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Abstract

In this paper, we tackle the problem of weakly-supervised

object grounding. For an image and a set of queries ex-

tracted from its description, the goal is to localize each

query in the image. In a weakly-supervised setting, ground-

truth query groundings are not accessible at training time.

We propose a novel approach for weakly-supervised object

grounding through iterative context reasoning in which we

update query representations and region representations it-

eratively conditioning on each other. Such iterative con-

textual refinement gradually resolves ambiguity and vague-

ness in the queries and regions, thus helping to resolve

challenges in grounding. We show the effectiveness of our

proposed model on two challenging video object grounding

datasets.

1. Introduction

Modern artificial intelligence systems focus heavily on

extracting knowledge from visual and textual information

captured from the real world. Promising progress has been

made within the computer vision and natural language pro-

cessing research communities. Such progress naturally

leads to the emergence of various interdisciplinary tasks to

bridge these two well-developed fields, such as image/video

captioning [1, 25, 28], visual question answering [8, 24, 34],

visual grounding [9, 20, 33], and text-based image/video

generation [14, 18, 31].

In this paper we focus on the visual grounding task. Dif-

ferent from other tasks which usually relate visual and tex-

tual information on a holistic scale (e.g., one sentence de-

scribing the whole image/video), visual grounding aims to

identify and localize objects mentioned in the textual de-

scription of the visual data. If the ground truth for ground-

ing (regions in the image/video) is present at training time,

learning the mapping between the region and text can be

done in a straight-forward supervised manner. However, it

is usually difficult to collect a sufficient amount of anno-

tated data for a large set of queries, as required by deep

learning based models. Therefore, a weakly supervised

grounding approach that can be trained with only visual

content and textual queries without the need for grounding

annotation is desirable. Building such a model, if success-

ful, can not only reduce the requirement for costly human

labeling, but also take advantage of the abundant visual in-

formation aside from the grounding regions.

The core of visual grounding is to measure the similar-

ity between textual queries and visual regions. Both queries

and visual regions need to be embedded into a representa-

tion before a measurement can be applied across the two

modalities. However, the levels of abstraction are usually

different between elements from the two domains, mak-

ing the similarity calculation difficult. An image region is

typically detailed and specific while a textual query can be

vague and ambiguous. An example is given in Fig. 1. When

the goal is to ground the query carrot in a video frame, the

query carrot may refer to a raw carrot, diced carrot or carrot

soup. Existing approaches usually assign a single fixed rep-

resentation to each query. The query encoded in this way

would either focus on a single dominating meaning or end

up as an average, mixing semantic meanings. Such query

representations are not able to adapt well to varied visual

instances with different appearance, in Fig. 1(a), when the

query carrot focuses only on the raw carrot, it is more likely

that the hand of the instructor is selected as its match.

Including context could be a solution to this problem.

Since a query is eventually grounded to a region in the im-

age, the semantics of the query should depend on the con-

text of regions. As shown in Fig. 1(b), the query carrot

should adapt to the visual content in the image and take a

suitable representation for matching the diced carrot. In this

paper, we propose to jointly encode the query and regions in

an iterative manner so that the query and region representa-

tions could benefit from and adapt to each other for a more

case-specific grounding task. Our model first embeds both

query and region to an initial semantic space, and then iter-

atively refines the query representation based on the region

context and refines the region representation based on the

query context. With such iterative contextual representation

refinement, the region and query are encoded with explicit

awareness of each other, which gradually helps to resolve



Figure 1. Mapping the query and image to the same semantic space for matching could be hard due to the ambiguity and vagueness of the

query. A standalone encoding of the query might not adapt to all scenarios while conditioning the query on the visual content helps resolve

ambiguity.

ambiguity and refine the representation for better ground-

ing in each specific scenario.

2. Related Work

Bridging Visual and Textual Content. Natural lan-

guage and computer vision are two fields that benefit greatly

from deep convolutional neural networks and there are nu-

merous works that try to bridge these two sources of infor-

mation. Donahue et al. [5] contribute an early effort to ex-

ploit long-short term memory networks for generating tex-

tual descriptions for visual contents. Frome et al. [6] treat

class labels in a classification task as an embedding in the

semantic space via word2vec [15] and learn to embed the

image close to its label in the semantic space, enabling clas-

sification for unseen class labels. Agrawal et al. [3] intro-

duce the task of visual question answering, asking a neu-

ral network to comprehend a textual question and answer

the question based on image content. Gao et al. [16] ap-

ply transformers to refine representations across textual and

visual modalities for visual question answersing. Reed et

al. [18] propose a generative network that takes in a sen-

tence description and generates an image accordingly.

