# Discriminative Latent Variable Models for Human Action Recognition

**Greg Mori** 

School of Computing Science Simon Fraser University

ICCV HACI'13 Workshop December 8, 2013

Joint work with: Tian Lan, Weilong Yang, Yang Wang, Steve Robinovitch, Leonid Sigal















# Advantages of Modeling Structures

- Analyze levels of detail
  - Body parts vs. whole
  - Actions of individuals
  - Relationships between individuals
  - Overall scene-level understanding

Provide context for recognition

### Activity landscape



- Efros et al. 2003
- Schuldt et al, 2004
- Alper & Shah, 2005
- Dollar et al, 2005
- Blank et al, 2005
- Niebles et al, 2006
- Laptev et al, 2008
- Wang & Mori, 2008
- Rodriguez et al, 2008
- Wang & Mori, 2009
- Liu et al. 2009
- Marszalek et al, 2009

- Park & Aggarwal, 2004
- Ryoo & Aggarwal, 2006
- Ryoo & Aggarwal, 2009
- Yuan et al. 2010
- Vahdat et al. 2011
- Patron-Perez et al, 2012

- Moore & Essa, 2002
- Vaswani et al, 2003
- Khan & Shah, 2003
- Zhang et al, 2006
- Mehran et al. 2009
- Gupta et al, 2009
- Choi & Savarese, 2009
- Lan et al. 2010
- Ryoo & Aggarwal, 2010
- Choi & Savarese, 2011
- Amer & Todorovic, 2011
- .....

- Intille & Bobick, 2001
- Medioni et al, 2001
- Loy et al, 2010
- Lan et al, 2012
- Amer et al, 2012

### Activity landscape



- Performed by multiple people
- Rich human-human interactions
- Events may consist of multiple group activities, and inter-group interactions

### Activity landscape



#### Possible approaches:

Bag of features



- Statistical methods
- Don't extract semantic descriptions
   Laptev et al, 2008
   Liu et al, 2009
   Tamrakar et al, 2012

DBN, AND-OR Graph, CRF, Latent SVM



- Structural methods
- Complex learning / inference

Xiang & Gong, 2006 Gupta et al, 2009 Felzenszwalb et al, 2010 Amer et al, 2012

### Our Proposal - Structured Models

- Models that account for spatial, temporal, relational, or other structures
  - Flexible
  - Richer representation
- This talk: representation and learning of structured models for activity recognition

 These can be applied across the activity landscape, from individual human actions through to group events

### Role of Context in Actions









### **Group Context**



group-person interaction



person-person interaction









Lan et al. NIPS 2010, TPAMI 2012





$$\Psi = \sum_{e \in E} w_e \psi_e$$
Clique Clique weight potential

- Activity-Action Potential  $\psi_e(Y, h_i)$  : Co-occurrence between Y and  $h_i$
- Action-Action Potential  $\psi_e(h_i, h_j)$  : Co-occurrence between  $h_i$  and  $h_j$

$$\Psi = \sum_{e \in E} w_e \psi_e$$
Clique Clique weight potential



- Activity-Action Potential  $\psi_e(Y, h_i)$  : Co-occurrence between Y and  $h_i$
- Action-Action Potential  $\psi_e(h_i, h_j)$  : Co-occurrence between  $h_i$  and  $h_i$ 
  - Learn structural connectivity among the actions.

$$\Psi = \sum_{e \in E} w_e \psi_e$$
Clique Clique weight potential



- Activity-Action Potential  $\psi_e(Y, h_i)$  : Co-occurrence between Y and  $h_i$
- Action-Action Potential  $\psi_e(h_i,h_j)$  : Co-occurrence between  $h_{\rm i}$  and  $h_{\rm j}$ 
  - Learn structural connectivity among the actions.
- $\psi_e(Y,x_0)$  and  $\psi_e(h_i,x_i)$ : Discriminative action template scores (HOG + SVM).

$$\Psi = \sum_{e \in E} w_e \psi_e$$
Clique Clique weight potential





#### **Input:**

Y: talk



#### **Goals:**



#### **Input:**

Y: talk



#### **Goals:**

Structural connectivity (hidden human-human interactions)

Potential weights



#### **Input:**

Y: talk



#### Goals:

Structural connectivity (hidden human-human interactions)

**Potential weights** 



#### **Goals:**

**Structural connectivity** 

Potential weights

#### **Approach:**





$$\mathsf{ILP} \quad \max_{E=\{e\}} \sum_{e} w_e \psi_e$$



#### Goals:

Structural connectivity

**Potential weights** 

#### **Approach:**

Max-margin learning

$$\min_{\mathbf{w},\xi} \frac{1}{2} \sum_{r} \left\| \mathbf{w}_{r} \right\|_{2}^{2} + \beta \sum_{i} \xi_{i}$$

s.t. 
$$\forall i, r \text{ where } y(r) \neq y(c_i),$$
  
 $\mathbf{w}_{c_i} \cdot \psi_i - \mathbf{w}_r \cdot \psi_i \ge 1 - \xi_i$ 

$$\forall i, \xi_i \ge 0$$

#### **Notation**

- $\psi_i$  : Potential values of the i-th image.
- $\mathbf{w}_r$ : Potential weights of the r-th activity.
- y(r): r-th activity class.
- $\xi_i$ : A slack variable for the *i*-th image.

