory looks like and more importantly,
how it differs from a “good” one as this information is
not included in the dataset. Moreover, as considering all
possible “bad” trajectories is intractable – the number of
these grows exponentially with the length of a track.

However, recent advances in structured output predic-
tion [28] provide a principled method for choosing param-
eters in this setting. We can find parameters w that maxi-
mize the score of N given ground truth tracks while push-
ing down the score of potential runner-up negative exam-
ples, modulated by a measure of how “bad” the negative
examples are:

min
w,ξ

1

2
||w||22 +

C

N

N∑
i=1

ξi, s.t. ∀i = 1, ..., N, ξi ≥ 0, (12)

F̄ (xi,yi)− F̄ (xi,y) ≥ ∆̄(yi,y)− ξi. ∀y ∈ Y (13)

The constant C > 0 specifies the relative importance of
margin maximization and error minimization which is de-
termined by cross validation. Note that we are consider-
ing the margin rescaling formulation [28], i.e. requiring
the score of ground truth yi to be at least as far away

from the score of a possibly incorrect trajectory y as the
loss ∆(yi,y) incurred when predicting y. The averaging is
performed to make examples with different lengths compa-
rable since in an unnormalized representation, the location
of joint representations of both positive and negative ex-
amples with respect to the hyperplane(s) and hence the
shape and location of the feasible region would also de-
pend upon the length of the sequence.

A common loss function would measure the total
squared Euclidean distance between corresponding loca-
tions in two trajectories:

∆(yi,y) =

T∑
t=1

||y(t)
i − y(t)||22. (14)

In tracking, a target is often considered to be “lost” if the
tracker is off by more than a predefined number of pixels
ρ. So, we also define a bounded loss function which is again
additive and is expressed as:

∆B(yi,y) =

T∑
t=1

min(ρ2, ||y(t)
i − y(t)||22) (15)

As discussed earlier, we need to generate negative ex-
amples so we can try and solve for them only to make the
optimization tractable. So, for each training pair example
(xi,yi) we seek to find

ŷ = argmax
y 6=yi

(
F (xi,y) + ∆(yi,y)

)
. (16)

This is an iterative procedure: we solve for w then we find
ŷ (for all examples) given w and, having maintained a
small nonredundant set of negative examples, repeat until
a desired stopping criterion is met. We use the SVMstruct

framework [28] to solve this problem.
We can imagine two main types of negative examples:

1) Tracks that start from initial location and drift to back-
ground i.e. anything other than an instance of object cat-
egory of interest. 2) Tracks that start from initial location
but get hijacked by distractor(s) i.e. other instances from
the same object category that are similar and close enough.
Further, any mistrack would be either of the above or a
combination of them.

Let us now consider the rationale behind our bounded
loss function and the semantics of negative examples that
we generate using Eq. 15 and 16. We consider the tracker
to be lost if, at any time point, it is off by at least ρ pix-
els. But as long as it is lost, our loss term turns into a
constant and all such trajectories are equally invalid (as
far as loss is concerned) since they are false tracks anyway
and we will just keep track of the amount of time they
were lost. Therefore, it will be up to the scoring function
to determine bad examples and this amounts to finding
the most confusing trajectory among all wrong ones ac-
cording to the current model parameters w. In contrast
to unbounded loss, we believe that a bad trajectory is use-
ful not for being as far as possible but for being close to

7

(a) First iteration: The worst track possible i.e. max-
imizing the loss only.

(b) Drifting to background.

(c) Tracking a distractor. (d) Convergence: tracking the right person.

Figure 5: Iterations in optimization. Green is the ground truth and red is the “worst” negative example.

the ground truth yet being wrong, i.e. belonging to back-
ground or distractor(s). Note that, a mistrack will neces-
sarily spend some time in the background and for the case
of drift this is going to be considerable which makes them
less challenging. Such examples will, after a few iterations,
become easy (especially if we use detector features such as
HOG) and hence distractors are the most informative neg-
ative examples in this setting. We call a negative example
informative if it contributes to discriminative power of our
tracker by identifying an important and representative fail-
ure mode. Features such as transition features might be
similar in both classes (e.g. distractors in this case) which
would then help find suitable weights for them relative to
other features. Note, however, that considering our as-
sumption about non-overlapping objects, a distractor will
spend some time in background and therefore is expected
to have sufficiently distinguishable features.

