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Abstract

We consider the problem of estimating the pose of a hu-
man figure in a single image. Our method uses an exemplar-
matching framework, where a test image is matched to a
database of exemplars upon which body joint positions have
been marked. We find the best matching exemplar for a test
image by employing a variant of an existing deformable
template matching framework. A hierarchical correspon-
dence process is developed to improve the efficiency of the
existing framework. Quantitative results on the CMU MoBo
dataset verify the effectiveness of our approach.

1. Introduction

In this paper we present a method for estimating the pose
of a human figure. Our method attempts to automatically
locate the 2D image positions of a set of keypoints (shoul-
ders, elbows, etc.) on the human body. Figure 1 shows an
example of the output of our method.

A robust solution to the problem of human pose estima-
tion would have a variety of applications. The results can be
used in gait analysis for either medical or surveillance ap-
plications. Pose estimation is needed to initialize kinematic
trackers (e.g. Ramanan et al. [7]). Image synthesis applica-
tions in computer graphics (e.g. Hornung et al. [5]) can also
benefit from automated techniques for pose estimation.

We develop a method which uses a database of labeled
exemplars. In order to estimate the pose of a previously
unseen person in a test image, the most similar exemplar
image is found. This similar exemplar is found by match-
ing sample points on the exemplar to sample points in the
test image. The labeled positions of the body joints from
the exemplar are then transferred onto the test image. It is
well-known that this exemplar matching style of approach
to pose estimation has difficulty in scaling to people in vary-
ing poses. In particular, human figures are articulated ob-
jects and the changes in the positions of limbs due to rota-

Figure 1. Sample results of pose estimation. Limb joints are
marked with red dots and connected with green lines. The left
arm is not visualized due to partial occlusion.

tion must be handled.
In this paper we apply the previously developed de-

formable template matching framework of Berg et al. [1],
which uses geometric blur descriptors and integer quadratic
programming (IQP) to solve for correspondences on pairs
of shapes, to the problem of human pose estimation using
exemplars. The main contribution of this paper is develop-
ing an application of this framework for human pose esti-
mation. We develop a hierarchical approach to correspon-
dence, and a refining sampling method for more efficiently
obtaining dense correspondences between points on exem-
plars and points in test images. We show the effectiveness
of this matching framework over previous approaches for
exemplar-based human pose estimation.

The rest of this paper is organized as follows. First,
we review previous work in Section 2. Our deformable
template-based method for pose estimation is described in
Section 3. We present experimental results in Section 4 and
conclude in Section 5.

2. Previous Work
The problem of human pose estimation has been the sub-

ject of a vast amount of research in the computer vision
community. Forsyth et al. [3] and Gavrila [4] provide com-
prehensive surveys of the related literature.
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One line of work in this literature estimates pose by
matching to stored exemplars using shape cues. Toyama
and Blake [13] developed a probabilistic exemplar tracking
model, and an algorithm for learning its parameters. Sul-
livan and Carlsson [11] and Mori and Malik [6] directly
addressed the problem of pose estimation. They stored
sets of 2D exemplars upon which joint locations have been
marked. Joint locations were transferred to novel images
using shape matching. Matching to similar exemplars was
performed using order structure and shape contexts respec-
tively. Shakhnarovich et al. [10] addressed variation in pose
and appearance in exemplar matching through brute force
by automatically constructing a large set of synthetic ex-
emplars using computer graphics models. A variant of lo-
cality sensitive hashing was used for speed to match up-
per body configurations of standing, front facing people in
background subtracted image sequences.

In our work we use geometric blur and integer quadratic
programming (IQP) to operationalize the deformable tem-
plate matching of exemplars to test images, based on the
work of Berg et al. [1]. The cost function used in the IQP
measures matching costs of geometric blur descriptors at
sample points, in addition to pairwise distortion costs. In the
IQP formulation, the structure of these pairwise costs can
be arbitrary. Other related methods use tree-structured pair-
wise distortion costs. An example is the work of Thayanan-
than et al. [12], who added figural continuity constraints
to shape context matching of contours for detecting hand
poses. When the distortion costs are tree-structured, ef-
ficient distance transform matching algorithms [2] can be
used, as was done for shape context matching by Rova et
al. [9]. However, there are spatial constraints, for example
between points on the right and left legs, or across a sin-
gle limb, which are not captured in tree-structured pairwise
distortion costs. Hence, we instead choose to use the IQP
framework in our approach.

