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Abstract

Detecting objects in cluttered scenes and estimating ar-
ticulated human body parts are two challenging problems in
computer vision. The difficulty is particularly pronounced
in activities involving human-object interactions (e.g. play-
ing tennis), where the relevant object tends to be small or
only partially visible, and the human body parts are often
self-occluded. We observe, however, that objects and human
poses can serve as mutual context to each other — recogniz-
ing one facilitates the recognition of the other. In this paper
we propose a new random field model to encode the mutual
context of objects and human poses in human-object inter-
action activities. We then cast the model learning task as a
structure learning problem, of which the structural connec-
tivity between the object, the overall human pose, and dif-
ferent body parts are estimated through a structure search
approach, and the parameters of the model are estimated
by a new max-margin algorithm. On a sports data set of six
classes of human-object interactions [ 12 ], we show that our
mutual context model significantly outperforms state-of-the-
art in detecting very difficult objects and human poses.

1. Introduction

Using context to aid visual recognition is recently re-
ceiving more and more attention. Psychology experiments
show that context plays an important role in recognition in
the human visual system [3, 24]. In computer vision, con-
text has been used in problems such as object detection and
recognition [25, 14, 8], scene recognition [23], action clas-
sification [22], and segmentation [28]. While the idea of
using context is clearly a good one, a curious observation
shows that most of the context information has contributed
relatively little to boost performances in recognition tasks.
In the recent Pascal VOC challenge dataset [9], the differ-
ence between context based methods and sliding window
based methods for object detection (e.g. detecting bicycles)
is only within a small margin of 3 — 4% [7, 13].
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Figure 1. Objects and human poses can serve as mutual context to
facilitate the recognition of each other. In (a), the human pose is
better estimated by seeing the cricket bat, from which we can have
a strong prior of the pose of the human. In (b), the cricket ball is
detected by understanding the human pose of throwing the ball.

One reason to account for the relatively small margin is,
in our opinion, the lack of strong context. While it is nice
to detect cars in the context of roads, powerful car detec-
tors [20] can nevertheless detect cars with high accuracy
whether they are on the road or not. Indeed, for the human
visual system, detecting visual abnormality out of context
is crucial for survival and social activities (e.g. detecting a
cat in the fridge, or an unattended bag in the airport) [15].

So is context oversold? Our answer is ‘no’. Many impor-
tant visual recognition tasks rely critically on context. One
such scenario is the problem of human pose estimation and
object detection in human-object interaction (HOI) activi-
ties [12, 32]. As shown in Fig.1, without knowing that the
human is making a defensive shot with the cricket bat, it is
not easy to accurately estimate the player’s pose (Fig.1(a));
similarly, without seeing the player’s pose, it is difficult to
detect the small ball in the player’s hand, which is nearly



invisible even to the human eye (Fig.1(b)).

However, the two difficult tasks can benefit greatly from
serving as context for each other, as shown in Fig.1. The
goal of this paper is to model the mutual context of objects
and human poses in HOI activities so that each can facilitate
the recognition of the other. Given a set of training images,
our model automatically discovers the relevant poses for
each type of HOI activity, and furthermore the connectivity
and spatial relationships between the objects and body parts.
We formulate this task as a structure learning problem, of
which the connectivity is learned by a structure search ap-
proach, and the model parameters are discriminatively esti-
mated by a novel max-margin approach. By modeling the
mutual co-occurrence and spatial relations of objects and
human poses, we show that our algorithm significantly im-
proves the performance of both object detection and pose
estimation on a dataset of sports images [12].

The rest of this paper is organized as follows. Sec.2 de-
scribes related work. Details of our model, as well as model
learning and inference are elaborated in Sec.3, 4, and 5 re-
spectively. Experimental results are given in Sec. 6.

2. Related work

The two central tasks, human pose estimation and object
detection, have been studied in computer vision for many
years. Most of the pose estimation work uses a tree struc-
ture of the human body [10, 26, 1] which allows fast infer-
ence. In order to capture more complex body articulations,
some non-tree models have also been proposed [27, 31]. Al-
though those methods have been demonstrated to work well
on the images with clean backgrounds, human pose esti-
mation in cluttered scenes remains a challenging problem.
Furthermore, to our knowledge, no existing method has ex-
plored context information for human pose estimation.