Some notable stages of the optimization procedure using
unbounded loss and a suitable constant C are illustrated
in Fig. 5. Green indicates ground truth trajectory and
red is the negative example. We can observe that, among
the generated trajectories for this particular training sam-
ple, some examples can be thought of as being important
failure modes. For instance, Fig. 5(b) shows a trajectory
that corresponds to drift. Also, Fig. 5(c) shows a dis-
tractor negative example where the tracker is learning to
avoid tracking other people whose appearance is similar to
the target pedestrian. Note that examples generated us-

ing bounded loss tend to make more sense, i.e. drifting to
nearby similar objects instead of going to the farthest cor-
ner as in Fig. 5(b). Obviously, the quality of the features
corresponding to a trajectory does not necessarily degrade
if it is shifted away from the ground truth.

5. Automatic Detection and Tracking with MM-
Track

We have described MMTrack for a single target with
known initial location. For most applications, simultane-
ous detection and tracking is of vital importance. In this
section we relax the assumption of known initial target lo-
cation, and show how to use MMTrack in this setting. We
demonstrate that this system can be used to automatically
detect and track pedestrians.

In order to extend MMTrack to a fully automatic de-
tection and tracking system, we have to add capability to
detect entering and exiting pedestrians to MMTrack. We
use the HOG pedestrian detector to automatically initial-
ize our tracker, running it over the entire video sequence.
Because HOG is also used as one of our appearance fea-
tures, using it to initialize MMTrack inference has an ad-
ditional benefit of not incurring additional computational
cost. Since a detection can occur at any arbitrary point
in the pedestrian’s trajectory, searching only forward in
time is unreliable. Therefore, we run MMTrack forward
and backward in time from these detections. Finally, since

8

the length of the trajectory is unknown, we need to decide
when to stop the tracker and choose an upper bound based
on the expected length of stay (using average speed) such
that the computations are practical. We then cluster these
trajectories to find person tracks.

Using a detector to initialize tracks is a common strat-
egy, for example detectors used to initialize object tracking
algorithms include hand detector [16], foreground object
detector in the form of background subtraction [3], and
pupil detection [10]. Note that we are dealing with a vari-
able number of objects because we can not assume that a
group of people enter and exit at the same time. Further,
we cannot necessarily define any specific entrance point
(e.g. frame borders), since state-of-the-art detectors may
miss pedestrians.

For computational reasons and track termination, we re-
sort to a chunking procedure to process the entire video.
The procedure can be summarized as follows (see Fig. 6).
We divide the whole footage into some fixed length blocks
and use HOG pedestrian detector to locate the people in
three consecutive blocks. We initialize one tracker per de-
tection every L frames (we used L = 100) and perform
tracking forward and backward in time and merge the two
so we get an approximation of full trajectory optimization
for all pedestrians in the middle block. The trajectory is
terminated once all H hypotheses for the target exit a pre-
defined region of interest (ROI) in the image. If, once out
of the ROI, the target returns we will introduce a new tra-
jectory for him. Via this process, we get potentially many
trajectories belonging to the same person that differ only
in their initial temporal location of detection. Finally, we
cluster all the trajectories using bottom-up agglomerative
clustering, prune the outliers and use the cluster centers as
the final tracking results. Note that, in order to recover all
trajectories, we need to consider overlapping consecutive
blocks (red rectangles) as we are proceeding to generate
the tracks for the next block. To summarize, for each of
the D detections in a block, we run our tracker. This in-

Figure 6: A chunking procedure is used for computational reasons.
We divide the video into a number of overlapping sequences each of
which contains 3 blocks of length T=500.

ference has computational complexity O(DTHN), where
T is the temporal length of a block in frames, and N the
search neighbourhood size, as above. Feature computation
near hypotheses is required, as is a mean-shift clustering
on the D detections in the block. Finally, an agglomera-
tive clustering on the D tracks with complexity O(D2) is
performed.

False alarms from the detector can still result in non-
pedestrian objects being tracked. Further failures would
be caused by people with very similar appearance who oc-
clude each other. Also track “hijacks” that do not include
a sufficient amount of stay in background to result in a low
model score will cause problems. In spite of these poten-
tial issues, this procedure was successful in practice and
we could track almost all the pedestrians successfully in
our experiments.

This automatic detection and tracking framework is sim-
ilar to that in [3]. However, Berclaz et al. use a rank-
ing procedure which greedily picks the most promising
i.e. highest quality trajectory based on their scoring func-
tion and removes those pixels from their hypothesis/search
space so no other trajectory would ever be able to steal
that space-time location. In contrast, our method inde-
pendently clusters tracks, without a greedy, approximate
consideration of space-time overlap.

