Max-Margin Offline Pedestrian Tracking with Multiple Cues

Bahman Yari Saced Khanloo!, Ferdinand Stefanus®, Mani Ranjbarl,
Ze-Nian Li', Nicolas Saunier?, Tarek Sayed3, and Greg Mori'

! School of Computing Science
Simon Fraser University
{byari, fsa21, mra33, li, mori} @cs.sfu.ca

Abstract

In this paper, we introduce MMTrack, a hybrid single
pedestrian tracking algorithm that puts together the ad-
vantages of descriptive and discriminative approaches for
tracking. Specifically, we combine the idea of cluster-based
appearance modeling and online tracking and employ a
max-margin criterion for jointly learning the relative im-
portance of different cues to the system. We believe that the
proposed framework for tracking can be of general interest
since one can add or remove components or even use other
trackers as features in it which can lead to more robustness
against occlusion, drift and appearance change. Finally, we
demonstrate the effectiveness of our method quantitatively
on a real-world data set.

1 Introduction

Object tracking is an important computer vision task
with numerous practical applications such as pedestrian
tracking, user interfaces and traffic monitoring. Most ob-
ject tracking systems amount to defining a set of features
that best describe the appearance of an object, and com-
bining the features with a motion model to track the object
from frame to frame. The appearance and motion models
are usually treated separately by object tracking algorithms,
using independent components whose parameters are set or
learned independently (e.g. Haar-like features for appear-
ance model and constant velocity dynamics as the motion
model [17], or Eigenbasis appearance model-Brownian mo-
tion model pair [10]).

Further, choosing an appearance model is itself a chal-
lenging problem due to appearance change of the target ob-
ject and potential similarity in appearance with other ob-
jects. Ramanan et al. [9] consider a static approach to ap-
pearance modeling using clustering while Collins et al. [2]
use online adaptive appearance modeling. A good appear-
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ance model should be able to strike a balance between resis-
tance to drift and adaptation of the object’s appearance over
time. This suggests that a combination of static and con-
tinually updated cues may help a tracker achieve superior
performance. It has been shown that combining different
cues helps improve tracking performance, if it is done in
a principled manner [13]. Many existing multi-cue track-
ing algorithms, however, combine the cues with either fixed
weighting [4, 12, 11], or update the weights according to a
heuristically-selected measure [6, 7].

Another approach that has gained popularity recently is
to use some feature selection criteria to select the features
that best discriminate the appearance of the object from its
surroundings. In [2], a Fisher-like criterion is used to select
the most discriminative features at each frame, whereas in
[1], a boosting mechanism is used to select the best features
from a fixed pool of features. Both methods, however, use
only one type of feature (linear combination of RGB chan-
nels for [2], and Haar-like features for [1]). In our work,
we try to combine different feature types, where each fea-
ture type may have different contribution relative to other
features. Determining the weighting of different features in
this setting is not a straightforward task, due to the inter-
dependency between different features. It should also be
noted that both [2] and [1] are only concerned with appear-
ance modeling and do not learn a motion model.

The main contribution of this paper is to employ Struc-
tural SVM in the context of object tracking. Structural SVM
is arecent development in machine learning that generalizes
SVM formulation to deal with interdependent and struc-
tured variables[14, 15]. Object tracking can be formulated
as a structured output prediction problem, as it tries to find
the sequence of coordinates that best explain input features.
This is verified by the observation that each pair of coor-
dinates are strongly interdependent since the valid range of
possible movements of the object is restricted by the mo-
tion model. In other words, an object is more likely to
move to nearby locations in the next frame than to locations



that are far away. In addition, by formulating the problem
as a chain-structured Markov Random Field (MRF) with
emission and transition models, we will show that Struc-
tural SVM also provides an intuitive and principled way to
treat the feature representation and motion model in a uni-
fied way while jointly learning the relative contributions of
multiple cues.

The chain-structured MRF model and the inference
scheme that we adopt is similar to the model adopted in
[4]. However, our objective is not to build a multi-person
tracker but rather to define a principled way to combine
different cues. Francois et al. [4] combine simple cues
such as ground plane occupancy and color model by treating
them equally (i.e. using fixed weighting), whereas we try to
find weights that represent relative contributions of differ-
ent cues. In a way, the idea of combining different cues
we use in our framework is closely related to the approach
presented in [13]. The main difference is that instead of
combining the results of multiple 'observers’ (i.e. complete
tracker systems each of which having its own appearance
and motion model), we fuse different appearance models
and a motion model. Moreover, the parameters for fusing
the appearance models and motion model are learned jointly
in our case whereas in [13] the observers are combined ac-
cording to error distributions that are learned independently
for each observer.