Visual Grounding. Visual grounding is a task that tries

to establish precise correspondence between textual seg-

ments and image regions. Karpathy et al. [10] propose to

use a multiple instance learning criterion and ranking loss

for localizing objects in a sentence bounded by a depen-

dency tree. In Karpathy et al. [9] the previous ranking

loss is simplified and a bidirectional RNN is used to en-

code words in a sentence. Plummer et al. [17] propose the

Flickr30k Entities dataset, providing annotations for the lo-

cation of the noun phrases parsed from the corresponding

captions of the Flickr30k dataset, and propose a Canoni-

cal Correlation Analysis based model for supervised phrase

grounding. Rohrbach et al. [20] introduce the GroundeR

model which uses an attention module to attend to pro-

posals for each query and uses the attended region to re-

construct the query. The reconstruction loss requires no

ground-truth labels and enables the model to work in both

weakly-supervised and supervised settings. Xiao et al. [27]

introduce a structural loss that exploits the parse tree of the

image description to ground linguistic phrases in the form

of spatial attention masks in a weakly-supervised setting.

Zhou et al. [33] propose to use different weights for differ-

ent frames when learning to ground objects in video frames,

where the weight is decided by the frame grounding score

and the query set for the frame. They also introduce an

object grounding dataset of videos based on the YouCook2

dataset where the most common objects in the instructions

are annotated with bounding boxes. Zhou et al. [32] pro-

pose to integrate grounding in generating video descriptions

for better explainability and introduce the Activity Net Enti-

ties dataset which provides sparse object grounding annota-

tions on top of the Activity Net Captions dataset. Hendricks

et al. [2] integrate visual grounding techniques in learning

a explanation generating agent so as to ground an agent’s

decision to certain visual attributes. These previous works

would encode visual regions and textual queries indepen-

dently and reason correspondence between elements from

the two domains based on their independent features. Dif-

ferent from this pipeline, our model encodes visual regions

and textual queries in a way such that they are aware of each

other, resulting in refined visual and textual representations

adapted to each specific scenario.

Graph Neural Networks. A vanilla feed forward neural

network treats the inputs to the network equally without

considering the structure among the inputs. Various graph

neural network structures have been studied to model struc-

ture among the inputs. Scarselli et al. [22] introduce the

Graph Neural Network (GNN) that takes in a graph of nodes

and encodes each node based on the graph. Li et al. [12]

bring gated recurrent units to GNNs for updating node rep-

resentations which removes the constraints of parameters

in GNNs and extends it to structured output. Zaheer et

al. [30] propose the Deep Set to preserve set structure by us-

ing a set of permutation invariant operations before pooling

the representations of nodes. Kipf et al. [11] propose the

Graph Convolutional Network (GCN) as a localized first-

order approximation of spectral graph convolutions. Since



then GCNs have been exploited in various vision tasks due

to their scalability: Chen et al. [4] use GCNs for visual rea-

soning, Wang et al. [26] use GCNs to aggregate object infor-

mation for video classification, Garcia et al. [21] use GCNs

to reason within data batches for few shot recognition, Yao

et al. [29] use GCN to integrate spatial information and se-

mantics across regions in the task of image captioning.

3. Method

Given an image or video frame with a verbal descrip-

tion, object grounding is the task of localizing each object

query mentioned in the description as a region in the image

or video frame. Object queries are a set of predefined words

and we select the top detections from a general detector

as the candidate regions. In this section, we introduce our

grounding method with iterative contextual reasoning. An

overview of the model structure is provided in Fig. 2. After

an initial semantic embedding for both regions and queries,

we start to refine their representations jointly. Query rep-

resentations will be updated conditioned on the context of

regions and region representations will be updated condi-

tioned on the queries. Such joint refinements are conducted

iteratively for gradually resolving the ambiguity in the ini-

tial representations. In the weakly-supervised setting, the

ground truth mappings between regions and queries are not

provided as supervision in the training phase.

Initial Semantic Embedding. For an image with Nq

queries Q = {qi}
Nq

i=1 and Nr regions R = {ri}
Nr

i=1, the

queries are represented in a one-hot manner and the re-

gions and corresponding visual features based on a pre-

trained network. Both region features and one-hot query

encodings will be sent to a neural network to be embed-

ded into an initial semantic space. We denote initial rep-

resentations as Q(0) = [q
(0)
1 , q

(0)
2 , . . . , q

(0)
Nq

] and R(0) =

[r
(0)
1 , r

(0)
2 , . . . , r

(0)
Nr

] respectively for queries and regions.