Figure 7 demonstrates the result of our tracking system
on one pedestrian. The image on the left shows MMTrack
forward-backward inference results as red trajectories and
the HOG detections as shadows with green borders. Three
trajectory clusters are detected after clustering, and the
membership of the clusters are shown in the middle im-
age with trajectories coloured according to the cluster to
which they belong. The means for the clusters are shown
in the rightmost image with the width of a cluster tra-
jectory being proportional to the number of trajectories
belonging to that cluster. The blue cluster has the most
members whose center is selected as recovered trajectory
and other (singleton) clusters that belong to hijacks are
discarded. Interestingly, almost all discarded trajectories
in our experiments were the ones that were badly and/or
untimely initialized namely observations that are not long
enough to be disambiguated.

6. Experimental Results

In this section, we present our experiments on two real-
world data sets. We start by introducing these data sets
and the challanges in each of them along with our imple-
mentation details. We present qualitative results on long
sequences and a demonstration where we provide empirical
justification for our feature combination strategy. Next,
we report quantitative results obtained on both datasets
and show how the choices of loss function and inference
scheme affect the performance.

9

(a) (b) (c)

Figure 7: Trajectory clustering result for one pedestrian. (a) Time
lapse of all tracks containing the pedestrian. (b) Three clusters of
trajectories. (c) Largest cluster, in blue, is correct cluster containing
the pedestrian.

6.1. Descriptions of Datasets

UBC Fireworks Dataset: This dataset consists of
clips at 1440 × 1080 resolution using a stationary cam-
era installed on top of a building in downtown Vancouver
which was initially recorded for transportation engineering
data collection [13]. It contains both daytime and night-
time sequences. A top-down view of a moderately crowded
scene is captured with a variety of moving objects typical
to an urban setting. This includes cars, bicyclists, and
pedestrians. The amount of change in illumination, scale
and pose is not significant but one needs to deal with back-
ground clutter and partial occlusions. The main challenges
in the dataset are the presence of crowded blobs of moving
pedestrians that introduces many potential distractors and
background change that occurs when people move from
sidewalk to street area and vice versa (an example frame
is shown in the left side of Fig. 2).

PETS09 Dataset: We use the S2.L1 dataset taken
from the PETS 2009 competition. The dataset consists of
a 794-frame video recorded at about 7 frames per second
from a pedestrian path at a university campus. Unlike
UBC Fireworks, this dataset has significant scale varia-
tions due to perspective effects. The viewpoint also in-
troduces occlusion issues with occasions where pedestri-
ans are completely occluded for a long time either by a
background object or other pedestrians. Other challenges
include the presence of many people dressing similarly in
the frames and considerable pose change.

We use a portion of the UBC Fireworks as our training
dataset, and the weights obtained are then used for test-
ing of both UBC Fireworks (disjoint subset) and PETS09
datasets.

6.2. Implementation Details

The main bulk of computation time comes from the fea-
ture extraction. To reduce training time, we precompute

HOG and colour histogram distance features prior to train-
ing and testing. Appearance templates, however, must be
generated online since they are pairwise potentials and we
compute them efficiently using integral images. We signif-
icantly reduce the space of possible trajectories in training
by running the Viterbi algorithm in steps of nine pixels in
both horizontal and vertical directions so the actual work-
ing resolution is 160 × 120. We define the neighborhood
N(lC) to be the area within a radius of 2 pixels centered at
the current location lC . This choice is made based upon
empirical statistics of the dataset which is in fact a function
of the camera angle, average walking speed of pedestrians
and frame rate. Similarly, we set the dmax in the motion
model and ρ in the bounded loss to the same constant.
Note also that because the testing processes images at dif-
ferent resolution from training, the motion model obtained
from training must be adapted for testing. So, a simple
nearest neighbor interpolation of the motion model is per-
formed using the same number of discretization bins as in
training and the weights are used directly.

For the histogram distance feature, we use the integral
histogram optimization technique [20] to efficiently com-
pute the histogram of any rectangular window in the im-
age. With the integral histogram technique, all nine his-
tograms representing the different body sections can be
computed with a few arithmetic operations once the inte-
gral histogram is built. We also optimize computation of
the appearance template features by computing the sum-
of-absolute difference with a modified integral image tech-
nique [29]. However, due to the high resolution of the
datasets (1440 × 1080 and 768 × 576 respectively), full
inference in the original resolution turns out to be compu-
tationally prohibitive even with optimized feature genera-
tion. Therefore, we resort to pruning strategies for infer-
ence at test time by performing beam search. With beam
search, we only evaluate the H highest-scoring trajecto-
ries at each time step (H is set to 3 in our experiments).
Beam search allows us to perform inference in the origi-
nal resolution at the expense of suboptimality as it only
considers a small subset of the hypothesis space. However,
applying beam search at training phase hurts the results
since performance guarantees for the related learning al-
gorithms build upon exact inference. Although both beam
search and input subsampling explore only a subset of the
whole space, our experimental results show that both ap-
proximations work well in practice.

