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Abstract

We present a motion exemplar approach for finding body
configuration in monocular videos. A motion correlation
technique is employed to measure the motion similarity at
various space-time locations between the input video and
stored video templates. These observations are used to
predict the conditional state distributions of exemplars and
joint positions. Exemplar sequence selection and joint posi-
tion estimation are then solved with approximate inference
using Gibbs sampling and gradient ascent. The presented
approach is able to find joint positions accurately for people
with textured clothing. Results are presented on a dataset
containing slow, fast and incline walk videos of various peo-
ple from different view angles. The results demonstrate an
overall improvement compared to previous methods.

1. Introduction
In this paper we explore the problem of estimating the

pose of a human figure from monocular image sequences.
Many practical applications would be enabled by a solution
to this problem, including human-computer interaction, gait
analysis, and video motion capture. As such it has received
a large amount of attention from the computer vision com-
munity.

We develop a novel motion-exemplar approach for auto-
matically detecting and tracking human figures in this pa-
per. In our approach we assume we are given a set of exem-
plar image sequences upon which we have labeled positions
of body joints. Given an input image sequence, we infer
the pose of the human figure by first finding a sequence of
exemplars which match the input sequence, and then esti-
mating body joint positions using these exemplars. Both of
these are accomplished by comparing motion estimates for
the input sequence against those in the exemplar sequences.
Figure 1 shows an overview of our approach.

At the core of most previous approaches to this problem
lies a matching of either silhouette (e.g. [13, 17, 1] or edge
(e.g. [12, 21, 20, 8, 14]) features for human pose estimation.

Compared to these features, the use of motion estimates as
a cue has significant advantages.

Approaches which use 2d silhouettes are unable to ob-
serve human body limbs when they are in front of the body.
In many common poses, the projection of the human figure
to the image plane will lead to highly ambiguous 2d silhou-
ette data. Given these ambiguous data as input, pose estima-
tion and tracking methods are left with a difficult task, for
which complex inference algorithms have been developed.

Human figures exhibit substantial variety in appearance,
particularly due to clothing differences. Textured clothing is
quite problematic for methods which use edge features for
pose estimation. However, for motion estimation textured
clothing is particularly advantageous, as it leads to more
reliable motion estimates by reducing aperture effects.

Another advantage to our approach is the use of exem-
plars to enforce global pose consistency in our tracking al-
gorithm. Our method first finds a sequence of exemplars
which match the input sequence. Given these, ambiguities
inherent in kinematic tracking from 2d data (such as the left
limb - right limb ambiguity) are conveniently dodged. If the
sequence of exemplars form a consistent track, the inference
of joint positions is left as a simpler task.

This global consistency from exemplars comes at a price
however. It is unreasonable to assume that a sufficiently
large set of exemplars would exist to enable tracking peo-
ple performing a variety of actions. However, for lim-
ited domains, it is possible to obtain such a sufficient set.
In particular, we perform experiments on the CMU MoBo
dataset [11], showing the ability of our method to track a
variety of people performing simple walking motions. Fur-
ther, being able to accurately estimate the pose of a person,
only in a limited set of poses would be useful for tasks such
as initializing a more general kinematic tracker (e.g. [10]).

The main contribution of this paper is developing a self-
initializing kinematic tracker based on this motion exemplar
framework. We show how we can efficiently perform infer-
ence in it with an approximate inference method, first find-
ing a sequence of exemplars and then refining positions of
all joints with a Gibbs sampling and gradient ascent scheme.



Figure 1. Data flow for our algorithm. We compute the motion likelihood for different exemplars at different joint places. The likelihoods
are then used to compute the best sequence of exemplars. We use Gibbs sampling and gradient ascent to search for the best positions of
joints. Best exemplars are used to prune the search space.

The structure of this paper is as follows. We review pre-
vious work in Section 2. We describe our motion exemplar
model in Section 3, and provide the details of our approx-
imate inference method in Section 4. We describe our ex-
periments in Section 5 and conclude in Section 6.

2. Previous Work
The problem of tracking humans in videos has been the

subject of a vast amount of research in the computer vision
community. Forsyth et al. [4] provide a comprehensive sur-
vey of approaches to this problem.

A common approach is to assume an initialization of the
human pose in the first frame of a sequence is given, after
which tracking is performed. An early example of this work
is Rohr [12] in which tracking is performed by matching the
edges of a projection of a 3d body model to those found in
the image.