The superscripts (0) are used to differentiate these represen-

tations from updated representations, to be discussed later.

Query Representation Refinement from Region Con-

text. Conventional models conduct region-query match-

ing directly with these independently obtained representa-

tions; the problem is that queries are usually ambiguous as

they may refer to various objects of different appearances.

Therefore, assigning a fixed representation for a query can

not handle the ambiguity. To help resolve the ambiguity,

the context of visual content in the image should play a role

in shaping the representation of a query. This inspires us

to update query representations conditioned on region rep-

resentations to achieve a more precise query representation

for each specific scenario. In addition, different queries may

benefit from different visual information. To achieve that,

each query should be granted the flexibility to pay attention

to different regions so as to acquire different visual cues.

This conditional update of query representations can be

viewed as sharing information between region representa-

tions and query representations. If we further take model

representations as nodes in a graph, such passage of contex-

tual information naturally forms a bipartite graph between

the region representation nodes and the query representa-

tion nodes as illustrated in Fig. 3. Here we adopt the Graph

Convolutional Network (GCN) [11] for updating the repre-

sentation nodes via propagating information on this repre-

sentation graph. The weight for each edge in the graph is

determined based on the representations connected by the

edge. Specifically, we denote the adjacency matrix in this

query updating graph as A
(0)
r→q , with the weight A

(0)
r→q(i, j)

for the edge connecting q
(0)
i and r

(0)
j being simply their dot

product q
(0)T
i r

(0)
j . The adjacency matrix has Nq rows and

Nr columns as the information passes from region repre-

sentation nodes to query representation nodes, the ith row in

the adjacency matrix consists of weights between q
(0)
i and

all region representations. Since these edge weights are not

normalized and might lead to scale change in the propaga-

tion, we normalize the adjacency matrix A
(0)
r→q by applying

softmax on each row:

Ã(0)
r→q[i, :] = softmax(A(0)

r→q[i, :]), (1)

and finally Ã
(0)
r→q is the actual adjacency matrix used by the

GCN. Once the adjacency matrix is obtained, the graph is

determined and we update the query representation nodes

as:

Q(1) = Ã(0)
r→qR

(0)W (0)
gcn,q, (2)

where Q(1) denotes the updated query representations and

W
(0)
gcn,q denotes learnable weights in this query updating

GCN.

The problem with directly updating representations with

such a graph is that it abandons previous query represen-

tations completely. This is not desirable since the query

representations should not be completely determined by the

visual context. To alleviate such forgetting, a gated update

is performed instead to preserve a portion of information

from previous query representations in the update process.

Here we denote the visual context obtained from the GCN

as H
(0)
q , the actual updating process is formulated as:

H(0)
q = Ã(0)

r→qR
(0)W (0)

gcn,q, (3)

z(0)q = sigmoid(W
(0)
gate,q[Q

(0);H(0)
q ] + b

(0)
gate,q), (4)

Q(1) = z(0)q �Q(0) + (1− z(0)q )�H(0)
q , (5)

where W
(0)
gate,q and b

(0)
gate,q are weights for determining the

gate z
(0)
q , and a sigmoid function is used to constrain z

(0)
q



Figure 2. Model Structure Overview. Regions and their features are obtained from an external detector. Region features and one-

hot encoded queries are first embedded to a semantic space as their initial representations. A contextual reasoning is performed between

regions and queries. Query representations are updated with region context and region representations are updated with query context. This

refinement is iterated for gradually resolving the ambiguity in representations for the two domains. At the end of the iterative refinement

the correspondence between regions and query sets are computed upon their final representations and sent to a ranking loss.

q
(0)
1

q
(0)
Nq

r
(0)
1

r
(0)
2

r
(0)
Nr

Figure 3. An illustration of the graph for updating query represen-

tations from region representations. Current region representations

r
(0)
1 , r

(0)
2 , . . . , r

(0)
Nr

and query representations q
(0)
1 , q

(0)
2 , . . . , q

(0)
Nq

for an image and its query set are taken as nodes in the graph. The

query representations are updated on condition of region represen-

tations which forms a bipartite graph between the two set of nodes.