Sliding window is one of the most successful strategies
for object detection. Some techniques have been proposed
to avoid exhaustively searching the image [30, 19], which
makes the algorithm more efficient. While the most popu-
lar detectors are still based on sliding windows, more recent
work has tried to integrate context to obtain better perfor-
mance [25, 14, 8]. However, in most of the works the per-
formance is improved by a relatively small margin.

It is out of the scope of this paper to develop an object
detection or pose estimation method that generally applies
to all situations. Instead, we focus on the role of con-
text in these problems. Our work is inspired by a num-
ber of previous works that have used context in vision
tasks [23, 17, 28, 25, 14, 8, 22]. In most of these works,
one type of scene information serves as contextual facili-
tation to a main recognition problem. For example, ground
planes and horizons can help to refine pedestrian detections.
In this paper, we try to bridge the gap between two seem-
ingly unrelated problems - object detection and human pose

(a) The relevant objects that interact with the human may be very small,
partially occluded, or tilted to an unusual angle.

(b) Human poses of the same activity might be inconsistent in different
images due to different camera angles (the left two images), or the way
that the human interacts with the object (the right two images).

Figure 2. Challenges of both object detection and human pose es-
timation in HOI activities.

estimation, in which the mutual contexts play key roles for
understanding their interactions. The problem of classify-
ing HOI activities has been studied in [12] and [32], but no
detailed understanding of the human pose (e.g. parsing the
body parts) is offered in these works. To our knowledge,
our work is the first one that explicitly models the mutual
contexts of human poses and objects and allows them to fa-
cilitate the recognition of each other.

3. Modeling mutual context of object and pose

Given an HOI activity, our goal is to estimate the human
pose and to detect the object that the human interacts with.
Fig.2 illustrates that both tasks are challenging. The rele-
vant objects are often small, partially occluded, or tilted to
an unusual angle by the human. The human poses, on the
other hand, are usually highly articulated and many body
parts are self-occluded. Furthermore, even in the same ac-
tivity, the configurations of body parts might differ in differ-
ent images due to different shooting angles or human poses.

Here we propose a novel model to exploit the mutual
context of human poses and objects in one coherent frame-
work, where object detection and human pose estimation
can benefit from each other. For simplicity, we assume that
only one object is involved in each activity.

3.1. The model

A graphical illustration of our model is shown in
Fig.3(a). Our model can be thought of as a hierarchical
random field, where the overall activity class A, object O,
and human pose H all contribute to the recognition and de-
tection of each other. The human pose is further decom-
posed into some body parts, denoted by { P, }2_, . For each
body part P, and the object O, fp, and fo denote the vi-
sual features that describe the corresponding image regions
respectively. Note that because of the difference between



the human poses in each HOI activity (Fig.2(b)), we allow
each activity class (A) to have more than one types of hu-
man pose (H), which are latent (unobserved) variables to
be learned in training.

Our model encodes the mutual connections between the
object, the human pose and the body parts. Intuitively
speaking, this allows the model to capture important con-
nections between, say, the tennis racket and the right arm
that is serving the tennis ball (Fig.3(b)). We observe, how-
ever, that the left leg in tennis serving is often less rele-
vant to the detection of the ball. The model should there-
fore have the flexibility in deciding what parts of the body
should be connected to the object O and the overall pose
H. Dashed lines in Fig.3(a) indicate that these connections
will be decided through structure learning. Depending on
A, O and H, these connections might differ in different sit-
uations. Putting everything together, the overall model can
be computed as ¥ = > w,t., where e is an edge of the
model, 1. and w, are its potential function and weight re-
spectively. We now enumerate the potentials of this model:

® .(A,0), ¥.(A, H), and ¢.(O, H) model the agree-
ment between the class labels of A, O, and H, each esti-
mated by counting the co-occurrence frequencies of the
pair of variables on training images.

e (0, P,) models the spatial relationship between the
object O and the body part P,,, which is computed by

bin(lo 71pn) ~bin(90 79]3”’) 'N(So/Spn) (1)
where (1,6, s) is the position, orientation, and scale of
an image part. bin(+) is a binning function as in [26] and
N(-) is a Gaussian distribution.

o .(P,,, P,) models the spatial relationship between dif-
ferent body parts, computed similarly to Eq.1.

e Y.(H, P,) models the compatibility between the pose
class H and a body part P, . It is computed by consider-
ing the spatial layout of P,, given a reference point in the
image, in this case the center of the human face (P).