3. Approach
Our approach attempts to find the best matching exem-

plar image for a given test (query) image. We represent each
exemplar image with a discrete set of points sampled from
the image. For each exemplar image, we attempt to deform
it into alignment with the test image. The exemplar image
which best matches the test image will be used to estimate
the pose of the figure, by transferring the labeled joint po-
sitions from exemplar to the positions given by alignment
with the test image.

A cost function is defined to evaluate the matching of
two point sets P and Q sampled from the exemplar image
and the query image respectively. The cost function consists
of two terms: the first term, which measures the similarity
between putatively matched points pi ∈ P and qi′ ∈ Q,
is based upon the geometric blur descriptor with rotation.

The second term measures distortion costs between pairs of
points pi, pj ∈ P and qi′ , qj′ ∈ Q.

3.1. Geometric Blur

In order to determine the matching between an exemplar
image and a test image, we employ the geometric blur(GB)
descriptor of Berg et al. [1]. The GB descriptor is a point de-
scriptor which captures the coarse arrangement of gradient
information relative to the location of the point in question.

Oriented gradient filter responses (channels) from the
image are computed in a variety of directions (we use hor-
izontal, 45o, vertical, and 135o in our experiments). Abso-
lute values are taken for each channel to lessen the influ-
ence from clothing. For instance, the channel of a person
in black shirt on white background should be considered
similar in terms of shape to the channel of the same person
wearing white shirt on black background. The channels are
then compressed by a sigmoid function in order to reduce
the effects of high contrast boundaries.

These channels are then blurred with a spatially varying
blur kernel to increase robustness to small shifts in gradi-
ent positions. As in [1], we define Sd = S ∗ Gd, where
our original channel signal S is convolved with Gd, a Gaus-
sian kernel of width d. The geometric blur descriptor for a
sample point x0 is then

Bx0(x) = Sα|x|+β(x0 − x) (1)

where α and β are constants which control the spatial vari-
ation in blur. The geometric blur is computed for all points
of interest. For each of the 4 channels, we sample along
12 equally spaced orientations at 4 logarithmically spaced
radii. This 4 × 12 × 4-dimension vector gives the GB de-
scriptor. L2 distance between descriptors is used as the ge-
ometric blur matching cost.

In the presence of limb rotations, two points at similar
locations may not be well correlated by the L2 distance.
Nevertheless if the angle of rotation is known in advance,
one descriptor can be pre-rotated accordingly to align with
the other, as illustrated in fig 2. Automatic estimation of the
rotation angle is discussed in section 3.3.2.

For consistency in notation we use GBCθ(pi, qi′) to de-
note the GB matching cost between the GB descriptor of pi

under θ-degree rotation, and the descriptor of qi′ . The GB
cost in [1] would be a special case where θ = 0.

3.2. Distortion Costs

To quantify the pairwise consistency of a correspondence
matching pi, pj ∈ P to qi′ , qj′ ∈ Q. We first compute the
offset vector ~r = pj − pi and ~s = qj′ − qi′ , then evaluate
the following distortion function D(~r,~s) = γCrot(~r,~s) +



Figure 2. Visualization of geometric blur descriptors. For each
descriptor, three inner radii of the second channel are shown as
gray-scaled dots, where darker dots correspond to greater channel
responses. (a) and (b) are both computed at a point slightly below
the knee, but the rotation angles of two legs differ by π

3
. (c) is a

rotated version of (a) by π
3

. (b) is closer to (c) than (a) in terms of
L2 distance.

(1− γ)Csc(~r,~s), where:

Crot(~r,~s) = (
αd

|~r||~s|
+ βd)|arccos(

~r · ~s
|~r||~s|

)| (2)

Csc(~r,~s) =
||~r| − |~s||
|~r|+ |~s|

(3)

Crot corresponds to the rotational cost and Csc is the scaling
cost. The weighted sum of these costs by a parameter γ
gives the total distortion cost. The scale and variance of
the rotational cost is controlled by constant parameters αd

and βd. In the experiments we used γ = 0.1 to give some
amount of tolerance in rotation. We also used αd = 10 and
βd = 1.