The HOG detection window size for UBC Fireworks is
set to 48× 112 and the detection is performed on a pyra-
mid whose scale varies up to 130% of the original reso-
lution. The bounding box size that we use for comput-
ing other features is also fixed as scale and angle do not
change substantially. This is not the case for PETS and
we used the camera calibration information provided with
the detaset to map 2D pixel coordinates to 3D world coor-
dinates and vice versa. We assume ρ = 1.8m, pedestrian
height of 1.6m and height:width ratio of 4 : 1 to rescale
the bounding boxes and the motion model (measured in

10

meters) appropriately. For the colour histogram distance
feature, this means computing the histograms over sec-
tions of the rescaled bounding box. For appearance tem-
plate features, both the template and the hypotheses are
rescaled to a fixed resolution at which the sum of absolute
differences is then computed.

6.3. Qualitative Evaluation

We first describe qualitative detection and tracking re-
sults on the two datasets. We reiterate that training is
done using a subset of the UBC Fireworks dataset, with
testing on a disjoint subset as well as transfer of these
parameters to the PETS09 dataset.

6.3.1. UBC Fireworks Qualitative Evaluation

We use three UBC Fireworks dataset clips for our qual-
itative evaluation. The three video clips are recorded at
25 frames per second, with durations of 6m:18s, 6m:46s,
and 3m:20s. The first two clips were taken in daytime, the
latter in nighttime. The same set of weights are used in all
our experiments. To generate the trajectories, we run our
automatic detection and tracking system as described in
Sec. 5. Fig. 8 shows our performance on a daytime clip. We
observe that our tracker does a decent job even in crowded
conditions. We could identify two rare sources of error in
our tracking system as being HOG false alarms resulting
in non-pedestrian objects such as cars to be tracked, and
pedestrian full occlusion that occurs when they walk be-
hind another object such as a tree. All demo videos are
available at our project website1.

Fig. 9 is an example demo from the UBC Fireworks
dataset that illustrates the importance of our cue combi-
nation strategy. As observed in the subfigures, our tracker
with only HOG and histogram distance features drifts to
a nearby distractor at some parts of the track as it does
not know about the initial appearance of the person. The
jitter in the trajectory is mostly due to lack of fine details
of the appearance which roughly makes the neighbors be-
come equally good according to the model. On the other
hand, with HOG and appearance templates, the tracker
gets stuck in background area at the boundary between the
sidewalk and the street. The reason is that the significant
change in appearance template from frame to frame which
occurs at this boundary is rare and hence not supported

(a) (b)

Figure 8: Sample tracking results on crowded conditions.

(a) (b) (c)

Figure 9: An example illustrating the intuition behind our
model design. The tracked ”objects” throughout the trajecto-
ries are shown in red insets and also superimposed along the
trajectories. (a) HOG+histograms, (b) HOG+templates, (c)
HOG+histogram+templates.

by the average statistics encoded by the model. So, the
tracker is not robust against sudden changes in appear-
ance. Also, since information about average appearance
and average background is lacking, drift is inevitable and
the role of initial template breaks as background pixels
make the stay in sidewalk more rewarding than moving to-
ward the street. The combination of HOG, distance maps
and appearance templates manages to track the person
correctly. In this case, the system is stable against rapid
changes while being reasonably accurate. Note that the
same situation happens for PETS. However, the role of
features in that data set depends on how clean the features
we obtain are in practice after performing the rescaling.

6.3.2. PETS Qualitative Evaluation

We also conduct qualitative evaluation on the PETS
2009 S2.L1 dataset where we use the same weight param-
eters obtained from our Fireworks experiment. Generally,
the tracker can track most pedestrians when they are not
occluded. Two main causes of occlusions in the dataset
are the signpost located in the middle of the image and
close interaction with people with similar appearance.

In the PETS video, 44 trajectory clusters are displayed
sequentially in descending order according to the ratio of
the number of members to the length of the cluster mean.
The results show promising performance, with only one
mistrack in the first ten trajectories and five mistracks in
the first twenty trajectories. Two full-trajectory tracking
results are shown in Fig. 10. In the figure, target pedestri-
ans are indicated by red bounding boxes, the tracker’s re-
sulting trajectories are shown in red trajectories, and snap-

11

shots from various points during the trajectories are shown
in the blue insets. In the top image, the tracker managed
to track the target when he was partially occluded by a
signpost, but drifted when the target was occluded by a
similar-looking pedestrian. The bottom image shows a
successful long-duration tracking even on occasions of full
occlusion. In this example, the target pedestrian’s appear-
ance is different from other pedestrians he interacts with
and the tracker can still find him after occlusion as he
never moves farther than the limit of the motion model.