Ye(H, P,) =bin(lp, —1p,) - bin(6p,) - N(sp,) (2)

® .(0, fo) and ¢.(P,, fp,) model the dependence of
the object and a body part with their corresponding im-
age evidence. We use the shape context [2] feature for
image representation, and train a detector [30] for each
body part and each object in each activity. Detection out-
puts are normalized as in [1].

In our algorithm, all the above potential functions are
dependent on O and H except those between A, O, and H
(the first bullet). We omit writing this point every time for
space consideration. For example, for different human pose
H,¢.(0, P,) is estimated with different parameters, which
represents a specific spatial configuration between P, and
the object O, conditioned on the particular human pose H.
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Figure 3. (a) A graphical illustration of our model. The edges rep-
resented by dashed lines indicate that their connectivity will be
obtained by structure learning. A denotes an HOI activity class,
H the human pose class, P a body part, and O the object. fo and
fp’s are image appearance information of O and P respectively.
(b) Illustration of our model on an image of a human playing ten-
nis. Different types of potentials are denoted by lines with differ-
ent colors. Line widths represent the importance of the potentials
for the human-object interaction of playing tennis.

3.2. Properties of the model

Central to our model formulation is the hypothesis that
both human pose estimation and object detection can ben-
efit from each other in HOI activities. Without knowing
the location of the arm, it is difficult to spot the location of
the tennis racket in tennis serving. Without seeing the cro-
quet mallet, the heavily occluded arms and legs can become
too obscured for robust pose estimation. We highlight here
some important properties of our model.

Co-occurrence context for the activity class, object, and
human pose. Given the presence of a tennis racket, the
human pose is more likely to be playing tennis instead of
playing croquet. That is to say, co-occurrence information
can be beneficial for coherently modeling the object, the
human pose, and the activity class.

Multiple types of human poses for each activity. Our
model allows each activity (A) to consist of more than
one human pose (H). Treating H as a hidden variable,
our model automatically discovers the possible poses from
training images. This gives us more flexibility to deal with
the situations where the human poses in the same activity
are inconsistent, as shown in Fig.2(b). We show in Fig.4 the
pose variability for each HOI activity.

Spatial context between object and body parts. Differ-
ent poses imply that the object is handled by the human in
different manners, which are modeled by {v. (O, P,,)}_;.
Furthermore, not all these relationships are critical for un-
derstanding an HOI activity. Therefore for each combina-
tion of O and H, our algorithm automatically discovers the
connectivity between O and each P,, as well as the connec-
tivity among H and {P, })_;.

Relations with the other models. Our model has drawn
inspirations from a number of previous works, such as mod-
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Figure 4. Visualization of the learned HOI models. Each row
shows two models (due to two types of poses) and their corre-
sponding image examples for one activity. The illustrative fig-
ure for each model represents the average spatial layout of the
object and body parts of all the images that are assigned to the
model. Shaded half-transparent body parts indicate that the struc-
ture learning algorithm has assigned strong connectivity to these
parts with respect to the object. The different color codes are: ob-
ject = double red box, head and torso = magenta, arms = green,
legs = cyan.

eling spatial layout of different image parts [10, 26, 1], us-
ing agreement of different image components [25], using
multiple models to describe the same concept (human pose
in our problem) [2 1], non-tree models for better pose esti-
mation [31, 4], and discriminative training [1]. Our model
integrates all the properties in one coherent framework to
perform two seemingly different tasks, human pose estima-
tion and object detection, to the benefit of each other.

