Human Pose Estimation

Greg Mori CMPT 888

Problem

SFU Vision and Media Lab

Human Figures in Still Images

- Detection of humans is possible for stereotypical poses
 - Standing
 - Walking
 - (Viola et al., Dalal & Triggs)
- But we want to do more
 - Wider variety of poses
 - Localize joint positions

Models vs. Exemplars

- Two broad classes of approaches
 - Match templates (exemplar-based)
 - Fit model

EXEMPLAR METHODS

Shape Matching For Finding People

SFU Vision and Media Lab

Shape Contexts

- Deformable template approach
 - Shapes represented as a collection of edge points
- Two stages
 - Fast pruning
 - Quick tests to construct a shortlist of candidate objects
 - Database of known objects could be large
 - Detailed matching
 - Perform computationally expensive comparisons on only the few shapes in the shortlist
- Publications
 - Mori et al., CVPR 2001
 - Mori and Malik, CVPR 2003
 - Featured in New York Times Science section

Results: Tracking by Repeated Finding

SFU Vision and Media Lab

Multiple Exemplars

- Parts-based approach
 - Use a combination of keypoints or limbs from different exemplars
 - Reduces the number of exemplars needed
- Compute a matching cost for each limb from every exemplar
- Compute pairwise "consistency" costs for neighbouring limbs
- Use dynamic programming to find best K configurations

Combining Fxemnlars

Scaling Up (e.g. Shakhnarovich et al.)

- Methods for automatically generating exemplars
 - Graphics package (e.g. POSER)
- Methods for efficient nearest neighbour search
 - Locality sensitive hashing
 - k-d trees

MODEL-BASED METHODS

Problem

Input Image

Parts Distribution

Ideal Output

Review of Tree-Structured Deformable Models

Model Parameters (Ramanan, NIPS'06)

Spatial prior

favor certain spatial/angular bins

Part appearance

favor certain edge patterns

part-specific binary vector of edges

Learning and Inference

- Inference: message passing with 3D convolution
- Learning Θ_{ML}

$$\Theta_{ML} = \max_{\Theta} \prod_{t} Pr(I^{t}, L^{t}|\Theta)$$

lacksquare Learning Θ_{CL}

$$\Theta_{CL} = \max_{\Theta} \prod_{t} Pr(L^t | I^t, \Theta)$$

Ferrari, Marin-Jimenez, Zisserman, CVPR 2009

POSE SEARCH

Goal

- Video shot retrieval from pose
 - Either query-by-example or classification
 - Focus on upper body pose

Upper Body Pose Estimation

- Detect upper body (HOG)
- Rough segmentation (GrabCut)
- Pose estimation (Pictorial Structure with Ramanan's iterative parsing)

Modifications to PS Model

- Prior on pose
 - Uprightness reasonable for TV shows
- Repulsive model
 - Avoid double-counting image evidence

Pose Descriptors

- Pose estimator gives marginals on body parts over time
- Three descriptors are examined:
 - Part positions
 - Discretized absolute part positions/orientations
 - Relative location/orientations
 - Discretized relative part positions/orientations
 - Part segmentations

Pose Comparison

- Bhattacharyya similarity for discrete distributions
- Dot products for segmentations

Shot Scores

- How to compare tracks of people?
 - One-to-one
 - Maximum similarity between query pose and track
 - Top-k average
 - As above, but average over best k matches
 - Query interval
 - One-to-one, but allow a max over query sequence too

Classifier Mode

- Train an SVM
 - Useful (standard) tricks about augmenting data

query

query

query

query

Resources

Code and datasets online

Ramanan and Forsyth NIPS 03

AUTOMATIC ANNOTATION OF EVERYDAY MOVEMENTS

Goal

Representation

- Each frame is labeled with a bit string
 - Each entry denotes presence/absence of an action
 - E.g. run and carry can happen together, both entries would be 1

Approach

- Start with 3D mocap data
- User annotates data
- Track people in input video
- Compare tracks to mocap data

Annotations

- 3D mocap data
 - From EA (American) football
- User annotates some frames
- Train SVMs with GRBF kernel on 3D joint positions over 1s as feature
 - One SVM per annotation

Tracking (CVPR03)

- Detect torsos (rectangles) in video
- Cluster on appearance
- Discard non-moving clusters
- Detect torsos and other parts using pictorial structure model

Recognition

- Discretize 3D poses via k-means clustering (M)
- Assume camera viewing direction parallel to ground plan, torso location known (from tracker)
 - T is simply orientation (direction of torso motion) along ground

Temporal Model I

- M-M clique: quantized 3D motion should be smooth
- M-T clique: 3D pose should match 2D pose from tracker
- T-T clique: torso orientation change should be smooth
 - M-T-T: modulate by motion type (some motions can be faster than others

Annotations

- Use inferred M to give annotation to a frame
 - Various types of hacks possible
 - Medoid (cluster center) annotation
 - Mode of annotations in cluster
 - Annotation of best match in cluster
 - Frequency of annotations (soft annotation)
 - A smoothing approach based on another temporal model (HMM) is used instead