Other researchers followed a similar approach, using
motion estimation rather than comparison of edge maps for
a tracking phase. Ju et al. [6] learn a parametric flow model
based on a 2d “cardboard person” model. Bregler and Ma-
lik [2] use a flow model based on 3d kinematic chain model.

Automatic initialization of such trackers has been ex-
plored. The W 4S system of Haritaoglu et al. [5] initializes
a simplified cardboard person model using a heuristic back-
ground subtraction-based method. Urtasun et al. [22] focus
on the learning of motion models for specific activities, and
initialize their tracker with simple detectors or by hand. Ra-
manan et al. [10] initialize with a shape template matcher
in order to learn a person-specific appearance model which
can be used for tracking.

Our work falls into a category of approaches which si-
multaneously detect and track. Rosales and Sclaroff [13]
describe the Specialized Mappings Architecture (SMA),
which incorporates the inverse 3D pose to silhouette map-
ping for performing inference. Agarwal and Triggs [1] also
directly learn to regress 3D body pose. They use shape
features extracted from silhouettes, and employ Relevance

Vector Machines for regression. Sminchisescu et al. [17]
learn a discriminative model which predicts a distribution
over body pose from silhouette data, and propagate this dis-
tribution over a temporal sequence. Since the silhouette-
body pose mapping is ambiguous and multi-modal, com-
plex algorithms for propagating this distribution are re-
quired. Sigal et al. [16] and Sudderth et al. [19] track people
and hands respectively, using loose-limbed models, mod-
els consisting of a collection of loosely connected geomet-
ric primitives, and use non-parametric belief propagation to
perform inference. Sudderth et al. build occlusion reason-
ing into their hand model. Sigal et al. use shouters to focus
the attention of the inference procedure.

Another line of approaches infers human pose by match-
ing to a set of stored exemplars by matching using shape
cues. Toyama and Blake [21] develop a probabilistic ex-
emplar tracking model, and an algorithm for learning its
parameters. Sullivan and Carlsson [20] and Mori and Ma-
lik [8] directly address the problem of pose estimation.
They stored sets of 2D exemplars upon which joint loca-
tions have been marked. Joint locations are transferred
to novel images using shape matching. Shakhnarovich et
al. [14] address variation in pose and appearance in exem-
plar matching through brute force, using a variation of lo-
cality sensitive hashing for speed to match upper body con-
figurations of standing, front facing people in background
subtracted image sequences. Our approach is similar to
these methods, but uses motion exemplars rather than shape
in order to avoid the aforementioned difficulties due to ap-
pearance.

There is a large body of work on matching human motion
templates, particularly focused on matching the periodicity
present in the human gait. An early example of this work is
Niyogi and Adelson [9], who analyze periodic structure of
surfaces in XYT volume. While we experiment on walking
videos, our approach is not limited to periodic motions, and
does not use such assumptions for estimating pose.

Other methods for initializing pose estimates from im-
age sequences include Song et al. [18], who detect corner



features in image sequences and model their joint position
and velocity statistics using tree-structured models. Dim-
itrijevic et al. [3] match short sequences of static templates,
compared using Chamfer distance.

Our inference method, which first finds a sequence of
exemplars to enforce global pose consistency is related to
methods such as Lee and Chen [7] for building an interpre-
tation tree for resolving the ambiguity regarding foreshort-
ening (closer endpoint of each link) for the problem of 2d
to 3d lifting of joint positions. In our case we find a single
most likely sequence of exemplars, but one could reason
about other possible sequences instead.

2.1. Motion Correlation

Given a collection of stored exemplar videos, each ex-
emplar sequence is tested to verify how well it matches
the input video in some place (x,y,t) in space-time domain.
Different people with different clothes and different sur-
rounding background, but in similar poses, can produce
completely different space-time intensity patterns in an in-
put video. To solve this problem the method presented in
Shechtman and Irani [15] is used to compare the input video
by checking the motion consistency between a stored ex-
emplar video with video segments centered around every
space-time point. In this section we briefly review this mo-
tion consistency measurement, paraphrased from [15].

The consistency between two video segments is eval-
uated by computing and integrating local motion consis-
tency measures between small space-time patches within
the video segments. For each point in each video segment,
the motion in space-time patch centered on that point is
compared against its corresponding space-time patch in the
other segment. The computed local scores are then aggre-
gated to provide a correlation score for the entire segment
at that video location.