4. Model learning

Given the training images of HOI activities with labeled
objects and body parts, the learning step needs to achieve
two goals: structure learning to discover the hidden human

Hill-climbing structure learning for each activity class.
foreach [teration do
- Model parameter estimation by max-margin learning;

- Choose the model with the largest number of

mis-classified images;

- Cluster the images in the selected model into two

sub-classes;

- Structure learning for the two new sub-classes;
end

Algorithm 1: The learning framework. Each sub-class cor-
responds to a type of human pose in an HOI activity. Initially
there are one sub-class for each activity.

poses and the connectivity among the object, human pose,
and body parts; and parameter estimation for the potential
weights to maximize the discrimination between different
activities. The output of our learning method is a set of
models, each representing one connectivity pattern and po-
tential weights for one type of human pose in one activity
class. Algorithm [ is a sketch of the overall framework. We
discover new human poses by clustering the samples in the
model that has the weakest discriminative ability in each it-
eration, which results to some sub-classes. Structure learn-
ing is applied to each sub-class respectively. The learning
process terminates when the number of mis-classified sam-
ples in each sub-class is small (less than three in this paper).

4.1. Hill-climbing structure learning

Our algorithm performs structure learning for each sub-
class, i.e. each pose in each activity, respectively. Given the
images of a sub-class which are obtained from clustering
(see Algorithm 1), our objective is to learn a connectivity
pattern between the object, the human pose, and the body
parts (the dashed lines in Fig.3(a)). Here we omit the edges
between A, O, and H because they do not affect the struc-
ture learning results.

We use a hill-climbing approach with tabu list [18] to
search the structure space. The hill-climbing approach adds
or removes edges one at a time until a maximum is reached.
During the search procedure, we keep a tabu list of history
operations to guarantee that those operations will not be re-
versed. As in [14], we include a Gaussian prior over the
number of edges to avoid overfitting. Furthermore, in order
to reduce the impact of local maxima, we randomly initial-
ize the structure for three times and apply the hill-climbing
approach to each one, from which the best result is selected.
Please find more details of our structure learning approach
in the supplementary document of this paper.

4.2. Max-margin parameter estimation

Given the model outputs by the structure learning step,
the parameter estimation step aims to obtain a set of po-



tential weights that maximize the discrimination between
different classes of activities (A in Fig.3(a)). But unlike the
traditional random field parameter estimation setting [29],
in our model each class can contain more than one pose
(H), which can be thought of as multiple sub-classes. Our
learning algorithm needs to, therefore, estimate parameters
for each pose (i.e. sub-class) while optimizing for maxi-
mum discrimination among the global activity classes.

We propose a novel max-margin learning approach to
tackle this problem. Let (x;, ¢;, y(c;)) be a training sample,
where x; is a data point, c; is the sub-class label of x;, and
y(c;) maps ¢; to a class label. We want to find a function
F that assigns an instance x; to a sub-class. We say that x;
is correctly classified if and only if y(F(x;)) = y(c¢;). Our
classifier is then formulated as F(x;) = arg max,{w,-x; },
where w,. is a weight vector for the r-th sub-class. Inspired
by the traditional max-margin learning problems [5], we in-
troduce a slack variable &; for each sample x;, and optimize
the following objective function:

1
min o S w3+ 63 & 3)

Vi,r where y(r) # y(ci), We, "X — Wy - x; > 1—-&;

subject to:

where ||w;||2 is the L2 norm of w,., 3 is a normalization
constant. Again, note that the weights are defined with re-
spect to sub-classes while the classification results are mea-
sured with respect to classes. We optimize Eq.3 by using the
multiplier method [16]. Mapping the above symbols to our
model, x; are the potential function values computed on an
image. Potential values for the disconnected edges are set to
0. In order to obtain better discrimination among different
classes, we compute the potential values of an image on the
models of all the sub-classes, and concatenate these values
to form the feature vector. Sub-class variable c¢; indicates
human pose H, and y(c;) is the class label A. Please refer
to the supplemental document of this paper for more detail
about the method.