6.4. Quantitative Results

We compare our single-target tracker with algorithms
proposed by Collins et al. [6] and Babenko et al. [2]. We
used the MIL-tracker software provided by the authors
and implemented our own version of [6] which we call the
Collins-Liu tracker. We only use the Fireworks dataset as
these methods are not designed to handle scale variations.
We use 10 manually-labeled trajectories from different se-
quences for training. Both training and test examples are
of length 350-500 and contain easy, moderate and hard se-
quences ranging from a solitary person going through the
scene to a pedestrian walking within a crowd with par-
tial occlusions. We chose 22 other trajectories and manu-
ally labeled them for evaluating the performance. We run
independent instances of the tracker forward and back-
ward in time in order to get complete trajectories starting
from the fixed set of selected detections. Trackers are ter-
minated once they are within a certain number of pixels
from image borders. We use the same procedure to ex-
tract trajectories using other methods so we can make a
fair comparison.

Besides the usual average pixel error measure (Avg.
Err.), we use two other performance measures proposed
in [33, 14]. Correct Detected Track (CDT) indicates the
number of correct trajectories. A track is defined as a
CDT if the amount of spatial and temporal overlap with
the ground truth exceed thresholds Tov and TRov respec-
tively, where Tov and TRov are both set to 0.5 in our
experiments. This roughly means that at least half of a
CDT must temporally coincide with its ground truth, its
length cannot be less than half of its ground truth, and
the average spatial overlap must be at least 0.5. Multiple
Object Tracking Precision (MOTP) [14] or Closeness of
Track (CT) [33] is defined as the average spatial overlap
between a ground truth and a system track in the tempo-
rally coincident portion of the track. Its value ranges from
0 to 1, with 1 indicating that the track is exactly the same
as the ground truth in the temporally coincident section of
the track. More detailed explanation of the measures are
provided in [33, 14]. Note that since we are focused on sin-
gle target tracking, other performance measures from [14]
are not applicable.

1http://www.cs.sfu.ca/research/groups/VML/MMTrack.html.

Tracker #CDT MOTP Avg. Err.

MMTrack:All 21 0.67 7.01
MMTrack:Hist+Templates 20 0.61 12.74
MMTrack:HOG+Templates 14 0.52 22.24

MMTrack:HOG+Hist 10 0.47 14.40
MILTrack 19 0.61 19.87
Collins-Liu 14 0.54 21.24

Table 1: Comparison of results on UBC Fireworks dataset. Higher
#CDT and MOTP are better, lower Avg. Err. is better.

Tracker # CDT MOTP Avg. Err.

MMTrack:All 21 0.61 10.37
MMTrack:HOG+Hist 20 0.64 13.48

MMTrack:HOG+Templates 15 0.56 22.16

Table 2: Quantitative results on 25 targets from PETS 2009 dataset.
Higher #CDT and MOTP are better, lower Avg. Err. is better.

6.4.1. UBC Fireworks Quantitative Evaluation

To gain more insight into the importance of our feature
combination, we design experiments on both datasets with
groups of features turned off. For this purpose, we learn
different sets of parameters for each combination of the
features independently. Table 1 presents the results on
Fireworks.

The second set of experiments, also shown in Table 1,
compare our tracker with other trackers on the same test
set. As we can see in the table, our tracker outper-
forms the MIL-tracker [2] and Collins-Liu tracker [6] in
this dataset. These results provide a system-level com-
parison, since these trackers build upon different feature
sets. Also, both [6] and [2] are only concerned with appear-
ance modeling and do not include a parameterized motion
model. One can explain this promising performance by
reasoning about the role of different cues in our system.
Specifically, the HOG feature helps the tracker eliminate
areas belonging to non-pedestrian objects, the histogram
distance maps provide a rough description of the pedes-
trian and helps alleviate drift whereas appearance tem-
plates provide finer levels of the appearance, with the pre-
vious frame appearance template allowing some degree of
adaptability to appearance change over time.

Table 1 shows that removing some of the features signif-
icantly reduces the performance indicating that the combi-
nation of HOG, histogram distance and template appear-
ance features is essential in achieving good performance.
While each feature group is responsible for avoiding cer-
tain types of failures, interactions between groups accounts
for difficult situations. Hence, when a feature group is dis-
carded, not only the corresponding failure modes show up
but also more complicated failure modes occur as feature
groups are not independent.

