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* Human detection in images
— Histograms of Oriented Gradients (HOG)
e Dalal and Triggs CVPR 2005
— Latent SVM (L-SVM)

* Part-based model
* Felzenszwalb et al. CVPR 2008

e Human detection in videos
— Cascade of boosted classifiers
* Viola et al. ICCV 2003

— Motion HOG
e Dalal et al. ECCV 2006



HISTOGRAMS OF ORIENTED GRADIENTS
FOR HUMAN DETECTION

Slides from Navneet Dalal



Goals & Applications

Goal: Detect and localise people in images and videos
Applications:

Images, films & multi-media analysis
Pedestrian detection for smart cars
Visual surveillance, behavior analysis




Difficulties

Wide variety of articulated poses
Variable appearance and clothing
Complex backgrounds
Unconstrained illumination
Occlusions, different scales

Videos sequences involves motion of
the subject, the camera and the
objects in the background

Main assumption: upright fully visible
people




Static Feature Extraction

Input image

<+— Detection window

Normalise gamma

Compute gradients ' gy

Weighted vote in spatial & Cel

orientation cells

Block >
Contrast normalise over
overlapping spatial cells Overlap N |
of Blocks N7/
Collect HOGs over
iR (0 Feature vector f=1 ..., ..., ...]

Linear SVM
N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection. CVPR, 2005



Overview of Learning Phase

Learning phase

Input: Annotations on training Resample negative training

images images to create hard
l examples
Create fixed-resolution _ * _
normalised training image Encode images into feature
data set spaces
v v
Encode images into feature Learn binary classifier
spaces

!

Object/Non-object decision

A\ 4

Learn binary classifier

Retraining reduces false
positives by an order of

magnitude!




HOG Descriptors

Parameters Schemes

Gradient scale RGB or Lab, colour/gray-space
Orientation bins Block normalisation
Percentage of block L2-norm,
overlap or ve—v/ HVHE +£

[ 1-norm,

V< \/v /(“v“1 +£)
- Block —

P

R-HOG/SIFT
—
Cell
C-HOG
I
Center bin
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Evaluation Data Sets

MIT pedestrian database

INRIA person database

507 positive windows
Negative data unavailable

1208 positive windows
1218 negative images

Test | Train

200 positive windows
Negative data unavailable

Test | Train

566 positive windows
453 negative images

Overall 709 annotations+
reflections

Overall 1774 annotations+
reflections




miss rate

Overall Performance

INRIA person database

MIT pedestrian database

DET - different descnptors on MIT database
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R/C-HOG give near perfect separation on MIT database
Have 1-2 order lower false positives than other descriptors

miss rate

DET — different descnptors on INRIA database
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Performance on INRIA Database

miss rate

DET - different descrlptors on INRIA database
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Effect of Parameters

Gradient smoothing, o

DET - effect of gradient scale

Orientation bins,

DET - effect of number of orientation bins §
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positives by 10 times
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Normalisation Method & Block Overlap

Normalisation method Block overlap

DET - effect of normalization methods

DET - effect of overlap (cell size=8, num cell = 2x2, wt=0)

miss rate
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Strong local normalisation
IS essential

false positives per window (FPPW)

Overlapping blocks improve
performance, but descriptor
size increases
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Effect of Block and Cell Size

Miss Rate (%)
= o =B

Lh
TR R

<

2x2

6x6 3x3
Cell size (pixels) 4x4 — 4x4 Block size (Cells)

Trade off between need for local spatial invariance and
need for finer spatial resolution




Descriptor Cues

\
D

Input Average  Weighted Weighted Outside-in
example gradients pos wis neg wts weights

Most important cues are head, shoulder, leg silhouettes
Vertical gradients inside a person are counted as negative

Overlapping blocks just outside the contour are most
important
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Overview of Methodology

Detection Phase

Scale-space pyramid

Scan image(s) at all
scales and locations

Extract features over

windows / I- \

A
Run linear SVM
classifier on all
locations

Detection window

Fuse multiple o
detections in 3-D Focus on building robust

position & scale space feature sets (static & motion)

Object detections with
bounding boxes




Multi-Scale Object Localisation

Multi-scale dense scan of

detection window T

S (in log)

‘/—L’\.

X

Threshold
H, =[exp(s,)0,,exp(s,)0,,0, ]

f@=3"w, exp(—H(x —x,)/H]'[ /2)

Finl detections Apply robust mode Qetection,
like mean shift
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Effect of Spatial Smoothing

Recall-Precision —— effect of spatial smoothing
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Spatial smoothing aspect ratio as
per window shape, smallest sigma
approx. equal to stride/cell size

Relatively independent of scale
smoothing, sigma equal to 0.4 to 0.7
octaves gives good results
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Effect of Other Parameters

Different mappings Effect of scale-ratio
Recall-Precision —— effect of function t(w) Recall-Precisicn — effect of scale-ratio
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DETECTING HUMANS USING A PART-BASED
MODEL

Felzenszwalb et al., A Discriminatively Trained, Multiscale, Deformable
Part Model, CVPR 2008

Slides from Pedro Felzenszwalb



PASCAL Challenge

® ~10,000 images, with ~25,000 target objects
- Objects from 20 categories (person, car, bicycle, cow, table...)