There are some changes in our distortion function as
compared to the one in [1]. The distortion function used
in [1] is:

Ĉrot(~r,~s) = (
αd

|~r|
+ βd)|arcsin(

~r × ~s

|~r||~s|
)| (4)

Ĉsc(~r,~s) =
|~r| − |~s|
|~r|+ µd

(5)

where µd is a balancing parameter.
First, we use arccos to assign a high cost to the degener-

ate case where |~s| = 0, i.e. multiple points from the exem-
plar collapsed into one matched point in the query. Second,
in the scaling cost we take the absolute value to avoid neg-
ative costs. Finally, we enforce the cost to be symmetric
(D(~r,~s) = D(~s, ~r)).

3.3. Correspondence

For the exemplar image and query image we construct
P and Q respectively by sampling evenly on the edge map
obtained from Canny edge detection and background sub-
traction. To avoid omission of points, the query image is
more densely sampled than the exemplar image. For effi-
ciency, instead of computing all possible correspondences,
each point pi ∈ P is restricted to match to a smaller set
Q̂(i) of m putative good matches.

A correspondence δ ∈ {0, 1}n maps each of the |P | ex-
emplar points to one of m best matches(n = |P | × m).
∀pi ∈ P, qj ∈ Q̂(i), the binary indicator δij = 1 iff pi is
matched to qj .

The matching quality is measured by the weighted sum
of the geometric blur matching cost and the distortion cost:

cost(δ) = α · Cmatch(δ) + (1− α) · Cdist(δ) (6)
Cmatch(δ) = Σi,j:δij=1GBC0(pi, qj) (7)

Cdist(δ) = Σi,i′,j,j′:δii′=δjj′=1D(j − i, j′ − i′)(8)

0 ≤ α ≤ 1 weighs the pointwise geometric blur cost and
the pairwise distortion cost.

Berg et al. use an O(n2) approximation algorithm for
solving this IQP. However, for our problem the number of
sample points is much larger than that in [1]. The typ-
ical value for product of the number of sample points in
the exemplar and putative good matches in the query is
n = 250×50. In addition, local adjustments in this IQP af-
fects the solution globally, which is inefficient for methods
making frequent local changes.

We develop a method of finding correspondence in two
main steps. The first step identifies potential regions for
good matching, and the second step searches for a finer
global correspondence as well as the local limb rotations.

3.3.1 Seeding

In this section we describe our method for obtaining po-
tential good matching sets Q̂(i) for each exemplar sample
point. We refer to the procedure as “seeding”, during which
a rough correspondence is estimated to obtain a set of po-
tential regions. Each region Rq is a circle with radius r
centered at a representative query point q.

Seeding does not require an accurate, detailed correspon-
dence, therefore it is sufficient to use only an initializer set
P0 ⊂ P , which consists of sparsely distributed points.

For each pi ∈ P0 we keep the top m points in Q with
smallest geometric blur cost with respect to pi. Then the
best correspondence of P0 is obtained by solving an IQP.
The result δ0 maps P0 to Q0, the set of representative query
points.

Finally, for each pi ∈ P , the set of m best matches Q̂(i)
is chosen from R = ∪∀qi′∈Q0Rqi′ .

In the experiment we use |P0| = 100 and m = 15, re-
ducing the running time of IQP to roughly 1/50.

A sample result of seeding is shown in Fig. 3.

3.3.2 Refined Correspondence

Seeding does not provide us highly reliable correspondence.
Refinement based on the current coarse matching and ex-
ploiting the human body configuration is now employed.



Figure 3. The top row shows the exemplar image and the query
image. Bottom left: seeding; Bottom right: the correspondence.
Exemplar points are marked in red, query points in blue, and the
matchings are shown in green lines.

In specific, consider the tree-model with four chains of
deformation Ki , i = 1..4, where K1 = {torso, left arm};
K2 = {torso,right arm}; K3 = {torso, left thigh, left leg}
and K4 = {torso, right thigh, right leg}.

We assume that each body part is rigid enough such that
rotations for all its points are uniform.

