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ardenhivR - What does activity recognition involve?
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Gardenivis Detection: are there people?
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ardentiVg - Group activity recognition
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Advantages of Modeling Structures

* Analyze levels of detail
— Body parts vs. whole
— Actions of individuals
— Relationships between individuals
— Overall scene-level understanding

* Provide context for recognition
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Actions

Activity landscape

Human Group

interactions activities Evepts

~10
Number of People

- Performed by multiple people

* Rich human-human interactions

e Events may consist of multiple group
activities, and inter-group interactions
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Our Proposal - Structured Models

 Models that account for spatial, temporal,
relational, or other structures
— Flexible
— Richer representation

* This talk: representation and learning of
structured models for activity recognition

 These can be applied across the activity
landscape, from individual human actions
through to group events



Role of Context in Actions




Group Context

group-person person-person
Interaction Interaction



Talk

Model of Group Activities

Queue
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X: HOG

[Dalal & Triggs, 2005]
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Lan et al. NIPS 2010, TPAMI 2012



Model of Group Activities
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- Activity-Action Potential ¥, (Y, %) : cuvi y

Co-occurrence between Y and 7,
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Model of Group Activities

Activity

- Activity-Action Potential v, (Y.4,) :
Co-occurrence between Y and 7,

« Action-Action Potential ¥,(A,.%)) :

Co-occurrence between #; and #; Action

© Q@ = ©
Markov Random Field

Y = E wy, Image evidence
eEE7\ \

Clique Clique
weight potential



Model of Group Activities

Activity

- Activity-Action Potential ¥, (Y,4,) :
Co-occurrence between Y and 7,

« Action-Action Potential ¥,(A,.%)) :

Co-occurrence between #; and 4, Action

 Learn structural connectivity h

among the actions. Obtained by
structure learning

© Q@ = ©
Markov Random Field

Y = E wy, Image evidence
eEE7\ \

Clique Clique
weight potential



Model of Group Activities

Activity

- Activity-Action Potential ¥, (Y,4,) :
Co-occurrence between Y and 7,

« Action-Action Potential ¥,(A,.%)) :

Co-occurrence between #; and 4, Action

 Learn structural connectivity
among the actions. Y (Y,x,)

Y (/1 X))

° I/Je(Yax()) and we(hl'ﬂxl’):
Discriminative action template scores

(HOG + SVM). (%) © 76

Markov Random Field
Y = E wy, Image evidence

eEE7\ \

Clique Clique
weight potential
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Model Learning

Wy = z Wy Activity Input:
= Y: talk

stand-left stand-left




Model Learning

Wy = z Wy Activity Input:
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Potential weights



Model Learning

‘P=Iwe% Activity Input:
Y: talk
_stand-left stand-left
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Goals:

Structural connectivity (hidden human-human interactions)

Potential weights
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Model Learning

P = §] why. Activity

Goals:

Structural connectivity

Potential weights

Approach:

Max-margin learning

I{V{iglégllwr +BYE

s.t. Vi,r where y(r) = y(cl.),
1-&

Wcl, .wi_wr.wi =

Vi,£ =0

Notation

« Y. : Potential values of the i-th image.
 w,: Potential weights of the r-th activity.
* y(r): r-th activity class.

* &;- A slack variable for the i-th image.




Model Inference

The learned models

Activity, interactions, actions

coordinate
ascent
inference

Vs

Person detection



Visualization of the Results




Baselines

* SVM

e No connection
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Results — Collective Activity Dataset

SVM 70.9 68.6

no connection 75.9 73.7
min-spanning tree 73.6 70.0
e-neighborhood graph, e=100  74.3 72.9
e-neighborhood graph, e=200 70.4 66.2
e-neighborhood graph, =300 62.2 62.5
complete graph 62.6 58.7

our approach 79.1 77.5




Nursmg Home Data
[16] [Aspen Dining] [Wed p 2008] [19 57 oo1

22 short clips of fall + a 30-min non-fall clip, 5 actions, 2 group activities



Results — Nursing Home Data

SVM
no connection
min-spanning tree
e-neighborhood graph, =100
e-neighborhood graph, =200

e-neighborhood graph, =300
complete graph

our approach

48.0
54.4
66.9
72.7
67.6
68.6
70.6
71.5

52.4
56.1
62.3
61.3
61.1
64.2
62.2
67.4




Actions

Roadmap

Human Group
interactions activities

Events
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* Tian Lan, Leonid Sigal, Greg Mori. Social Roles in Hierarchical
Models for Human Activity Recognition. CVPR 2012



Semant

___________

shoot

pass

social roles

attacker
first defenders
man-marking
defend-space
teammate

c Descriptions of Videos

corner hit
free hit
attack play

Social Roles

— Mid-level semantics that describe
individual/group behaviors in the
context of social interactions.




Goal

e Label all individuals’ actions, social roles and the
scene-level events.
Social Roles

— attacker

— man-marking
——

— teammate

* Search for event/social role/action of interest

— Who is the attacker? What’s the overall game
situation?



System Overview




Activity Hierarchy Model Representation

Event
Corner hit Attack play
: Social
r e @ @ 0 @

Action @ @ @

Attacker Man-marking

~

Video evidence

Pass jog

X: Concatenated HOG [Dalal & Triggs, 2005]



Activity Hierarchy Model Representation

Event

man-marking man-marking
teammate teammate

first defender

Social
Role

attacker

A
®

» Spatial relationships and color among

players with different social roles.



Model Learning

Query for event: loss =A(y,y;)
1 if Y=y,
A(y’yz) ={

0 otherwise

Query for social roles: loss = A(r,r,)

acon () () --- () Query foractions: loss=A(h,h)

@ @ @ Scene labeling: loss=A(y,y,)+A(r,r,)+ A(h,h,)

Wyl.rl.h. | wi - Wyrh . wi = ZOSS B §i




Model Inference

%
- Query
g: User-specified queries
attack —e.g. find the attack play
play
/-‘\ The learned models
man team- attacker — -
marking mate
v 7/ !
bend || stand shoot

coordinate
ascent
inference
Score: lP(Y*,{rl* } ,{hl* } ,q) Person detection and
St max » w1y, tracking
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Event, social roles, actions, queries



ESPN Broadcast Field Hockey Data

Inocks, T ———
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58 videos, 11 actions, 5 social roles, 3 scene-level events




Results — Scene Labeling

Full model

unary 21.5 21.7 56.9
Full model 28.8 44.0 62.8

action model (HOG+SVM) 26.1 N/A N/A




Results — Query for Social Roles

attack first defenders defenders-space
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Nursing Home Data

e 22 short clips of fall + a 30-min non-fall video sequence, 5fps,
surveillance video

5 actions: walk, stand, sit, bend, and fall

* 4 social roles: fall, help, visit and reside

e 2 scene-level events: fall, non-fall



Results — Scene Labeling (Nursing Home)

Full model Group activity

Unary 40.9 35.0 73.2
Full model 42.0 50.1 80.5
Action model (HOG+SVM) 38.7 N/A N/A

Group activity [Lanet al. PAMI 12] N/A N/A 78.5




Results — Query for Social Roles (Nursing Home)

fall help visit
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Conclusion

action group activity activity
recognition recognition hierarchies

_ Activity

“Feature

individual

Structural Recognition
of Human Activities
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