4.3. Analysis of our learning algorithm

Fig.4 illustrates the two models (correspond to two types
of human poses) learned by our algorithm for each HOI
class. We can see the big difference of human poses in
some activities (e.g. croquet-shot and tennis-serve), and
such wide intra-class variability can be effectively captured
by our algorithm. In these cases, using only one human
pose for each HOI class is not enough to characterize well
all the images in this class. Furthermore, we observe that
by using structure learning, our model can learn meaning-
ful connectivity between the object and the body parts, e.g.
croquet mallet and legs, right forehand and tennis racket.

0,,H, = argng%x‘P(é,O,H,l) O, H, = arJgrr;ix‘I-’(AK,O,H,l)

e
A" H =argmkax‘P(Ak,Ok,Hk,l)
Figure 5. The framework of our inference method. Given an input
image Z, the inference results are: (1) object detection results Oy,

(e.g. O is the tennis racket detection result); (2) human pose
estimation result H*; (3) activity classification result A*.

5. Model inference, object detection, and hu-
man pose estimation

Given a new testing image Z, our objective is to esti-
mate the pose of the human in the image, and to detect the
object that is interacting with the human. An illustration
of the inference procedure is shown in Fig.5. In order to
detect the tennis racket in this image, we maximize the like-
lihood of this image given the models that are learned for
tennis-forehand. This is achieved by finding a best config-
uration of human body parts and the object (tennis racket)
in the image, which is denoted as maxo, g ¥(Ag, O, H,T)
in Fig.5. In order to estimate the human pose, we compute
maxo, g V(Ag, O, H,T) for each activity class and find the
class A* that corresponds to the maximum likelihood score.
This score can be used to measure the confidence of activity
classification as well as human pose estimation.

For each model, the above inference procedure involves
a step to find the best spatial configuration of the object and
different body parts for an image. We solve this problem
by using the compositional inference method [4]. The in-
ference algorithm contains a bottom-up stage to make pro-
posals for the image parts. Each bottom-up step is followed
by a top-down stage to validate the proposals. More details
of the compositional inference method can be found in the
supplementary document of this paper.

6. Experiments

6.1. The sports dataset

We evaluate our approach on a known HOI dataset of
six activity classes [12]: cricket-defensive shot (player
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and cricket bat), cricket-bowling (player and cricket ball),
croquet-shot (player and croquet mallet), tennis-forehand
(player and tennis racket), tennis-serve (player and tennis
racket), and volleyball-smash (player and volleyball). There
are 50 images in each activity class. We use the same set-
ting as that in [12]: 30 images for training and 20 for testing.
In [12] only activity classification results were reported. In
this work we also evaluate our method on the tasks of object
detection and human pose estimation.

6.2. Better object detection by pose context

In this experiment, our goal is to detect the presence and
location of the object given an HOI activity. To evaluate
the effectiveness of our model, we compare our results with
two control experiments: a scanning window detector as a
baseline measure of object detection without any context,
and a second experiment in which the approximate loca-
tion of the person is provided by a pedestrian detector [6],
hence providing only a co-occurrence context and a very
weak location context. Results of these three experiments,
measured by precision-recall curves, are shown in Fig.6.
The curves of our algorithm are obtained by considering the
scores W(A, O, H,T) of all the results that are proposed by
the compositional inference method. To ensure fair compar-
ison, all experiments use the same input features and object
detectors described in Sec.3, and non-max suppression is
applied equally to all methods.

Figure 7. Object (cricket bat) detection results (red double-line
bounding boxes) obtained by: a sliding window detector (left),
the same detector using pedestrian detection as context (middle),
and our method (right). Pedestrian detection is shown in a blue
bounding box. And the human pose estimation results are shown
in colored rectangles in the right image.

The results in Fig.6 show that our detection method
achieves the best performance. By using human pose as
context, more detailed spatial relationship between differ-
ent image parts can be discovered, which greatly helps to
detect objects that are traditionally very difficult. For exam-
ple, in the case of the cricket ball (Fig.6(b)), a sliding win-
dow method yields an average precision of 17%, whereas
our model with pose-context measure is 46%. In almost
all the cases of the five objects, the average precision score
of our method is more than 3 times as the sliding window
method. Fig.7 shows an example of using the three meth-
ods for object detection. Fig.9 shows more object detection
results on a variety of testing images.