The motion in every small patch is assumed to be con-
tinuous and in a single direction in space-time. To com-
pare the motion consistency between two small patches,
they compute their two dimensional (M�

1 , M�
2 ) and three

dimensional (M1, M2) Gram matrix of gradients in space
and space-time. if the direction of motion in two patches
are consistent the rank increase of their addition from two
dimensional (M�

12) to three dimensional (M12) will be close
to the minimum of their rank increase. They define 1

m12
as

the consistency score and m12 is computed as below,

m12 =
∆r12

min(∆r1,∆r2) + ε
(1)

Where ∆rk is the rank increase from M�
k to Mk. The mini-

mum value of m12 is 1 so 1
m12

will be always in [0, 1]. This
helps them to avoid the fundamental hurdles of optical flow
estimation (aperture problem, singularities, etc.) and makes
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Figure 2. (a) Full graphical model used for inference of joint po-
sitions. (b) Each node J consists of body joints with kinematic
tree connections within a frame, and temporal connections only
between corresponding body joints (not shown).

their method robust to different textures, colors and back-
grounds.

3. Motion Exemplar Tracking Model

Our algorithm estimates the pose of a human figure in an
image sequence by performing motion correlation between
the input sequence and the body joints of a set of labeled
exemplar sequences. We use a generative model of these
motion correlation values, depicted in Figure 2. Using ex-
emplars will remove the ambiguities inherent in kinematic
tracking from 2d data. In this section we provide the details
of this model.

We will use the following notation in this description.
et will denote the exemplar used at time t. For clarity of
presentation, Jt will be used to denote the set of 12 2d
body joint positions at time t, which are connected in a
kinematic structure shown in Figure 2(b). Mt is the set of
all exemplar-input frame motion correlation measurements
at time t. Again, there is structure to these measurements
which is not depicted in Figure 2 for clarity, but which will
be described below.

3.1. Motion Correlation Likelihood

In this section we describe our model for the likelihood
of observing a particular set Mt of motion correlation mea-
surements given an exemplar et and set of joint positions
Jt. We perform correlation using space-time windows cen-
tered around each body joint in each exemplar, and others
at larger scales. We formulate a likelihood model in which
each joint generates the motion correlations in its position.

Dropping the subscript t for clarity, let M = mk,s
i be the

set of exemplar joint-pixel motion correlations. mk,s
i is the

correlation between window s on exemplar k with the input
image at pixel i. In our experiments, index s runs over 3
scales of windows for each of the 12 body joints.

We make the usual independence assumption to model
the likelihood P (M |J, e). We assume the elements of M to



be conditionally independent given J and e. For us, this as-
sumption is reasonable, as the larger scale correlations from
the exemplar gives global structure to the motion responses:

P (M |J, e) =
∏

(i,k,s)∈(P,E,S)

P (mk,s
i |J, e) (2)

whereP is the set of pixel indices in an image, E is the set of
exemplar indices, and S is the set of correlation windows.

We split this set of motion correlations into a foreground
set F = {(i, k, s)}, containing all pixels-windows (i, s)
corresponding to a body joint in J , with exemplar k = e,
and background set B, containing the remainder:

P (M |J, e) =
∏

(i,k,s)∈F

Pfg(m
k,s
i |J, e)

∏
(i,k,s)∈B

Pbg(m
k,s
i |J, e) (3)

∝
∏

(i,k,s)∈F

Pfg(m
k,s
i |J, e)

Pbg(m
k,s
i |J, e)

(4)

We will model these two distributions using separate
Gaussians, the foreground distribution Pfg for motion cor-
relations corresponding to the proposed body joint location
and exemplar, versus the Pbg for those corresponding to
background locations.

The parameters of these distributions are fit with training
data. For each joint of each exemplar in the training set,
we find the highest correlation value with an exemplar from
another person in the training set. This set of correlations
becomes our positive training set, and we fit a Gaussian to
these values. For the background distribution we randomly
sample a set of non-matching correlation values.

3.2. Exemplar Transition Model

The probability of transition from an exemplar et−1 = h
to another exemplar et = k is computed by comparison of
the angles and also angular velocities of their limbs. We
use angles rather than joint positions to be able to compare
exemplars from different people while ignoring their varia-
tion in size. For each limb j in each exemplar k, a 2d angle
θj(k) and its angular velocity θ̇j(k) are computed, the lat-
ter by examining the preceding frame. To find the transition
probability P (et = k|et−1 = h), the angular change and
the angular velocity change of the limbs are assumed to fol-
low a Gaussian distribution.