The weight on each edge is determined by the nodes it connects,

allowing propagation of different region contexts when updating

different query representations.

in (0, 1). This gate will decide how much information to

preserve from previous representations during this update.

Region Representation Refinement from Query Con-

text. Similarly, the representations of regions can also ben-

efit from the context of queries. Thus a similar graph-based

update process is adopted to update the region representa-

tions with query context. Denote the raw adjacency ma-

trix in this graph as A
(0)
q→r, where the weight for each edge

is also determined as the dot product of the two represen-

tations it connects. Note that different from the query-

updating graph, this adjacency matrix has Nr rows and Nq

columns, where the ith row contains weights between r
(0)
i

and all query representations. And again it is normalized by

applying softmax on each row:

Ã(0)
q→r[i, :] = softmax(A(0)

q→r[i, :]), (6)

to obtain the normalized adjacency matrix Ã
(0)
q→r. Denote

the learnable weights in the GCN for updating region rep-

resentations as W
(0)
gcn,r, the contextual information prop-

agated from query representations as H
(0)
r , the learnable

weights and bias for determining the gate z
(0)
r as W

(0)
gate,r

and b
(0)
gate,r, and the updated region representations as R(1),

the corresponding updating process for the region represen-

tations is formulated as:

H(0)
r = Ã(0)

q→rQ
(0)W (0)

gcn,r, (7)

z(0)r = sigmoid(W
(0)
gate,r[R

(0);H(0)
r ] + b

(0)
gate,r), (8)

R(1) = z(0)r �R(0) + (1− z(0)r )�H(0)
r . (9)

With the aforementioned two cross updates, the updated

query representations and region representations are condi-

tioned on each other as context. The possible explanation of

a query representation is more likely to be restricted within



relevant visual content and a region representation is more

likely to demonstrate the visual concepts that relate to the

queries in the description.

Iterative Contextual Reasoning. The above process con-

cludes one iteration of representation refinement. A new

iteration of context reasoning and representation refinement

could then start with the updated representations Q(1) and

R(1). These new representations will become nodes in the

new graph and the edges will be determined accordingly.

Another two gated GCNs will be applied for another round

of query and region representation refinement. Such an up-

dating process could be repeated for continuing to refine the

query and region representations so as to gradually resolve

the ambiguity in the grounding task.

In each iteration, we focus on information propagation

from regions to queries or vice versa; information propaga-

tion within regions or queries is not explicitly considered.

However, when the query representation updated in con-

text of regions participates in the next iteration of region

representation refinement, the information starts to propa-

gate within the regions, and similarly information will also

start to propagate within the queries when the updated re-

gion representation takes part in the next query update.

Inference. After L iterations of contextual reasoning,

the system would output the final representations Q(L) =

[q
(L)
1 , q

(L)
2 , . . . , q

(L)
Nq

] and R(L) = [r
(L)
1 , r

(L)
2 , . . . , r

(L)
Nr

] for

queries and regions in the image respectively. We mea-

sure the correspondence between a query qi and region rj
with their final representation after contextual reasoning,

the matching score s(qi, rj) is defined as their dot product

q
(L)
i

T r
(L)
j . At inference time, for each query from an im-

age, we select the region that matches best with the query

as its grounding prediction.

Training. Assume we have a dataset D consisting of K im-

ages and corresponding queries {(Qi, Ri)}
K
i=1. We adopt a

similar ranking loss as proposed in [9] for training a ground-

ing network in a weakly-supervised setting. We consider

the matching score between an image and the set of queries

as the average matching score over all the queries and their

matches

S(Q,R) =
1

Nq

Nq∑

i=1

max
j

s(qi, rj), (10)

where Nq is the number of queries for the image. The rank-

ing loss requires that paired images and query sets score

higher than unpaired ones:

Lrank =
1

K

∑

(Q,R)∈D

(max(0, S(Q̃, R)− S(Q,R) + ∆)

+max(0, S(Q, R̃)− S(Q,R) + ∆)),

(11)

where Q̃ and R̃ denote queries and regions from another

image and ∆ is the margin.

4. Experiments

4.1. Experimental Setup

Datasets. We evaluate our framework on two video

datasets that provide object queries and grounding an-

notations, YouCook2-BoundingBox [33] and ActivityNet-

Entities [32]. The YouCook2-BoundingBox dataset con-

tains 2000 unconstrained cooking videos and a description

is provided for segments in the videos. Bounding box an-

notations are provided for the 63 most frequent objects in

the descriptions along with four referring expressions: it,

them, that, they. ActivityNet-Entities contains 14281 videos

which are also temporally annotated into captioned seg-

ments. Sparse grounding annotations are provided for 432

frequently appearing objects in segment captions.