Table 1 indicates that the most important components
of our tracker are colour histograms and appearance tem-
plates. The second row, which corresponds to the system
with the second best results, does not include HOG score
which implies that our tracker does not really depend on

12

Figure 10: Sample tracking results on PETS dataset.

Learning Loss Type # CDT MOTP Avg Err
Exact ∆ 15 0.56 11.38
Exact ∆B 21 0.67 7.01

Approx. ∆ 17 0.61 9.90
Approx. ∆B 20 0.64 12.24

Table 3: Our tracking results with different learning schemes and
loss functions on 22 test samples from UBC Fireworks.

a detector although a good one would slightly improve the
performance.

Note that our MMTrack approach uses more features,
and hence is computationally more demanding. Running
on a 2.4GHz Intel Core2 Q6600 workstation with 8GB
RAM, MMTrack takes on average 1253ms to process a
frame, compared to 385ms for our Collins-Liu implemen-
tation and 493ms for MILTrack. These times exclude HOG
detction, which takes ≈100s on an entire 1440x1080 frame
using the code provided by the authors.

6.4.2. PETS Quantitative Evaluation

We also consider PETS data for our quantitative eval-
uations. This experiment is done with the parameters
learned using the Fireworks dataset and serves as an eval-
uation for our method on unseen data. Reported tracking
results on PETS datasets are all multi-target tracking al-
gorithms and our method, as a single-target tracker, is not
directly comparable to them. Moreover, there is no pub-
licly available state-of-the-art single-target tracking soft-
ware that handles scale change. Therefore, we do not per-
form comparisons with other trackers for this dataset. Be-
cause full occlusion is very common in this dataset and
our single-target tracker has no inherent mechanism to
perform occlusion reasoning, we split the ground truth to
segments that do not contain such instances, resulting in
25 ground truth tracks.

Table 2 summarizes the results on PETS. Again, the
same observations about feature combinations apply –
adding features improves performance.

6.4.3. Learning Scheme and Loss Functions

We also tried exact and approximate learning schemes
as well as bounded and unbounded loss while keeping the
inference the same for all the experiments. Table 3 shows
the performance of our tracker. As seen in the table, ex-
act training using bounded loss achieves the best result
in all measurements among all the configurations of MM-
Track. Theoretical guarantees of the optimization algo-
rithm explains the superiority of the exact training over
approximate training. We believe that bounded loss bet-
ter matches the nature of our measurements as it is closer
to the overlap criterion in CDT and stops (over) penalizing
as soon as the overlap becomes zero and so performs better
compared to unbounded loss in all settings as expected.

7. Conclusion

In this paper, we introduced an offline tracker that em-
ploys a large margin learning criterion to effectively com-
bine different trackers. Although MMTrack is used for
pedestrian tracking in this work, we believe that our frame-
work is general and can be used to track other objects pro-
vided that features can reliably describe the target object
and handle situations of interest while avoiding confusions
for our discriminative classifier. For instance, one could
model articulated objects in the same way as we included
our set of features.

The version of MMTrack we have described is a single-
target tracker and thus it has no capability to reason about
full occlusions. We believe that rather than adding occlu-
sion handling capability to a single-target tracker, better
results can be achieved by using a multi-target tracking
framework. In contrast to single-target trackers that as-
sign a trajectory to each target without considering other
objects, multi-target trackers jointly consider the state of
all targets in determining their trajectories. We believe
that extending this framework to multiple target tracking
would be fruitful ground for future research.

Our tracking system has limitations in handling severe
occlusion and track hijacks caused by significant change
in appearance or situations where the background patch is
very similar to the appearance of the target. Incorporat-
ing mechanisms that would enable single target trackers
to explain long-term occlusions while avoiding distractor
hijacks turns out to be very challenging. Again, incor-
porating long term occlusion into the model and learning
procedure would be interesting future research.

Another assumption in our current model is that the
same linear weights are valid thoughout the tracking. One
could also define variants of our model that have non-linear
weights, or weights that are functions of properties of the
scene or tracking situation. For example, learning differ-
ent parameters for different locations in the scene may also

13

be of interest. Such a tracking system would be able to
deal with location specific situations that are difficult to
handle for a generic tracker. This is motivated by the intu-
ition that the relative importance of the features is likely
to be affected by the statistics of background patches and
particular occlusions at different locations. On the other
hand, designing trackers with more complicated statistics
or background models could result in better performance.
Finally, defining suitable problem-specific loss functions
that directly optimize for benchmark measurements is de-
sirable.