2 Pedestrian Tracking

In this section, we introduce our tracking system called
MMTrack in the context of pedestrian tracking. The system
comprises three main components: descriptive features, dis-
criminative features and motion model. Descriptive features
are used to represent the appearance of the target pedestrian,
and discriminative features are used to distinguish between
the tracked object from other objects. The motion model fa-
vors specific movement patterns from one frame to another.
A large margin learning approach combines these three cues
by learning the relative importance of the components. Fi-
nally, the learned model is used to estimate pedestrian tra-
jectories.

The rest of this section is organized as follows. Section
2.1 describes our trajectory scoring model. Section 2.2 out-
lines the features that provide us with cues for locating a
desired pedestrian. We explain our max-margin framework
for estimating the model parameters in Section 2.3 and out-
line our efficient inference scheme in Section 2.4.

2.1 Trajectory Scoring Model
We are interested in offline tracking where we exploit the

fact that the positions of the target in consecutive frames are
interdependent and the starting location is given (e.g. by a

detector). This is in contrast to online tracking that greed-
ily picks the next best location of the object at each frame.
The tracking problem in our setting can be formulated as
one of finding the trajectory with the highest score given a
starting location, assuming that a scoring function that can
measure the compatibility between a trajectory and a video
sequence exists. Further, since we are using many features,
the scoring function should take into account the relative
contribution of each feature in describing the trajectories.

Hence, the scoring function is a mapping in the form of
F(x,y;w) : XT x YT — R from a sequence of frames
x = {x® .. x(M1 and a trajectory y = {y@), ...,y(T}
to a real number where each location y*) is assigned to one
of the image pixels and w is a set of weights that repre-
sent the importance of each of the features extracted from
the frames. Further, we assume that if the location of the
object at a particular frame is known, the locations of the
object in previous and following frames will be indepen-
dent from each other. Therefore, we model a trajectory as
a chain-structured MRF. The scoring function of this model
is decomposed into two contributions: fransition model and
emission model. The transition model, which is described
by the motion model, defines the compatibility of the lo-
cations of the target between two consecutive frames. The
emission model is a measure of compatibility of a location
and the observed features at that location. Thus, we define
the score of a trajectory as

T
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where Fg () and Fg(t) (-) are linear models describing tran-
sition and emission contributions at time ¢ respectively.
These functions are parameterized by w7 and wg whose
concatenation we denote by w.

2.1.1 Emission Model

The emission model includes several features whose
weighted combination votes for the presence of the target
pedestrian. These features include Histogram of Oriented
Gradient [3] (HOG) feature as discriminative feature and
color histogram distance and two appearance templates as
descriptive features. Thus, the emission model decomposes
into the following contributions
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where We(-), Up(+), Ux(-) and ¥p(-) denote the feature
functions representing color histogram distance, HOG fea-
tures and the difference between appearance templates of
the first frame and the previous frame to the current frame
corresponding to a bounding box around the hypothesized
location y(*) respectively. We concatenate all the emission
weights to give wg = [W¢; Wi W WP]T Intuitively,
w¢ weighs the emission features to give a map that ideally
peaks at the body center of the target pedestrian.

2.1.2 Transition Model

Similar to the emission model, we define the transition
model as

F(yE D y® wr) = wre T o (yE D y®), 3)

where U (-) is a symmetric first-order motion model. The
motion model discretizes the distance travelled between two
consecutive frames into several bins that represent concen-
tric circles centered at the previous location. So, we have
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Here, d(y,y’) is the Euclidean distance between the 2d im-
age locations of y and y’, 11, is the indicator function and
bin(-) acts as a selection operator that generates a vector of
length d,, 4, +1 with all the elements set to 0 except one be-
ing 1. The upper bound d,,, 4, on the travelled distance from
one frame to the next one is estimated using the dataset.
Note that the symmetric motion model results in w7 being
a disk-like motion prior which is learned jointly with the
emission model parameters.

2.2 Features

We use a combination of discriminative and descriptive
features in our tracking framework. While descriptive fea-
tures are used to describe the appearance of the object being
tracked, discriminative features are intended to distinguish
the tracked object from other objects. We use color his-
togram distance and appearance templates as the descriptive
features and HOG score map as our discriminative feature.