To train our model, we sample 5 frames from each seg-

ment in YouCook2-BoundingBox and 10 frames from each

segment in ActivityNet-Entities for a similar interval be-

tween frames. For Youcook2-BoundingBox dataset we fol-

low the split of the dataset as in [33]. For ActivityNet-

Entities dataset, the test data is hosted on an evaluation

server which is not ready at the moment, so we split its vali-

dation sets randomly and evenly into two halves as our own

validation and testing set. For the YouCook2-BoundingBox

dataset we use 42900 frames for training, 60682 frames for

validation and 28304 frames for testing, with an average of

1.2 visible and annotated queries per frame in the valida-

tion set. For the our split of the ActivityNet-Entities dataset

there are 309000 frames for training, 37700 frames for vali-

dation and 39360 frames for testing, with an average of 0.27

visible and annotated queries per frame (due to the sparse

annotation).

Comparing Approaches. We compare our method

with two state-of-the-art grounding approaches, namely

GroundeR [20] and DVSA [9]. For YouCook2-

BoundingBox dataset we also include comparison with

more recent results conducted on the dataset from Zhou et

al. [33] and Shi et al. [23]. All methods for each dataset ex-

cept [23] share the same region proposals and features for

fair comparison.

Evaluation Metric. The evaluation metric is the bounding

box localization accuracy as in [33, 32], the ratio of cor-

rectly grounded bounding boxes over all grounded boxes.

A predicted bounding box is considered positive if it has an

Intersection over Union (IOU) of larger than 0.5 with the

ground-truth bounding box. We provide both the bounding

box accuracies that are computed globally without distinc-

tion of different query classes and those averaged over the

query classes. Queries that are not annotated or not vis-

ible are not considered when computing grounding accu-



Method Box Accuracy Average Box Accuracy

val test val test

GroundeR[20] - - 19.63 19.94

DVSA[9] - - 30.51 30.80

Zhou et al. [33] - - 30.31 31.73

Shi et al. [23]1 46.41 46.33 39.54 40.71

Contextual Reasoning(1 iter) 38.89 - 32.26 33.41

Contextual Reasoning(2 iter) 40.76 - 33.24 34.90

Table 1. Box Accuracy and Average Box Accuracy over query classes on YouCook2-BoundingBox dataset for different models. For our

model, we demonstrate the performance for different iterations of contextual reasoning. We only report the box accuracy on validation set

for our methods since the evaluation server could only evaluate the average box accuracy.

Method Box Accuracy Average Box Accuracy

val test val test

GroundeR[20] 16.45 16.26 13.44 11.36

DVSA[9] 34.72 34.63 22.75 22.46

Contextual Reasoning(1 iter) 35.37 36.98 23.56 24.32

Contextual Reasoning(2 iter) 38.54 40.08 23.09 24.58

Table 2. Box Accuracy and Average Box Accuracy over query classes on ActivityNet-Entities dataset for different models. For our model,

we demonstrate the performance for different iterations of contextual reasoning.

racy. For YouCook2-BoundingBox dataset the bounding

boxes for the queries are annotated for frames sampled at

1fps in the validation and test set, while for ActivityNet-

Entities the bounding box for each query is annotated only

in one of the evenly sampled 10 frames in the corresponding

video segment. The evaluation is conducted accordingly on

these frames.

Implementation Details. For YouCook2-BoundingBox

dataset we use the region proposals and features provided

by [33] generated by a Faster-RCNN [19], the features are

the 2048-dimensional output after the ROI pooling layer.

For ActivityNet-Entities dataset we generate candidate re-

gions from another Faster-RCNN [19] model trained for the

MSCOCO detection task which has a Resnet-101 [7] and

FPN [13] backbone, and use the detector’s fc7 features as

visual features.

For negative examples to be used in the ranking loss we

randomly sample frames together with their queries from

another video. The initial semantic embedding module has

one embedding layer and one fully connected layer for em-

bedding the queries, and one fully connected layer for em-

bedding visual features, embedding both features to a 128-

dimensional space. The contextual reasoning module is

built after the initial embedding module by stacking gated-

GCN networks, all the GCN networks keep the feature di-

mension at 128. The margin for the ranking loss is set to

0.6. An Adam optimizer with a learning rate of 0.0001 and

weight decay of 0.0005 is used to optimize all the models.