Acknowledgements

This work was supported by grants from the Natu-
ral Sciences and Engineering Research Council of Canada
(NSERC) and BCFRST Natural Resources and Applied
Sciences (NRAS) Research Team Program.

Author Biographies

Bahman Yari Saeed Khanloo received
his BSc in computer science from University of Tehran,
Iran, and an MSc degree in computer science from Simon
Fraser University, Canada. Currently, he is a research in-
tern at A*STAR/NUS under SINGA international schol-
arship. His research interests are in convex optimization
and matrix methods for machine learning, probabilistic
graphical models, games and learning theory.

Ferdinand Stefanus received the BEng
degree from the School of Computer Engineering, Nanyang
Technological University, Singapore, in 2003, and the MSc
degree in Computing Science from the School of Comput-
ing Science, Simon Fraser University, Canada, in 2011.
Prior to obtaining his MSc, he worked at Institute for In-
focomm Research, developing and deploying computer vi-
sion applications. He is now with MacDonald, Dettwiler,
and Associates Ltd. His research interests include com-
puter vision, software engineering, and machine learning.

Mani Ranjbar is currently a PhD can-
didate at the School of Computing Science, Simon Fraser
University, Canada. He received his M.Sc. in Computer
Architecture from Sharif University of Technology, Iran
in 2007 and his B.Sc. in Computer Engineering from the
same university in 2005. His research interests are in com-
puter vision and machine learning including object detec-
tion, segmentation and tracking.

Ze-Nian Li is a Professor in the School
of Computing Science at Simon Fraser University, British
Columbia, Canada. Dr. Li received his undergraduate
education in Electrical Engineering from the University
of Science and Technology of China, and M.Sc. and
Ph.D. degrees in Computer Sciences from the University of
Wisconsin-Madison under the supervision of the late Pro-
fessor Leonard Uhr. His current research interests include
computer vision, multimedia, pattern recognition, image
processing, and artificial intelligence.

Nicolas Saunier obtained his Ph.D. in
Computer Science in France in April 2005 at Telecom
ParisTech, using Machine Learning methods to study the
influence of traffic control in a signalized intersection on
the risk of road users. For the next 4 years as postdoc-
toral fellow and research associate at the University of
British Columbia, he developed automated methods for
traffic monitoring and road safety analysis, including for
pedestrians. Since September 2009, he is an assistant pro-
fessor in Transportation at the École Polytechnique de
Montréal. His interests include intelligent transportation
systems, road safety, and information technology for trans-
portation (data collection, storage, processing, and visual-
ization).

14

Tarek Sayed is a Professor and a Dis-
tinguished University Scholar at the University of British
Columbia. He is the Editor of the Canadian Journal
of Civil Engineering and the Director of the Bureau of
Intelligent Transportation Systems and Freight Security
(BITSAFS-Engineering) at UBC. Dr. Sayed has numer-
ous awards recognizing his work to advance Transportation
Engineering Research and Education.

Greg Mori received the Ph.D. degree
in Computer Science from the University of California,
Berkeley in 2004. He received an Hon. B.Sc. in Computer
Science and Mathematics with High Distinction from the
University of Toronto in 1999. He is currently an Asso-
ciate Professor in the School of Computing Science at Si-
mon Fraser University. Dr. Mori’s research interests are
in computer vision, and include object recognition, human
activity recognition, human body pose estimation.

[1] Andriyenko, A., Schindler, K., 2010. Globally optimal multi-
target tracking on a hexagonal lattice, in: European Conference
on Computer Vision.

[2] Babenko, B., Yang, M.H., Belongie, S., 2009. Visual tracking
with online multiple instance learning, in: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

[3] Berclaz, J., Fleuret, F., Fua, P., 2006. Robust people tracking
with global trajectory optimization, in: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

[4] Bradski, G.R., 1998. Computer vision face tracking for use in a
perceptual user interface. Intel Technology Journal.

[5] Breitenstein, M.D., Reichlin, F., Leibe, B., Koller-Meier, E.,
Gool, L.V., 2010. Online multi-person tracking-by-detection
from a single, uncalibrated camera. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence (to appear).

[6] Collins, R., Liu, Y., Leordeanu, M., 2005. Online selection of
discriminative tracking features. IEEE Transactions on Pattern
Analysis and Machine Intelligence 27, 1631 –1643.

[7] Comaniciu, D., Ramesh, V., Meer, P., 2003. Kernel-based ob-
ject tracking. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 25, 564–575.

