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Human Figures in Still Images

* Detection of humans is possible
for stereotypical poses

— Standing

— Walking

— (Viola et al., Dalal & Triggs)
* But we want to do more

— Wider variety of poses

— Localize joint positions
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Models vs. Exemplars

 Two broad classes of approaches
— Match templates (exemplar-based)
— Fit model
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EXEMPLAR METHODS

SFU Vision and Media Lab



Shape Matching For Finding People




Shape Contexts

 Deformable template approach
— Shapes represented as a collection of edge points

* Two stages
— Fast pruning

e Quick tests to construct a shortlist of candidate
objects

» Database of known objects could be large

— Detailed matching

* Perform computationally expensive comparisons on
only the few shapes in the shortlist

e Publications £
— Mori et al., CVPR 2001

— Mori and Malik, CVPR 2003
* Featured in New York Times Science section
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Results: Tracking by Repeated Finding
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Multiple Exemplars

e Parts-based approach
— Use a combination of keypoints or
limbs from different exemplars
— Reduces the number of exemplars needed

 Compute a matching cost for each limb from every
exemplar

 Compute pairwise “consistency” costs for
neighbouring limbs

* Use dynamic programming to find best K
configurations
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Scaling Up (e.g. Shakhnarovich et al.)

 Methods for automatically generating
exemplars

— Graphics package (e.g. POSER)

 Methods for efficient nearest neighbour
search

— Locality sensitive hashing
— k-d trees
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MODEL-BASED METHODS
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Review of Tree-Structured Deformable Models
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Model Parameters (Ramanan,NIPS’06)

Spatial prior

Dl = 1;) = n';[l‘)ill(/.; — 1) O

favor certain spatial/angular bins

Part appearance

o(l;) = 3,sz(1(]z))
SN

favor certain edge patterns part-specific binary
vector of edges



Learning and Inference

Inference: message passing with 3D
convolution

Learning ©,,;
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Ferrari, Marin-Jimenez, Zisserman, CVPR 2009

POSE SEARCH
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Goal

* Video shot retrieval from pose
— Either query-by-example or classification

— Focus on upper body pose




Upper Body Pose Estimation

* Detect upper body (HOG)
* Rough segmentation (GrabCut)

* Pose estimation (Pictorial Structure with
Ramanan’s iterative parsing)




Modifications to PS Model

* Prior on pose
— Uprightness reasonable for TV shows

* Repulsive model

— Avoid double-counting image evidence




Pose Descriptors

* Pose estimator gives marginals on body parts
over time

* Three descriptors are examined:
— Part positions
* Discretized absolute part positions/orientations

— Relative location/orientations
* Discretized relative part positions/orientations

— Part segmentations
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Pose Comparison

e Bhattacharyya similarity for discrete
distributions

* Dot products for segmentations
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Shot Scores

* How to compare tracks of people?
— One-to-one
* Maximum similarity between query pose and track
— Top-k average
* As above, but average over best k matches

— Query interval
* One-to-one, but allow a max over query sequence too
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Classifier Mode

* Train an SVM
— Useful (standard) tricks about augmenting data
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Results
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SFU Vision and Media Lab




Results
. t, m ld

w

query

SFU Vision and Media Lab




Results




Results

SFU Vision and Media Lab




Resources

e Code and datasets online
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Ramanan and Forsyth NIPS 03

AUTOMATIC ANNOTATION OF
EVERYDAY MOVEMENTS
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Goal
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Representation

* Each frame is labeled with a bit string
— Each entry denotes presence/absence of an action

— E.g. run and carry can happen together, both
entries would be 1
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Approach

. [
+ 3[%11)11}2(1)%011 J_L P 2D tracks video ﬂ

motion
synthesis

e Start with 3D mocap data

* User annotates data
* Track people in input video
* Compare tracks to mocap data
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Annotations

* 3D mocap data
— From EA (American) football

e User annotates some frames

* Train SVMs with GRBF kernel on 3D joint
positions over 1s as feature

— One SVM per annotation
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Tracking (CVPRO3)

Pr’" ¢ ,:E""

’ L ";;}* J' ¥

> \_1 888
- R4 4! Y TEA 11359
P - v A L
U R W
Ll I
-~
-

™

A clustel p detect!sl

2

-

* Detect torsos (rectangles) in video
e Cluster on appearance
* Discard non-moving clusters

* Detect torsos and other parts using pictorial structure
model
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Recognition
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e Discretize 3D poses via k-means clustering (M)

 Assume camera viewing direction parallel to
ground plan, torso location known (from tracker)

— T is simply orientation (direction of torso motion)
along ground
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Temporal Model |

Factorial HMM Triangulated FHMM
* M-M clique: quantized 3D motion should be smooth

 M-T clique: 3D pose should match 2D pose from

tracker
* T-T clique: torso orientation change should be smooth

— M-T-T: modulate by motion type (some motions can be
faster than others
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Annotations

e Use inferred M to give annotation to a frame

— Various types of hacks possible
* Medoid (cluster center) annotation
* Mode of annotations in cluster
* Annotation of best match in cluster
* Frequency of annotations (soft annotation)

— A smoothing approach based on another temporal
model (HMM) is used instead
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Results
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Results
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