- Objects are annotated with labeled bounding boxes

cowleft
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carFrontal
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Why is it hard?

® Objects in rich categories exhibit significant variability
- Photometric variation
- Viewpoint variation
- Intra-class variability
- Cars come 1n a variety of shapes (sedan, minivan, etc)

- People wear different clothes and take different poses

We need rich object models
But this leads to difficult matching and training problems



Starting point: sliding window classifiers

Feature vector
X=1ee, veey ceny oon |

® Detect objects by testing each subwindow
- Reduces object detection to binary classification
- Dalal & Triggs: HOG features + linear SVM classifier

- Previous state of the art for detecting people



Histogram of Gradient (HOG) features

® Image 1s partitioned into 8x8 pixel blocks
® In each block we compute a histogram of gradient orientations
- Invariant to changes in lighting, small deformations, etc.

e Compute features at different resolutions (pyramid)



HOG Filters

® Array of weights for features in subwindow of HOG pyramid

® Score is dot product of filter and feature vector

P

[

HOG pyramid H

Filter F

Score of F' at position p 1s

F-¢(p, H)

¢(p, H) = concatenation of
HOG features from
subwindow specified by p



Dalal & Triggs: HOG + linear SVMs

not pedestrian
w- <0

N

pedestrian
w- >0

- .
-

There 1s much more background than objects

Start with random negatives and repeat:

1) Train a model

Typical form of 2) Harvest false positives to define “hard negatives”

a model



Overview of our models

W

® Mixture of deformable part models
® FEach component has global template + deformable parts

® Fully trained from bounding boxes alone



2 component bicycle model
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root filters part filters deformation
coarse resolution finer resolution models

Each component has a root filter Fy
and n part models (F;, v;, d;)



o
H 2=(P0oy..., Pn)
] 11
- j:::;:: po : location of root
A% Pl,..., pn : location of parts
o
|

§ Score 1s sum of filter
Jjgij“ scores minus

EHt deformation costs

Image pyramid HOG feature pyramid

Multiscale model captures features at two-resolutions



score(po, - - -

Score of a hypothesis

7pn) —

“data term” “spatial prior”

> Fi- o(H,pi)| =D di - (daf, dy?)
i=0 T =1 T displacements

filters deformation parameters

score(z) = 0 -V(H, z)

/N

concatenation filters and  concatenation of HOG
deformation parameters features and part
displacement features



Matching

® Define an overall score for each root location

- Based on best placement of parts

score(pg) = max score(pg, - - -, Pn)-
REREY 257}

® High scoring root locations define detections
- “sliding window approach”

e Efficient computation: dynamic programming +
generalized distance transforms (max-convolution)



input image

head filter

Response of filter in 1-th pyramid level
Rl (x7 y) — F ) ¢(H7 (aj7 y? l))

cross-correlation

Transformed response

Dl(xay) — ﬁ%y (le(gj +dz,y + dy) —d; - (dx27 dyQ))

max-convolution, computed in linear time
(spreading, local max, etc)




feature map at twice the resolution
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Matching results

(after non-maximum suppression)

~1 second to search all scales



Training
® Training data consists of images with labeled bounding boxes.

® Need to learn the model structure, filters and deformation costs.

Training
—>

=
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M e e




Latent SVM (MI-SVM)

Classifiers that score an example x using

fa(x) = zlgn?(}i)ﬁ - ®(z, 2)

p are model parameters
z are latent values

Training data D = ({(z1,%1),---,{Tn,Yn)) v €{-1,1}
We would like to find 8 such that: v;fs(x;) > 0

Minimize

Lo(8) = 3 |IA1> +C 3" max(0,1 — i fo(x:)
1=1



Semi-convexity

® Maximum of convex functions is convex
o f3(r) = max B-®(x,2) isconvex inf

z€Z(x)

e max(0,1—y;fs(x;)) is convex for negative examples

Lo(8) = 3181 + € " max(0,1 -~ yifis(x:))
=1

Convex if latent values for positive examples are fixed



Latent SVM training

Lo(8) = 31817 +C " max(0,1 - yifis(x:))
1=1

® Convex if we fix z for positive examples
® Optimization:
— Initialize [ and iterate:
— Pick best z for each positive example

- Optimize (5 via gradient descent with data-mining



Training Models

® Reduce to Latent SVM training problem
® Positive example specifies some z should have high score
® Bounding box defines range of root locations