The intuition behind using different features is that each
of the features will provide the tracking system with dif-
ferent information. We expect the HOG feature to be of
help to the system in discriminating between pedestrians
and non-pedestrian objects (e.g. car, trees, etc.). Color
histogram distance features are used to provide information
about static appearance of the tracked pedestrian. Appear-
ance template features, on the other hand, provide informa-
tion about a particular pedestrian at a finer level than the his-
togram distance features. Further, other than the static his-
togram distance features, another type of appearance tem-
plate feature is also used to provide a constantly updated

appearance model of a pedestrian. With the combination
of both static and continually-updated appearance model,
we hope to achieve a good balance between resistance to
track drift and adaptation to a pedestrian’s varying appear-
ance throughout its trajectory.

2.2.1 HOG Score

We use the output of the linear SVM classifier that operates
on Histogram of Oriented Gradients [3] as a feature to help
our system differentiate between pedestrians and other ob-
jects. We trained the SVM to detect pedestrians in top-down
view so as to make it suitable for our particular experimen-
tal setup. The detection window size is set to 48x112 and
the detection is performed on a pyramid built on the input
image with its scale varying up to 130% of the original reso-
lution. For each pixel location, we take the maximum SVM
score over all image resolutions resulting in a score map
where the peaks vote for presence of pedestrians. We then
normalize these scores so they fall within the range [0,1]
and use the final map as our feature. Figure 1 illustrates an
input image along with the corresponding normalized HOG
score map.

Figure 1. A frame and its corresponding HOG
feature map.

2.2.2 Color Histogram Distance

Although HOG scores can help the system differentiate be-
tween pedestrians and other objects, they are not informa-
tive in distinguishing among different pedestrians, as many
pedestrians will have high HOG scores. Thus, features
that can uniquely respresent the appearance of a pedestrian
are needed. We incorporate such features using a static
color histogram model obtained from clustering as is done
in [9]. The main idea here is that by clustering the his-
tograms obtained from bounding boxes around the pedes-
trians throughout the video, we can gain a good insight into
how the average appearance statistics of each of the people
looks like. Note that the appearance model obtained in this
method is a static one and this property makes it more resis-



tant againts drift that often occurs in tracking systems with
dynamically-updated appearance models.

The generation of the color histogram distance features
is as follows. Based on the image evidence inside the
bounding box obtained from a HOG detection, nine his-
tograms are computed over different sections of a pedes-
trian’s body as depicted in the second column of Figure 2.
Each histogram consists of 30 bins with 10 bins for each
of the R, G and B channels. These nine histograms are
then concatenated together to give one histogram character-
izing the person’s appearance. Next, we cluster all the in-
stances of histograms of all the people in the video using the
mean-shift clustering algorithm. We then represent the tar-
get pedestrian using the mean of the cluster to which it be-
longs. Finally, we compute one histogram distance map for
each of the nine body sections by computing, at each pixel
location, the y2-distance between the histogram built using
the image observation within the corresponding section of
the bounding box centered at that pixel and the mean of the
cluster to which the target belongs. The resulting maps have
low values in areas with similar color to the target person’s
and high values elsewhere. We efficiently compute the his-
togram distance maps using the integral histogram trick [8].

2.2.3 Appearance Templates

Besides a person’s color histogram, we also use appear-
ance templates to describe the person’s appearance. We use
two templates: an initial template obtained from the ini-
tial frame, and another template obtained from the previous
frame. Like the histogram appearance feature, the initial
template is fixed and is used to provide a fixed reference to
the person’s appearance. However, the initial appearance
template describes the person’s appearance at a finer level
of detail than the histogram distance features. This template
acts as a memory template which ensures that the tracker
does not completely forget about the appearance of the tar-
get when it first showed up. On the other hand, the previous
frame template incorporates the idea of online tracking be-
cause it is continually updated during the inference, which
helps the system cope with a limited degree of object ap-
pearance changes over time.

Distance maps are computed for each of the templates
by sliding each template across the current frame, and com-
puting the sum of absolute pixel difference at each location,
which can be done efficiently with a modified integral im-
age trick [16]. These distance maps are then normalized
between 0 and 1.

2.3 Large Margin Parameter Learning

As mentioned earlier, we use a scoring function parame-
terized by a set of weights w which puts together a variety

of features. The learning task amounts to jointly learning
the parameters that best explain the dependencies between
the features and the trajectories using video-trajectory train-
ing pairs. We use a discriminative approach, namely we try
to discriminate between a compatible video-trajectory pair
and all the runner-ups. Hence, we find a predictor that es-
timates the best trajectory given an input video by learning
a set of parameters that maximize the score of training set
examples.

Learning the model parameters in this problem setting
is challenging since we do not have negative examples. In
other words, we do not know how a ’bad” trajectory looks
like and more importantly, how it differs from a ”good” one
because this information is not included in the dataset. No-
tice that the scoring function in equation 1 can be viewed as
a w-parameterized discriminant function. Further, the lo-
cations in a trajectory are highly interdependent and so we
are dealing with a structured output problem. Hence, it is
natural to adopt Structural SVM to jointly estimate the pa-
rameters.