P (et = k|et−1 = h)

∝
∏
j∈L

e−[(θj(k)−θj(h))−µj ]
2/2σ2

j e−[(θ̇j(k)−θ̇j(h))−µ̇j ]
2/2σ̇2

j (5)

Where L is the set of all limbs in an exemplar. The param-
eters of the Gaussian distribution are fit using training data.

For all exemplars which come from adjacent frames k and
h we calculate θj(k) − θj(h) and θ̇j(k) − θ̇j(h). These
sets of values become our positive training data and a Gaus-
sian is fit to each one. Note that et, the exemplar used in a
particular frame, is not grounded at any particular location,
and hence, relationships between body joints, spatially and
temporally, must be modeled, which will be described next.

3.3. Dependencies Between Body Joints

Jt consists of a set of 12 body joint positions: shoulders,
elbows, wrists, hips, knees, feet. Every joint position Jj

t

in frame t is connected to its corresponding joint position
Jj

t−1 in frame t − 1. In addition, it is connected to some
other joint position in frame t under the kinematic tree in
Figure 2(b). The motion model is computed by using a two
dimensional Gaussian. For the spatial prior between joint
Jj

t and its parent J
π(j)
t , a simple uniform distribution over

a disk is used to enforce connectivity.

P (Jj
t |J

j
t−1, J

π(j)
t ) = N (Jj

t − Jj
t−1;µ,Σ) ·

U(Jj
t − J

π(j)
t ; rmin, rmax)(6)

The parameters of the two dimensional Gaussian distribu-
tion for each joint type are set by the mean and covariance
of its displacement in adjacent frames of training data. The
maximum and minimum radius of the disk are set to the
maximum and minimum distance found from the training
data.

4. Inference
Exact inference in the model we described in the pre-

vious section is not tractable. The temporal connections
between body joints Jt and the dependence between body
joints and exemplars et would lead to a loopy graph for mes-
sage passing algorithms. In addition, since the image likeli-
hoods are multi-modal, straight-forward techniques such as
Kalman filters would not be applicable. Instead, we use an
approximate inference procedure.

In the following sections we describe this procedure. We
first fix the exemplars to be used in each frame by finding
the best sequence of exemplars using the Viterbi algorithm,
on an approximation of our model. Fixing the exemplars
will help us to reduce the huge search space into a manage-
able one. In addition, it will give us a good initial estimate
for the positions of the individual joints. From this initial
estimate, we then perform a sampling procedure to obtain
a set of samples of possible body joint configurations. The
uncertainty that needs to be captured by this sampling pro-
cedure is less than the original inference procedure since we
have restricted ourselves to a particular sequence of exem-
plars. Modes from this sampled distribution are then found,
and each is locally optimized using gradient ascent.



4.1. Exemplar Sequence Estimation

The first step in our approximate inference method is to
find a sequence of exemplars. We desire to find the best
sequence of exemplars given the observed motion correla-
tions:

ê1:t = arg max
e1:t

P (e1:t|m1:t) (7)

= arg max
e1:t

∫
J1:t

P (e1:t, J1:t|m1:t) (8)

where e1:t denotes the sequence from time 1 to time t.
However, performing the above integral over sequences

J1:t is not practical. Instead, we make two simplifying
assumptions from our model in order to compute this se-
quence. These assumptions are made with the intent of con-
verting our model to be similar to a simple Hidden Markov
Model (HMM) for which sequence estimation is straight-
forward.

The first assumption is to select, for each frame, a set Ĵk
t

for each value of the exemplar random variable et which
maximizes the likelihood P (Mt|Ĵk

t , et = k). Since our
model for the body joints in each frame is tree-structured,
this inference task is computationally efficient. Now, in-
stead of considering all possible sets of locations for all
body joints, for a particular exemplar we will limit ourselves
to this one set.

The second is to ignore the temporal connections in our
model at the level of joints. Temporal connections at the
exemplar level will still be included, and therefore overall
global consistency of the track will be maintained.

The integral in Equation 8 is then approximated as∫
J1:t

P (e1:t, J1:t|m1:t) ≈ P (e1:t, Ĵ1:t|m1:t) (9)

≈
t∏

i=1

P (mi|ei, Ĵ
ei
i )P (ei|ei−1) (10)

Finding the most likely sequence of this product is then
a straight-forward dynamic programming problem, akin to
HMM decoding using the Viterbi algorithm.

