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Abstract

In this paper, we propose an arbitrarily-conditioned data imputation framework built upon
variational autoencoders and normalizing flows. The proposed model is capable of mapping
any partial data to a multi-modal latent variational distribution. Sampling from such a
distribution leads to stochastic imputation. Preliminary evaluation on MNIST dataset
shows promising stochastic imputation conditioned on partial images as input.

1. Introduction

Neural network based algorithms have been shown effective and promising for various down-
stream tasks including classification (Deng et al., 2009; Damianou and Lawrence, 2013),
retrieval (Carvalho et al., 2018), prediction (He et al., 2018), and more. In order to correctly
learn how to perform these tasks, they usually rely strictly on access to fully-observed data.
However, acquiring this type of data in real life requires tremendous human effort, limiting
the applicability of this family of models. Having a framework designed to perform inference
on partially-observed data will not only alleviate the aforementioned constraint, but also
open possibilities to perform data imputation, in which the missing data is inferred.

Data imputation, also referred to conditional generation, has been an active research
area (Little and Rubin, 1986; Song et al., 2018; Zadeh et al., 2019). The probabilistic
nature of this task makes it difficult to adopt off-the-shelf deterministic models widely
studied. In other words, conditioned on the same partially-observed data as input, mul-
tiple plausible fully-observed data should be able to be imputed. Variational autoen-
coders (VAEs) (Kingma and Welling, 2013), as a popular probabilistic modelling approach,
have been applied to the data imputation task recently. A variational autoencoder de-
fines a generative process that jointly models the distribution pθ(x, z) of the observed
variable x and latent variable z, governed by parameters θ. Instead of performing local
inference, VAEs include an inference network parameterized by φ to output an approxi-
mate posterior distribution qφ(z|x). Both the generative model and the inference model
are optimized with a unified evidence lower bound (ELBO) on marginal data likelihood:
Lθ,φ(x) = Ez∼qφ(z|x)[log pθ(x|z)] −DKL[qφ(z|x)||p(z)]. Recent literature on utilizing VAE-
based models mainly focus on the effectiveness of combination of various obversed parts (Ma
et al., 2019; Ivanov et al., 2018).
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Different from the related works described above, we propose to enrich the latent space
of variational autoencoders to enable multi-modal posterior inference, and therefore prob-
abilistic imputation. Specifically, we use a two-stage model, with first-stage focusing on
learning a representation space based on fully-observed data, and second-stage focusing
on aligning the representation space embedded from partially-observed data to the one in
stage-one. Using flow-based transformations for constructing a rich latent distribution, the
proposed model is capable of inferring multi-modal variational latent distributions.

2. Imputation framework

Adopting a standard VAE approach for this problem would involve advocating for a model
which receives partial data as input and, with the feedback of a standard reconstruction loss,
learns to output the full data. Training such a model would pose many challenges. Firstly,
gradient coming from the very end of the network would promote stronger imputation on
the decoder, whereas the encoder could learn to simply encode the partial data. Secondly,
there would be no mechanism to ensure the distribution of possible reconstructions would
be correctly captured by the proposed posterior, which is generated by the encoder and
fully conditioned on the partial data.

To amortize these problems, we propose a two-stage schema, represented in Figure 1.
The first stage (upper part of the figure) corresponds to the encoder of a VAE model. This
encoder was trained with an associated decoder, which was later discarded, with the task
of encoding and reconstructing the full data. If properly trained, this stage’s proposed
posterior correctly depicts a good distribution of the full data, because this is a requirement
in order to also reconstruct it. Once trained, its weights are fixed, and then the model of
the second stage is trained on the partial data. Note that the encoders and decoders of the
first and second stages are different – they can have the same architecture but do not share
weights.

Because the latent space of the first model is rich enough to represent the full data’s
distribution (under the perspective of the first model), we propose to adopt a divergence
loss between the first and the second model. This divergence acts as a distillation method,
allowing the first model to inject rich information about the latent representation of the
full data into the second-stage model. This injection will ensure weak alignment between
both representation spaces, while also providing direct feedback to the encoder about the
expected distribution of data in that space.

One problem with using simple families of posterior approximation is the lack of support
for modeling multi-modal distributions, in which a reconstruction can take multiple forms.
To compensate for that, we adopt a Normalizing Flow (Rezende and Mohamed, 2015) model
inside the latent space, forcing the divergence between stage-one and stage-two to happen
between the normal distribution, from the proposed posterior of the former, and the more
complex distribution created by the flow model of the latter.