[8] Dalal, N., Triggs, B., 2005. Histograms of oriented gradients
for human detection, in: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

[9] Darrell, T., Gordon, G., Harville, M., Woodfill, J., 1998. In-
tegrated person tracking using stereo, color, and pattern de-
tection, in: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

[10] Davis, J.W., 2001. A perceptual user interface for recogniz-
ing head gesture acknowledgements, in: In ACM Workshop on
Perceptual User Interfaces, pp. 15–16.

[11] Du, W., Piater, J., 2008. A probabilistic approach to integrating
multiple cues in visual tracking, in: European Conference on
Computer Vision (ECCV), Springer-Verlag.

[12] Giebel, J., Gavrila, D., Schnrr, C., 2004. A bayesian framework

for multi-cue 3d object tracking, in: European Conference on
Computer Vision (ECCV).

[13] Ismail, K., Sayed, T., Saunier, N., 2009. Automated collec-
tion of pedestrian data using computer vision techniques, in:
Transportation Research Board Annual Meeting Compendium
of Papers, Washington, D.C.

[14] Kasturi, R., Goldgof, D., Soundararajan, P., Manohar, V.,
Garofolo, J., Bowers, R., Boonstra, M., Korzhova, V., Zhang,
J., 2009. Framework for performance evaluation of face, text,
and vehicle detection and tracking in video: Data, metrics, and
protocol. IEEE Transactions on Pattern Analysis and Machine
Intelligence 31, 319 –336.

[15] Khanloo, B.Y.S., Stefanus, F., Ranjbar, M., Li, Z.N., Saunier,
N., Sayed, T., Mori, G., 2010. Max-margin offline pedestrian
tracking with multiple cues, in: Seventh Canadian Conference
on Computer and Robot Vision (CRV).

[16] Kolsch, M., Turk, M., 2004. Fast 2d hand tracking with flocks
of features and multi-cue integration, in: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

[17] Leichter, I., Lindenbaum, M., Rivlin, E., 2004. A probabilistic
framework for combining tracking algorithms, in: IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR).

[18] Moreno-Noguer, F., Sanfeliu, A., Samaras, D., 2008. Dependent
multiple cue integration for robust tracking. IEEE Transactions
on Pattern Analysis and Machine Intelligence 30, 670–685.

[19] Nejhum, S.M.S., Ho, J., Yang, M.H., 2008. Visual tracking with
histograms and articulating blocks .

[20] Porikli, F., 2005. Integral histogram: A fast way to extract hig-
tograms in cartesian spaces, in: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

[21] Ramanan, D., Forsyth, D., Barnard, K., 2006. Building models
of animals from video. IEEE Transactions on Pattern Analysis
and Machine Intelligence 28, 1319–1334.

[22] Roh, M.C., Kim, T.Y., Park, J., Lee, S.W., 2007. Accurate ob-
ject contour tracking based on boundary edge selection. Pattern
Recognition 40, 931 – 943.

[23] Ross, D.A., Lim, J., Lin, R.S., Yang, M.H., 2008. Incremental
learning for robust visual tracking. International Journal of
Computer Vision (IJCV) 77, 125–141.

[24] Shi, J., Tomasi, C., 1994. Good features to track, in: IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR).

[25] Spengler, M., Schiele, B., 2001. Towards robust multi-cue inte-
gration for visual tracking, in: Proceedings of the Second Inter-
national Workshop on Computer Vision Systems.

[26] Stenger, B., Woodley, T., Cipolla, R., 2009. Learning to track
with multiple observers, in: IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR).

[27] Taycher, L., Demirdjian, D., Darrell, T., Shakhnarovich, G.,
2006. Conditional random people: Tracking humans with crfs
and grid filters, in: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

[28] Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y., 2004.
Support vector machine learning for interdependent and struc-
tured output spaces, in: Proceedings of the Twenty-first Inter-
national Conference on Machine Learning (ICML).

[29] Viola, P., Jones, M., 2004. Robust real-time object detection.
International Journal of Computer Vision (IJCV) 57, 137–154.

[30] Wu, Y., Huang, T.S., 2004. Robust visual tracking by integrat-
ing multiple cues based on co-inference learning. International
Journal of Computer Vision (IJCV) 58, 55–71.

[31] Yilmaz, A., Javed, O., Shah, M., 2006. Object tracking: A
survey. ACM Comput. Surv. 38.

[32] Yilmaz, A., Li, X., Shah, M., 2004. Contour-based object track-
ing with occlusion handling in video acquired using mobile cam-
eras. IEEE Transactions on Pattern Analysis and Machine In-
telligence 26.

[33] Yin, F., Makris, D., Velastin, S.A., 2007. Performance eval-
uation of object tracking algorithms, in: IEEE International
Workshop on Performance Evaluation of Tracking and Surveil-
lance (PETS2007).

15