### Model Inference

The learned models





coordinate ascent inference



Person detection

Activity, interactions, actions

### Visualization of the Results





### Baselines



- SVM
- No connection
- Min-spanning tree
- ε-neighborhood graph



# Results – Collective Activity Dataset

| Method                                          | Overall | Mean per-class |
|-------------------------------------------------|---------|----------------|
| SVM                                             | 70.9    | 68.6           |
| no connection                                   | 75.9    | 73.7           |
| min-spanning tree                               | 73.6    | 70.0           |
| $\epsilon$ -neighborhood graph, $\epsilon$ =100 | 74.3    | 72.9           |
| ε-neighborhood graph, ε=200                     | 70.4    | 66.2           |
| $\epsilon$ -neighborhood graph, $\epsilon$ =300 | 62.2    | 62.5           |
| complete graph                                  | 62.6    | 58.7           |
| our approach                                    | 79.1    | 77.5           |

### **Nursing Home Data**



• 22 short clips of fall + a 30-min non-fall clip, 5 actions, 2 group activities

# Results – Nursing Home Data

| Method                                          | Overall | Mean per-class |
|-------------------------------------------------|---------|----------------|
| SVM                                             | 48.0    | 52.4           |
| no connection                                   | 54.4    | 56.1           |
| min-spanning tree                               | 66.9    | 62.3           |
| ε-neighborhood graph, ε=100                     | 72.7    | 61.3           |
| ε-neighborhood graph, ε=200                     | 67.6    | 61.1           |
| $\epsilon$ -neighborhood graph, $\epsilon$ =300 | 68.6    | 64.2           |
| complete graph                                  | 70.6    | 62.2           |
| our approach                                    | 71.5    | 67.4           |

### Roadmap



• Tian Lan, Leonid Sigal, Greg Mori. Social Roles in Hierarchical Models for Human Activity Recognition. CVPR 2012

### Semantic Descriptions of Videos



#### actions

walk run jog bend shoot dribble pass

#### social roles

attacker first defenders man-marking defend-space teammate

#### event

corner hit free hit attack play

#### **Social Roles**

 Mid-level semantics that describe individual/group behaviors in the context of social interactions.



#### first defenders



### Goal

 Label all individuals' actions, social roles and the scene-level events.





- Search for event/social role/action of interest
  - Who is the attacker? What's the overall game situation?

# **System Overview**



# **Activity Hierarchy Model Representation**



Man-marking



Attacker

x:



Concatenated HOG [Dalal & Triggs, 2005]

### **Activity Hierarchy Model Representation**





• Spatial relationships and color among players with different social roles.



Query for event: 
$$loss = \Delta(y, y_i)$$

$$\Delta(y, y_i) = \begin{cases} 1 & \text{if } y \neq y_i \\ 0 & \text{otherwise} \end{cases}$$

Query for social roles:  $loss = \Delta(r, r_i)$ 

Query for actions:  $loss = \Delta(h, h_i)$ 

Scene labeling:  $loss = \Delta(y, y_i) + \Delta(r, r_i) + \Delta(h, h_i)$ 

s.t. 
$$\forall i, y, r, h$$

$$\mathbf{w}_{y_i r_i h_i} \cdot \psi_i - \mathbf{w}_{yrh} \cdot \psi_i \ge loss - \xi_i$$

$$\forall i, \xi_i \ge 0$$

### Model Inference



Event, social roles, actions, queries

# ESPN Broadcast Field Hockey Data



• 58 videos, 11 actions, 5 social roles, 3 scene-level events

# Results – Scene Labeling

Unary



Full model



| Method                 | Action | Role | Event |
|------------------------|--------|------|-------|
| unary                  | 21.5   | 21.7 | 56.9  |
| Full model             | 28.8   | 44.0 | 62.8  |
| action model (HOG+SVM) | 26.1   | N/A  | N/A   |

# Results – Query for Social Roles





### **Nursing Home Data**







- 22 short clips of fall + a 30-min non-fall video sequence, 5fps, surveillance video
- 5 actions: walk, stand, sit, bend, and fall
- 4 social roles: fall, help, visit and reside
- 2 scene-level events: fall, non-fall

### Results – Scene Labeling (Nursing Home)



| Method                              | Action | Role | Event |
|-------------------------------------|--------|------|-------|
| Unary                               | 40.9   | 35.0 | 73.2  |
| Full model                          | 42.0   | 50.1 | 80.5  |
| Action model (HOG+SVM)              | 38.7   | N/A  | N/A   |
| Group activity [Lan et al. PAMI 12] | N/A    | N/A  | 78.5  |

### Results – Query for Social Roles (Nursing Home)



### Conclusion

action recognition



individual

group activity recognition



group

activity hierarchies



scene

Structural Recognition of Human Activities

# Acknowledgements



Tian Lan