The nature of this divergence then becomes a problem: (1) How can we model a di-
vergence between a simple and a more complex distribution for which we don’t know the
parameters? (2) Once defined, how can we ensure a multi-modal distribution can be mod-
eled by the second stage?
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Figure 1: Representation of the proposed model. The first stage is trained observing the full
data in the input, while the second stage is trained with partially observed data
as input. The divergence loss between the proposed posteriors of the first and
the second stages acts as a distillation loss, transferring knowledge to the second
stage, and forcing the encoder to infer the distribution of the missing data.

To address (1), we examine relations between KL-Divergence and Likelihood Ratio (LR):

LR =
∑N

i=0
p(xi)
q(xi)

. From this perspective, we can derive a Monte-Carlo approach for the KL-

Divergence, as long as p(xi) and q(xi) are tractable:

KL (p (x) ||q (x)) := Ep(x)
[
ln

(
p(x)

q(x)

)]
= lim

N→∞

N∑
i=0

ln
p(xi)

q(xi)
. (1)

In our model, we know p(xi) is coming from a normal distribution, which is the proposed
posterior of stage-one, therefore we only have to address the computation of q(xi), which
is coming from the flow model. Thanks to properties of Normalizing Flows (NFs), this can
be modeled as a correction term applied to the simple distribution before the flow:

ln qK(zK) = ln q0(z0)−
K∑
k=1

ln

∣∣∣∣det
∂fk
∂zk−1

∣∣∣∣ , (2)

where K is the number of transformations fk, and q0(z0) is the simple distribution that is
transformed to the complex distribution qK(zK) through flow transformations.

To complete the model we also added a second divergence loss between the simple
distribution (prior to the NF) and a Gaussian centered at zero with standard deviation of
one. This extra divergence allows us to control the support of that distribution, regaining
generative capability in all subsequent spaces, including the more complex one created by
the NF module. The second stage model (encoder, partial posterior and decoder) is trained
from scratch with the reconstruction and the divergence losses. During the training of
the second stage model, the first stage model is fixed and it provides supervision for the
structure of the latent space.
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(a) Simple VAE, full data (b) 2(a) with partial data (c) 2(b) + normalizing flow

Figure 2: Samples following a regular grid in the 2-dimensional latent space generated by a
simple VAE model which observes the full data 2(a), a VAE models with partial
data 2(b), and a model with a normalizing flow module in the latent space 2(c).

(a) Task (b) Without Normalizing Flow (c) With Normalizing Flow

Figure 3: Reconstructions from partial data with and without normalizing flow.

Finally, problem (2) becomes irrelevant when we take into consideration the stochastic
optimization in neural networks. If the training data is rich enough to correctly represent
the multi-modal nature of the full data (this is a base assumption for any machine learning
model), the best way to minimize the divergence loss is, indeed, by creating a multi-modal
distribution which has density directly proportional to the likelihood of the data.

3. Analysis and Applications

In Figure 2 we present preliminary results which showcase the benefit of having each of the
proposed modules. For this experiment, a regular grid is defined inside the latent space, and
values in this grid are sampled from the decoder to observe the latent structure organization.
In Figure 2(a), we display results for a baseline approach, representing the best possible
scenario, in which the encoder has access to the full data. We then show, in Figure 2(b),
the same space when adopting the schema in Figure 1, but without the NF module; and
the full architecture – with NF – in Figure 2(c). We observe that the NF module allowed
the network to have a more flexible latent space, when compared to the case without NF.
Figure 2(c) displays clusters of digits which are clearly represented and well separated,
unlike Figure 2(b), which exhibits classic problems of VAEs related to averaging images
near cluster limits.

Following this experiment, we set out to test whether the multi-modality of reconstruc-
tions was being captured by the model. Due to limited space, we limit ourselves to a single
example, for which we don’t penalize the model for not perfectly reconstructing the partial
data – the goal is to verify if the multi-modality is being captured, and if the model is
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able to recognize the digit. Figure 3(a) demonstrates the problem we’re aiming to solve:
given a partially observed piece of data, we want to capture all possible interpretations
and reconstructions of the full data. The results without NF and with NF are given in
Figure 3(b) and Figure 3(c), respectively. We observe that adding the flow module allows
the model to more precisely represent the possible reconstructions of partial data. While
Figure 3(b) still displays signs of averaging and confusion, most of the digits in Figure 3(c)
are clearly identifiable, and the multi-modality of the possible reconstructions is correctly
depicted. Figure 3(b), for example, was unable to provide the possibility of “0” being a
valid reconstruction to the partial provided in Figure 3(a).

Although we demonstrate the power of our model in the simple case of MNIST, our
model remains data-agnostic, and can be applied to any data modality (images, videos,
text, sound, etc). Possible applications range from arbitrarily-conditioned data imputation
to data generation following complex modality interactions, which are partly modeled by
the NF inside the latent space.
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