For each model, we pick the epoch where it gives lowest

loss on our validation set and report the grounding accuracy

on both validation and test set.

4.2. Object Grounding on YouCook2-BoundingBox

The grounding accuracies of different models are shown

in Table 1. As Zhou et al. [33] use only average box accu-

racy as a metric, the global box accuracies are not available

for their model and the two baselines. Since the evalua-

tion server also only evaluates average box accuracy, we

could only report box accuracy for our models on the val-

idation set. The DVSA model gives an average box ac-

curacy of 30.80% on the test set. With one iteration of

contextual update of feature and query representations our

model improved this performance by 2.61% on the test set

and outperforms [33]. With an extra iteration of repre-

sentation update the performance is further increased by

1.49%. The performance boost for global box accuracy is

larger than that for average box accuracy, indicating that

queries that appear more frequently in the dataset benefit

more from context reasoning. This is reasonable since the

more frequently mentioned query classes are more likely

to appear in varied forms, thus benefitting more from the

resolution of ambiguity. Adding more stacks of contex-

tual updates of representations does not give extra boost to

the performance. The Grounding by Attention model gives

1Shi et al. [23] use different region proposals than other methods here.

Although also built on DVSA like Zhou et al. [33] and our approach,

they report much higher DVSA performance, with global box accuracy of

44.26% and 44.16% for validation and test set and average box accuracy

of 36.90% and 37.55% for validation and test set.



Figure 4. Qualitative results on YouCook2-BoundingBox (first row) and ActivityNet-Entities (second row). In each figure, the ground truth

is denoted by a red bounding box, the prediction from base grounding by ranking model in blue and prediction from our model in green.

an accuracy of 19.94% which is behind the ranking based

grounding models. This might result from the fact that the

queries here are only object labels rather than noun phrases

as in [20] thus the query reconstruction loss is less powerful,

while our model tackles particularly the problem of vague

queries by conditioning representations on context.

Qualitative comparisons are given in Fig. 4. Our model

is able to ground the queries to the objects in various forms,

while the base grounding by ranking model fails to recog-

nize/localize objects in less typical appearance. We also in-

spect the queries and find that our final model gives largest

performance boost to the query salad, it and milk. The

query salad is a good example of a vague query as salad

takes various appearances based on its ingredients, let alone

the query it which could refer to anything in the frame. The

query milk benefits from our model because it takes differ-

ent appearance in different containers.

4.3. Object Grounding on ActivityNet-Entities

The results on the ActivityNet-Entities dataset present

a similar trend as those in the previous experiment. Since

the query set is substantially larger than that of YouCook2-

BoundingBox and the scenes are more complicated, the box

localization accuracy of all methods are lower. The DVSA

model gives an average box accuracy of 22.46% on the test

set. One iteration of our contextual update of the query

and region representations improves the grounding accu-

racy by 1.94% while a second iteration further boosts the

performance marginally by 0.26%. A look into the global

box accuracy demonstrates that the second iteration of con-

text reasoning still boosts performance on this metric. The

difference of the performance boost for average and global

performance indicates that the ActivityNet-Entities dataset

may have more biased query distribution than YouCook2-

BoundingBox and the model is helping more on the more

dominating query classes. The GroundeR baseline is still

left behind by ranking based models. In addition to the

vague query problem mentioned above, sometimes in the

ActivityNet-Entities dataset multiple queries correspond to

the same object, this might confuse the GroundeR model by

forcing the same region to reconstruct different queries.

Some qualitative results can be found in Fig. 4, again our

model successfully localizes these queries despite the un-

usual appearance of the objects while the base model fails to

adapt the queries to these scenes. As we inspected the per-

formance for each category, we found that ”skateboarder”,

”parking”, ”runner”, ”herself” and ”background” are the

categories whose performance enjoy the greatest boost from

contextual reasoning.

5. Conclusion

In this paper, we tackled the problem of weakly super-

vised object grounding, where only the object queries are

provided at training time without access to grounding anno-

tation. We propose a weakly supervised grounding model

that automatically represents a query and a region in con-

text of each other with iterative refinement, which resolves

the ambiguity between an abstract query and a specific re-

gion. We apply our grounding approach on the YouCook2-

BoundingBox and ActivityNet Entities datasets, on which

our model outperforms state of the art grounding by rank-



ing and grounding by attention models and can iteratively

boost its performance via context reasoning.
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