- Parts can be anywhere

- This defines Z(x)




Background

® Negative example specifies no z should have high score

® One negative example per root location in a background image

- Huge number of negative examples

- Consistent with requiring low false-positive rate



Training algorithm, nested iterations
Fix “best” positive latent values for positives
Harvest high scoring (x,z) pairs from background images

Update model using gradient descent

v v lrow away (X,z) pairs with low score

® Sequence of training rounds
- Train root filters
- Initialize parts from root

— Train final model




Person model

part filters deformation

finer resolution

root filters
coarse resolution

models



Person detections

high scoring false positives
(not enough overlap)

high scoring true positives




Quantitative results

® 7 systems competed in the 2008 challenge
® Qut of 20 classes we got:
- First place in 7 classes
- Second place in 8 classes
® Some statistics:
- It takes ~2 seconds to evaluate a model in one image
- It takes ~4 hours to train a model

- MUCH f{faster than most systems.



HUMAN DETECTION IN VIDEO



* Humans can perceive human figure presence
and action in videos

— Even from solely from body joint positions
— Even in clutter
* Moving light displays
— Johansson, Perception and Psychophysics 1973
— Ideas used by Song et al. CVIU 2000









CASCADE OF BOOSTED FEATURES FOR
DETECTING PEDESTRIANS

Viola, Jones, and Snow, Detecting pedestrians using patterns of motion
and appearance, ICCV 2003



e Viola-Jones face detector
— Viola and Jones CVPR 2001

— Window-scanning approach

e Two nice ideas

— Define many, efficient-to-compute features
» AdaBoost to select good ones from them

— Cascade architecture to quickly eliminate non-face
sub-windows



Adaboost Algorithm
 Given a set of “weak learners”

hi(X) - {—|—1,—1}

* Build “strong learner”

h(x) = ; oy (x)

— Greedy selection of weak learners
— Each iteration, choose best weak learner



AdaBoost Algorithm
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Face Features

e Features — Haar-like

rectangle features

e Each weak learner

examines a single feature

5 (J:) _ 1 ifpjfj(a;) < pjgj
g 0 otherwise




Integral Images

* Fast computation of features possible using
Integral Images

o




Cascade of Classifiers

* Most image sub-windows don’t contain a face

All Sub—windows
T T T Further
Processing
F F F
Reject Sub—window



Learned Classifier

* First two weak learners chosen:

s
e

<



And People?

 Same algorithm, slightly different features

[RICRIE

* Diagonal to capture legs

= | =

i

* Frame differencing for
motion

Frame 1 Frame 2 A



MOTION HOG

Dalal, Triggs, and Schmid, Human Detection Using Oriented Histograms of
Flow and Appearance, ECCV 2006

Slides from Navneet Dalal



Motion HOG Processing Chain

Detection windows Input image Consecutive image
Normalise gamma & colour ‘ ‘

i low field Magnitude of flow
Compute optical flow

Compute differential flow - N &

Differential flow X Differential flow Y

. O

Normalise contrast within Block > Cell

overlapping blocks of cells

Accumulate votes for
differential flow orientation
over spatial cells

Overlap

Collect HOGs for all blocks of Blocks
over detection window




Overview of Feature Extraction

Appearance
Channel

N
Input image Consecutive image(s)

Y Y

Static HOG Motion HOG
Encoding Encoding

Collect HOGs over
detection window

Linear SVM

Object/Non-object decision

|lsuueyn
UOIO

Data Set

Train

5 DVDs, 182 shots
5562 positive windows

Test 1

Same 5 DVDs, 50 shots
1704 positive windows

Test 2

6 new DVDs, 128 shots
2700 positive windows




Coding Motion Boundaries

Treat x, y-flow components
as independent images

Take their local gradients
separately, and compute

HOGs as in static images First Second Estd. Flow
frame frame flow mag.

00

x-flow y-flow  Avg. Avg.

ﬁ
dedra
i
———

s

f
Motion Boundary Histograms )

(MBH) encode depth and motion

boundaries diff  diff  x-flow y-flow
diff  diff

31



Coding Internal Dynamics

|deally compute relative displacements
of different limbs
Requires reliable part detectors

Parts are relatively localised in our
detection windows

Allows different coding schemes based
on fixed spatial differences

Internal Motion Histograms (IMH) encode
relative dynamics of different regions




...IMH Continued

Simple difference
Take x, y differentials of flow

vector images [, I, ] Wavelet-style cell
Variants may use larger differences

spatial displacements while - p >
differencing, e.g. [1 0 0 0 -1]

Center cell difference




SUMMARY



* Large literature on human detection

— These are a few, widely used, examples
* Code is available

— Ask me for reading list of others

* Encode shape and motion
— Gradient filters
— Motion histograms

* Encode spatial variability
— Part-based models