According to the large margin criterion used by Struc-
tural SVM, we require a set of parameters that maximize the
score of IV given ground truth tracks while pushing away
the score of all other possible trajectories from these max-
ima and hence the following program
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The constant C' > 0 specifies the relative importance of
margin maximization and error minimization which is de-
termined by cross validation. Note that 6 guarantees a
unique solution whereas the constraints in 7 require the
score of ground truth y ;) to be at least as far away from
the score of a possibly incorrect trajectory y as the loss
A(y(i),y) incurred when predicting y. The loss function
measures the total squared Euclidean distance between cor-
responding locations in two trajectories:

Alyayy) =Y d*yu™,y"). (8)
teT

We use the SV M framework[15] to solve this prob-
lem. In this approach, we find a subset of inequality con-
straints in equation 7, the most violated ones, and then solve
for them such that all the constraints are violated by no more
than a desired precison.

2.4 Approximate Inference

After the model parameters are learned, the inference
task becomes one of finding the highest scoring trajectory
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Figure 2. Color histogram distance features generation: Nine histograms are computed over nine
sections of a detected person’s bounding box and the resulting histograms are concatenated to give
one full-histogram and all such histograms are clustered. Histogram distance maps are then gener-
ated for every frame by computing the ?-distance between the histogram of each of the sections to

the cluster mean to which the target belongs.

given the model parameters. Exhaustive search for the high-
est scoring trajectory in the space of possible trajectories is
computationally intractable. We efficiently solve for this
problem using the Viterbi algorithm which is given by the
following dynamic program

MO (1p) = max(M“*l)(zN)
In

FFPEUD 10,30 = 1)) + FEO 30 = 1),
t=1,..,7T, In EN(lc). C)

Each element of the message vector M () corresponds to a
pixel and indicates the marginal score of the highest scoring
track that originates at the initial location and terminates at
that pixel at time ¢. A traceback from the final most scoring
location is done to recover the track. In our notation, [~ and
Iy refer to the current and next location respectively and
we just look in the neighborhood N (I¢) when searching for
the next possible location instead of full search. Note that
this local search is valid since it complies with the nature
of the movements of a pedestrian because the pedestrian is
not expected to jump to a pixel which is far away from the
current location. Namely, we are finding an exact solution
in the space of “’valid” trajectories.

However, performing the inference in high resolutions
turns out to be computationally prohibitive even with local
search and integral histogram optimizations. Thus, we re-
sort to pruning strategies for inference by performing beam
search i.e. just evaluate the IV highest-scoring trajectories at
each time step (/V is set to 3 in our experiments) and discard
the rest. This allows us to produce the tracking results in the
original resolution while keeping the inference feasible.

Obviously, beam search will return suboptimal results
because it does not explore the whole hypothesis space.
However, experimental results show that our approximate
inference scheme works well in practice.

3 Experimental Evaluation

We use UBC Fireworks dataset for our experiments [5].
The dataset consists of clips recorded at 1440 x 1080 reso-
lution using a stationary camera installed on top of a build-
ing in downtown Vancouver (an example frame is shown
in the left side of Figure 1). Hence, a top-down view of a
moderately crowded scene is captured with variety of mov-
ing objects typical to an urban setting present in the image.
This includes cars, bikers and pedestrians. The amount of
change in illumination, scale and pose is not significant but
one needs to deal with background clutter and partial occlu-
sions. The main challenges in the dataset are the presence of
occasional crowded blobs of moving pedestrians that intro-
duces many potential distractors and significant background
change that occurs when people move from sidewalk to
street area and vice versa.

We use 10 manually-labeled trajectory sequences for
training and 22 other manually-labeled sequences for test-
ing with the labels being used as ground truth. Both train-
ing and test sequences contain easy, moderate and hard se-
quences ranging from a solitary person going through the
scene to a pedestrian walking within a crowd.

3.1 Implementation Details

To reduce training time, we precompute HOG and color
histogram distance features prior to training and testing.
Appearance templates, however, must be generated online
and we compute them efficiently using integral images.
We significantly reduce the space of possible trajectories
in training by running the Viterbi algorithm in steps of nine
pixels in both horizontal and vertical directions. This means
that the actual working resolution for Viterbi is 160 x 120.
We define the neighborhood N () to be the area within
a radius of 2 pixels centered at the current location [c.