4.2. Gibbs Sampling / Gradient Ascent

The previous exemplar sequence inference procedure
will result in a sequence of {êt, Ĵt} values. These body
joint position sequences are smooth at the level of angles
because the exemplars are consistent. However, they might
not match the person in this frame accurately since actual
joint positions have not yet been taken into account. The
next step is to perform inference of Jt using the tempo-
ral model P (Jt|Jt−1) which was omitted from the previous
step.

Even after fixing the sequence of exemplars, exact infer-
ence is still intractable due to the temporal links between
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Figure 3. Gibbs sampling procedure. A simplified three node kine-
matic chain is shown for clarity. Node LKt, shown in red, has
been chosen for sampling at this iteration. Exemplars, in blue,
have been fixed via the approximation scheme. All other nodes
have current values, a new value for LKt is chosen by sampling
from the marginal over LKt. Only nodes in its Markov blanket,
shown with green circles, need to be considered.

body joint positions. Instead, we employ Gibbs sampling,
a Markov Chain Monte Carlo algorithm, to obtain samples
from the distribution P (J1:t|M1:t, ê1:t).

We initialize the state of our model to the {êt, Ĵt} se-
quence. At each step of the Gibbs sampling we choose
a particular joint J i

t to change, and set its value by sam-
pling from the conditional distribution P (J i

t |J̄ ,M1:t, ê1:t),
where J̄ denotes all joints other than J i

t . The mentioned
conditional distribution is computed by multiplying all con-
ditionals involving the Markov blanket of J i

t . Each of these
conditionals is essentially a 1-D function, as all other joints
are fixed. Figure 3 illustrates the computation of this condi-
tional distribution.

This Gibbs sampling procedure is employed to handle
the remaining ambiguity, although many of the disparate
modes are already eliminated by the exemplar inference
procedure. Sampling is not guarantied to find the global
maxima, as a result we run this Gibbs sampling procedure,
collect the modes of the samples, and for every mode run
gradient ascent step to produce an estimate of the best se-
quence of joint positions J1:t. The sequence with the high-
est posterior is then returned as our result.

5. Results
Experiments are performed on different subsets of im-

ages from the CMU Mobo database [11]. We have
tested our algorithm on four different sequences: side-



view fast walk (fastWalk/vr03 7), 45o-view fast walk (fast-
Walk/vr16 7), side-view incline walk (incline/vr03 7) and
side-view slow walk (slowWalk/vr03 7). 9 subjects (num-
bers 04006-04071), 30 frames each, are selected from the
aforementioned sequences. Marking of exemplar joint lo-
cations was performed manually for all four collections of
270 frames. This dataset enables us to study the robustness
of our method handle variations in body shape, clothing,
and viewpoint.

For each sequence, a set of 9 experiments was performed
in which each subject was used once as the query against
a set of different exemplar videos extracted from remain-
ing eight subjects (leave-one-out cross validation). Three
scales of space-time windows are used for each joint, of
sizes similar to the whole body, lower or upper body limbs,
and around each joint are used to create the motion corre-
lation data. Each space-time window is 3 frames long. As
each subject consists of 30 frames, there will be 8×28 win-
dows of each kind (8 exemplars). These exemplar videos
are correlated with query video in all possible positions in
space and time to compute the motion likelihood. As space-
time correlation is computationally expensive we have used
coarse to fine search to enhance the speed. We have used
7 × 7 × 3 small patches around each pixel. The size of the
small patches represents the cells that can be assumed to
have a continuous motion.

We found experimentally that it was advantageous to use
separate exemplars for upper and lower body joint positions,
rather than a single exemplar for the entire body. Splitting
the exemplars in this fashion helps by reducing the amount
of variation a single exemplar needs to capture. The infer-
ence procedure is described above, except two separate runs
of the Viterbi algorithm are used. It would also be possible
to perform this inference of two exemplars per frame jointly.

The best sequence of exemplars for the upper body limbs
(left and right arm) and lower body limbs (left and right
legs) are found by applying Viterbi algorithm. Fig. 4 shows
sample results of best sequence of upper and lower exem-
plars for different sequences. The sequence of best ex-
emplars works well to discriminate between left and right
limbs especially for side-view sequences for which limb la-
bels can be ambiguous.