Our objective is solving simultaneously for δ = {δb}, the
optimal matching and Θ = {θb} ∈ [−π, π]9, the optimal
rotation, for each of the 9 body parts along the chain. Here
we assume that each limb is rigid enough such that rotation
angles of its points are uniform.

The matching cost is:

cost(δ,Θ) = αCmatch(δ) + (1− α)Cdist(δ) (9)

Cmatch(δ,Θ) =
9∑

b=1

GBCθb
(δb); (10)

Cdist(δ) =
9∑

b=1

D(δb, δb)

+
4∑

i=1

∑
b1 6=b2∈Ki

D(δb1 , δb2) (11)

where D(δx, δy) corresponds to the distortion cost of the
matching of body part y given the matching of part x. When
x 6= y, D(δx, δy) represents the total part-wise distortion

cost between part x and part y, which depicts the consis-
tency constraint enforced within a chain.

We approximate the problem by discretizing the angles
of rotation, and assuming only forward constrain propaga-
tion along the deformation chain:

Initial Step: Since torso is the common root for all
chains and it typically is subjected to little rotation, an in-
tuitive idea is to set θtorso = 0 and independently solve for
δtorso. This is again an IQP optimization with smaller scale,
for which only torso points with their top m best matches in
terms of geometric blur cost are considered.

Iterative Step:

• After bi−1, the (i − 1)th part along chain K, has been
matched (1 < i ≤ length(K)), consider bi, the next
part along K. Since ∀j < i, δbj is known, the con-
sistency imposed by the prior matching on part bi, de-
noted by Cs(δbi), is pre-computable, and hence a lin-
ear constraint.

• We search for the best rotation angle θbi by itera-
tively attempting a set of discretized values. For each
attempted θbi

, the m best matches for each point in
part b are recomputed from the seeded region R as in
section[3.3.1].

• The objective function for part bi has been simplified
to

cost(δbi) = minθ{α×GBCθ(δbi)
+ (1− α)Cs(δbi) + (1− α)D(δbi , δbi)}

which defines an optimization problem that can be
solved locally along with the corresponding best θ.

This procedure can be carried out recursively to solve
for all parts along the chain. Sample results are shown in
Fig.3 Although it might appear to be a lengthly process, in
practice the range of rotation can be further restricted, and
each iteration involves solving IQP for only a small set of
points belonging to the part( |Xp| ' 20 ), thus significantly
reducing the number of calculations.

3.4. Deformation

Given the correspondences obtained via the method
above, we estimate a deformation to transform the best ex-
emplar into alignment with the test image.

The least square best transform for each body part is esti-
mated, as in [6]. To eliminate outliers without presuming a
fixed probability of inliers, RANSAC is applied in an itera-
tive manner, i.e. iteratively relax the RANSAC requirement
for assertion after a certain number of estimated transforms
all fail to fit the model. The procedure terminates when ei-
ther a suitable transformation is found or the requirement
drops below certain threshold value.



Finally, we deform each joint point of the exemplar ac-
cording to the estimated transformation. The deformed joint
locations are the resultant estimation of the pose of the fig-
ure in the test image.

4. Experiments
To evaluate our method’s ability to handle variance in

shape, clothing, and visibility, experiments are performed
on the side-view fast walk fastWalk/vr03 7 dataset
from CMU Mobo database [8]. 8 sets of subjects with 30
frames each are selected as our test sets. 10 evenly dis-
tributed frames from each test set (8 × 10 frames) are se-
lected as the query set. For each query image, 8 randomly
selected frames from other test sets (7× 8 frames) are used
as exemplars, which are matched to the query image us-
ing our method. The joint locations of the exemplar are
manually marked, which are then deformed to estimate the
joint positions of the query image according to the sample
point correspondence. Our unoptimized implementation in
MATLAB estimates the matching from each exemplar to
the query image in 5 minutes.

The sample results are visualized in Fig. 4 . We color
the visible joints and connect the points to form the torso,
the right arm and both legs.

As shown in the figure, joint locations for non-occluded
joints are successfully captured by deformable matching.
Also our method has more robustness against clothing tex-
ture primarily because the independent chains of deforma-
tion prevent the local, bad correspondence from spreading.