6.3. Better pose estimation by object context

Similarly to object detection, we show in this experiment
that human pose estimation is significantly improved by ob-
ject context. Here we compare our full model with four dif-
ferent control experiments.

e An iterative parsing method by Ramanan et al [26];

o A state-of-the-art pictorial structure model [1];

e We re-train the model in [1] with a pictorial structure
model per class for better modeling of each class;

o Our proposed model by imposing only one sub-class
(human pose, H) per HOI activity, examining the im-
portance of allowing a flexible number of pose models
to account for the intra-activity variability.

All of the models are trained using the same training data
described in Sec.6.1. Following the convention proposed
in [11], a body part is considered correctly localized if the
endpoints of its segment lie within 50% of the ground-truth
segment length from their true positions. Experimental re-
sults are shown in Table 1. The percentage correctness tells
us that pose estimation still remains a difficult problem. No
method offers a solution near 100%. Our full model sig-
nificantly outperforms the other approaches, even showing
a 10% average improvement over a class-based, discrimi-



Table 1. Pose estimation results by our full model and four comparison methods for all testing images. The average part detection percent
correctness and standard deviation over 6 HOI classes are presented for each body part. If two numbers are reported in one cell, the left
one indicates the left body part and right one indicates the right body part. The best result for each body part is marked in bold font.

Method Torso Upper Leg Lower Leg Upper Arm Fore Arm Head
Iterative parsing [26] 52419 | 22411 22410 | 2149 28£16 | 24+16 28+17 | 17£11 14410 | 42+18
Pictorial structure [1] 50£14 | 31+12 30+9 | 31+£15 27+£18 186 19£9 11£8 11+7 45+8
Class-based pictorial structure 5949 | 36+11 26+17 39+9 2749 30+12 31+12 | 1346 18+14 | 46+11
Our model, only one pose per class | 63+5 40+8 36£15 414+10 3149 | 38+13 354+10 | 21412 23£14 | 5248
Our full model 66+t6 | 43+8 39+14 | 44410 34+10 | 44+9 40+13 | 27£16 29+13 | 58+11

natively trained pictorial structure model. Furthermore, we
can see that allowing multiple poses for each activity class
proves to be useful for improving pose estimation accuracy.
More sample results are shown in Fig.9, where we visualize
the pose estimation results by comparing our model with the
state-of-the-art pictorial structure model by [1]. We show
that given the object context, poses estimated by our model
are less prone to errors that result in strange looking body
gestures (e.g. horizontal legs in Fig.9(d)), or a completely
wrong location (e.g. nearly all body parts landed on the
background in Fig.9(h)).

6.4. Combining object and pose for HOI activity
classification

As shown in Fig.5, by inferring the human pose and
object in the image, our model gives a prediction of the
class label of the human-object interaction. We compare
our method with the results reported in [12], and use a bag-
of-words representation with a linear SVM classifier as the
baseline. The results are shown in Fig.8.

Fig.8 shows that our model significantly outperforms the
bag-of-words method and performs slightly better than [12].
Note that the method in [12] uses predominantly the back-
ground scene context (e.g. appearance differences in sport
courts), which turns out to be highly discriminative among
most of these classes of activities. Our method, on the other
hand, focuses on the core problem of human-object interac-
tions. It is therefore less data set dependent.
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7. Conclusion

In this work, we treat object and human pose as the con-
text of each other in different HOI activity classes. We

develop a random field model that uses a structure learn-
ing method to learn important connectivity patterns between
objects and human body parts. Experiments show that our
model significantly outperforms other state-of-the-art meth-
ods in both problems. Our model can be further improved in
a number of directions. For example, inspired by [23, 12],
we can incorporate useful background scene context to fa-
cilitate the recognition of foreground objects and activities.
Improving the model to deal with more than one object is
also one of the directions of our future research.
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