Having the exemplars fixed, joint positions are initialized
by maximizing the likelihood at every single frame ignoring
the connections between adjacent frames. We start moving
from frame 1 to 30 and in each frame from top to down and
using Gibbs sampling to sample each node. We perform this
iteration 60 times and every time the result is fed to gradient
ascent to find the local maxima. Finally the sampled con-
figuration that maximizes the likelihood of whole graph is
chosen as the result.

Left limb joint positions are shown by red dots and right
limb joints with green. Note that on the side view sequences

the right arm is mostly occluded and is therefore not in-
cluded in our model. Example results are shown in Fig. 5.

Our results for side view fast walk are compared to Mori
and Malik [8] in Table 1. Our method significantly outper-
forms their shape context matching exemplar method. As
our method is based on motion correlation it is more pre-
cise for end limbs such as elbows, wrists, knees and feet
where there is always movement rather than shoulder, hip
and head. Our method significantly outperforms shape con-
text matching for subjects who wear loose-fitted trousers
(which produce irregular folds) or have a textured shirt,
such as subjects 4006, 4022 and 4070 (rows 1, 5, and 8
in Table 1).

In the subset of CMU MoBo used in Mori and Malik [8],
upon which these quantitative results are based, different
subjects usually have similar patterns of movement in their
legs, but arm movement can be quite irregular. People have
different velocities, configurations and various amount of
rotation in their arms (e.g. the variation of angle between
arm and body is substantial in 4011 and 4022). These ir-
regularities lead to less accurate joint position estimation
for the arms than for the legs, though a larger training set
would likely alleviate these problems.

6. Conclusion

In this paper we have presented a novel motion-exemplar
framework for building a self-initializing kinematic tracker
for human figures. The use of motion estimates has advan-
tages over previous methods which use edge comparisons
for image likelihoods, and those which use silhouette fea-
tures. We presented quantitative results demonstrating this,
showing that our method outperforms an exemplar method
using shape matching, particularly for human figures wear-
ing textured clothing.

We believe that promising future directions for research
include combining exemplars from multiple viewpoints,
and experimenting with the sensitivity of our method to
viewpoint variation between the exemplars and the input
video. Further, we believe that this exemplar-based track-
ing could be used to initialize a more general tracker, either
one using more precise motion models (e.g. [22]) or person-
specific appearance models (e.g. [10]).
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Shoulder Elbow Hand Hip Knee Ankle
10.4± 7 16.4± 9 14.4± 8 20.9± 10 16.1± 6 14.2± 9
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15.1± 7 18.4± 9 26.5± 15 16.6± 7 16.4± 10 16.4± 12
25.3± 6 33.0± 10 34.0± 19 17.2± 6 10.9± 6 15.8± 11
12.9± 13 22.3± 20 27.8± 20 15.2± 7 13.6± 7 17.4± 22
8.7± 5 20.6± 13 22.4± 10 11.2± 8 11.5± 5 10.9± 7
13.8± 8 29.4± 16 27.4± 25 22.8± 14 24.4± 25 24.1± 23
21.2± 9 30.2± 17 52.8± 27 13.4± 6 11.2± 7 12.6± 8
42.8± 24 69.1± 40 98.7± 54 41.8± 23 56.1± 27 79.0± 55
21.8± 8 14.4± 7 36.8± 25 18.4± 11 12.6± 6 12.1± 7
13.8± 9 31.9± 17 34.7± 30 16.1± 8 19.6± 20 26.8± 42
9.2± 6 18.1± 8 23.2± 10 10.2± 5 12.3± 5 12.7± 5
13.2± 8 24.0± 10 27.7± 37 15.6± 9 21.0± 28 24.7± 48
18.3± 8 24.0± 12 20.3± 9 11.1± 5 13.3± 9 15.1± 7
17.9± 11 34.4± 33 45.8± 41 25.7± 12 34.6± 29 45.9± 50
17.3± 7 22.6± 11 20.3± 10 21.0± 7 15.1± 6 15.0± 5
17.9± 8 22.6± 13 28.5± 24 16.0± 9 20.7± 20 23.5± 37

Mean 17.5 23.1 30.0 15.1 13.2 15.0
Mean 17.8 31.0 40.0 20.9 26.5 33.7

Table 1. Mobo database ”fast walk side-view” subject numbers versus joint position error. The error is based on the distance of computed
position from ground truth in pixels. Each cell shows error mean and standard deviation by our proposed method (top) and that of shape
context exemplars [8] (bottom). The last row shows the mean error over all 9 subjects.
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