Difficulty does arise, however, when estimating limbs
that are occluded, under severe rotation,or has insufficient
points or edges due to inaccurate background subtraction.

In the occlusion case, the geometric blur signals from
multiple limbs interfere each other so that rotation alone
is not enough to correlate non-overlapping joints with the
overlapped ones, and our assumption of independent defor-
mation does not hold. In this case, an exemplar frame that
has the similar occlusion of joints are required to build good
correspondence.

The full results are compared to Mori and Malik [6]
in Table 1. Our approach outperforms the shape context
matching method in two aspects: First, more precise joint
positions are estimated using less frames (only 8 frames ver-
sus 30 frames used in the shape context approach) for each
exemplar set. Second, our method are less sensitive to cloth-
ing and rotational variance.

5. Conclusion
In this paper we have presented an application of an

existing deformable template matching framework to the
problem of human pose estimation. The geometric blur
and integer quadratic programming framework was mod-

ified to include a more efficient hierarchical search strat-
egy for computing correspondence. This framework was
demonstrated to be effective, obtaining joint position error
rates on the CMU MoBo dataset which were significantly
lower than previous approaches while using fewer exem-
plars. This is due to our method’s improved ability to han-
dle rotation of parts, and the cost function which is able to
model more complex dependencies between sample points.
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Figure 4. Sample results. Joint points of the left arm and the legs are marked in red and connected with green lines. The right arm is not
always entirely visible, hence it is not visualized.

Shoulder Elbow Hand Hip Knee Ankle
7.9± 5.0 15.9± 6.0 12.4± 8.1 11.5± 4.6 10.7± 5.1 4.4± 1.9
12.9± 9 27.0± 26 43.3± 47 18.1± 11 32.9± 36 45.8± 59

10.1± 3.5 28.2± 13.0 23.6± 18.0 18.0± 9.0 12.6± 8.1 3.2± 1.8
15.1± 7 18.4± 9 26.5± 15 16.6± 7 16.4± 10 16.4± 12
7.6± 2.6 15.1± 5.7 13.1± 10.3 9.9± 2.8 12.3± 10.7 6.7± 3.4
12.9± 13 22.3± 20 27.8± 20 15.2± 7 13.6± 7 17.4± 22
10.4± 3.7 12.7± 5.0 9.8± 6.5 14.4± 5.9 14.6± 10.2 10.2± 13.4
13.8± 8 29.4± 16 27.4± 25 22.8± 14 24.4± 25 24.1± 23
8.4± 1.6 18.3± 9.6 11.1± 8.5 10.9± 6.5 18.1± 18.4 7.4± 3.4
42.8± 24 69.1± 40 98.7± 54 41.8± 23 56.1± 27 79.0± 55
8.3± 3.1 15.3± 7.0 13.7± 12.0 13.8± 10.9 14.3± 7.8 12.9± 11.9
13.8± 9 31.9± 17 34.7± 30 16.1± 8 19.6± 20 26.8± 42

11.7± 3.2 15.3± 5.8 27.3± 17.3 10.8± 7.4 14.8± 11.7 7.3± 4.2
13.2± 8 24.0± 10 27.7± 37 15.6± 9 21.0± 28 24.7± 48

15.2± 6.1 16.4± 5.7 16.1± 10.1 25.4± 9.3 15.7± 13.3 10.7± 4.3
17.9± 11 34.4± 33 45.8± 41 25.7± 12 34.6± 29 45.9± 50

24.9± 16.3 24.3± 21.1 11.3± 14.0 7.6± 6.6 9.0± 5.1 10.0± 5.4
17.9± 8 22.6± 13 28.5± 24 16.0± 9 20.7± 20 23.5± 37

Mean 11.6 17.9 15.4 13.6 13.5 8.1
Mean 17.8 31.0 40.0 20.9 26.5 33.7

Table 1. Mobo database ”fast walk side-view” subject numbers versus joint position error. The error is based on the distance of computed
position from ground truth in pixels. Each cell shows error mean and standard deviation by our proposed method (top) and that of shape
context exemplars [6] (bottom). The last row shows the mean error over all 9 subjects in pixels.