This choice is made based upon empirical statistics of the
dataset. Note also that because testing processes images
at different resolution from training, the motion model ob-
tained from training must be adapted for testing. So, a sim-
ple nearest neighbor interpolation of the motion model is
performed using the same number of discretization bins as
in training and the weights are used directly.

3.2 Results

We compare the results of our tracking system with the
algorithms proposed in [2] and [1]. To gain insight into the
importance of having a combination of all the features, we
also provide the results of our algorithms when some of the
features are turned off. Note that we have learned different
sets of parameters for each combination of the features.

We use the same procedure to extract trajectories from
all the trackers. We first initialize a tracker from a HOG
detection, where the HOG detection is chosen such that it
is contained in one of the 22 manually-labeled sequences
that we use for testing. We then run the tracker forward and
backward in time in order get a complete trajectory regard-
less of the initial position provided by the HOG detection.
The tracker is terminated once it is within a certain num-
ber of pixels from the image borders (this scheme works in
this dataset because pedestrians’ entry and exit locations are
located around the image borders).

Besides the usual average pixel error measure, we use
two other performance measures proposed in [18]. Cor-
rect Detected Track (CDT) indicates the number of correct
trajectories. A track is defined as a CDT if the amount of
spatial and temporal overlap with the ground truth exceed
thresholds 7,,, and T'R,,, respectively, where T, and TR,
are both set to 0.5 in our experiments. This roughly means
that at least half of a CDT must temporally coincide with its
ground truth, its length cannot be less than half of its ground
truth, and the average spatial overlap must be at least 0.5.
Closeness of Track (CT) is defined as the average spatial
overlap between a ground truth and a system track in the
temporally coincident portion of the track. Its value ranges
from O to 1, with 1 indicating that the track is exactly the
same as the ground truth in the temporally coincident sec-
tion of the track. More detailed explanation of the measures
are provided in [18].

As can be seen from Table 1, our proposed tracker
achieves a better performance than MILTracker [1] and
Collins-Liu tracker [2] in this dataset. One can explain
this promising performance by reasoning about our sys-
tem having different cues that decribe the desired pedestrian
as well as distinguishing it from background and our prin-
cipled way of cue combination. More specifically, HOG
feature helps the tracker eliminate areas belonging to non-
pedestrian objects, static histogram distance feature pro-

vides rough description of the pedestrian and helps alleviate
drift whereas appearance templates provide finer levels of a
pedestrian model, with the previous frame appearance tem-
plate allowing some degree of adaptability to appearance
change over time.

Removing some of the features significantly reduces the
performance of our tracker, indicating that the combination
of HOG, histogram distance, and template appearance fea-
tures is essential in achieving good performance.

An example illustrating the importance of our cue com-
bination strategy is shown in Fig 3. As can be seen in the
red inset, our tracker with only HOG and histogram dis-
tance feature drifts to a nearby pedestrian at some parts of
the track, because there is a pedestrian with similar color to
the tracked person nearby. On the other hand, HOG and ap-
pearance template drifts to a background area at the bound-
ary between the pavement and the street, probably because
the sum of absolute difference measure used in the appear-
ance template is sensitive to the significant change in back-
ground pixels that occurs at this boundary. The combination
of HOG, color histogram distance and appearance templates
manages to track the person correctly.

4 Conclusion and Future Work

In this paper, we introduced MMTrack, a tracking sys-
tem that employs a large margin learning criterion to com-
bine different sources of information effectively. Although
MMTrack is used for pedestrian tracking in this work, we
believe that our framework is general and can be used to
track other object categories as long as the features describe
the object of interest well.

Our tracking system has its limitation in handling severe
occlusion and track hijacks caused by significant change in
the person’s appearance or situations where the background
patch is very similar to the appearance of the target. A pos-
sible future direction is to extend this framework to more
complicated systems that can parameterize multiple person
tracking. Moreover, learning different parameters for dif-
ferent locations in the image may also be of interest. This
is motivated by the intuition that the relative importance of
the features is likely to be affected by the statistics of back-

Tracker #CDT | AvgCT | Avg Error
MMTrack: All 21 0.66 7.01
MMTrack: HOG+Hist 10 0.47 14.40
MMTrack: HOG+Template 14 0.52 22.24
MILTrack [1] 19 0.61 19.87
Collins-Liu [2] 14 0.54 21.24

Table 1. Tracking results on 22 test se-
quences.
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Figure 3. Trajectories obtained with HOG +
histogram (left), HOG + appearance template
(middle), and HOG + histogram + template
features (right). The tracked objects through-
out the trajectories are shown in the red in-
sets, and also superimposed along the tra-
jectories.

ground patches at different locations.
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