
Unsupervised Learning of Human Action
Categories Using Spatial-Temporal Words

Juan Carlos Niebles1,2, Hongcheng Wang1, Li Fei-Fei1
1University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

2Universidad del Norte, Barranquilla, Colombia
Email: {jnieble2,hwang13,feifeili}@uiuc.edu

Abstract

We present a novel unsupervised learning method for human action cate-
gories. A video sequence is represented as a collection of spatial-temporal
words by extracting space-time interest points. The algorithm automatically
learns the probability distributions of the spatial-temporal words and interme-
diate topics corresponding to human action categories. This is achieved by
using a probabilistic Latent Semantic Analysis (pLSA) model. Given a novel
video sequence, the model can categorize and localize the human action(s)
contained in the video. We test our algorithm on two challenging datasets:
the KTH human action dataset and a recent dataset of figure skating actions.
Our results are on par or slightly better than the best reported results. In ad-
dition, our algorithm can recognize and localize multiple actions in long and
complex video sequences containing multiple motions.

1 Introduction
Imagine a video taken on a sunny beach, can a computer automatically tell what is hap-
pening in the scene? Can it identify different human activities in the video, such as water
surfing, beach volleyballs, or people taking a walk along the beach? To automatically cat-
egorize or localize different actions in video sequences is very useful for a variety of tasks,
such as video surveillance, object-level video summarization, video indexing, digital li-
brary organization, etc. However, it remains a challenging task for computers to achieve
robust action recognition due to cluttered background, camera motion, occlusion, and ge-
ometric and photometric variances of objects. For example, in a live video of a skating
competition, the skater moves rapidly across the rink, and the camera also moves to fol-
low the skater. With moving cameras, non-stationary background, and moving target, few
vision algorithms could identify, categorize and localize such motions well (Figure 1(b)).
In addition, the challenge is even greater when there are multiple activities in a complex
video sequence (Figure 1(d)). In this paper, we will present an algorithm that aims to
account for both of these scenarios.

A lot of previous work has been presented to address these questions. One pop-
ular approach is to apply tracked motion trajectories of body parts to action recogni-
tion [15, 21, 1]. This is done with much human supervision and the robustness of the al-
gorithm is highly dependent on the tracking system. Ke et al. [13] apply spatio-temporal
volumetric feature that efficiently scan video sequences in space and time. Another ap-
proach is to use local space-time patches of videos [8]. Laptev et al. present a space-time
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Figure 1: Example images from video sequences (a) KTH dataset; (b) Figure skating dataset; (c) Caltech
dataset; (d) Our own complex video sequence.

interest point detector based on the idea of the Harris and Förstner [14] interest point op-
erators. They detect local structures in space-time where the image values have significant
local variations in both dimensions. The representation has been successfully applied to
human action recognition combined with an SVM classifier [17]. Dollár et al. [7] propose
an alternative approach to detect sparse space-time interest points based on separable lin-
ear filters for behavior recognition. Local space-time patches, therefore, have been proven
useful to provide semantic meaning of video events by providing a compact and abstract
representation of patterns. While these representations indicate good potentials, the mod-
eling and learning frameworks are rather simple in the previous work [17, 7], posing a
problem toward handling more challenging situations such as multiple action recognition.

Another category of work is based on a probabilistic graphical model framework in
action categorization/recognition. Song et al. [19] and Fanti et al. [9] represent the hu-
man action model as a triangulated graph. Multiple cues such as position, velocities and
appearance have been considered in learning and detection phases. Their idea is to map
the human body parts in a frame-by-frame manner instead of utilizing space-time cubes
for action recognition. Boiman and Irani [4] recently propose to extract ensemble of lo-
cal video patches to localize irregular action behavior in videos. Dense sampling of the
patches is necessary in their approach and therefore the algorithm is very time-consuming.
It is not suitable for action recognition purpose due to the large amount of video data com-
monly presented in these settings. Another work named video epitomes is proposed by
Cheung et al. [5]. They model the space-time cubes from a specific video by a generative
model. The learned model is a compact representation of the original video, therefore
this approach is suitable for video super-resolution and video interpolation, but not for
recognition.

In this paper, we propose a generative graphical model approach to learn and rec-
ognize human actions in video, taking advantage of the robust representation of spatial
temporal words and an unsupervised approach during learning. Our method is motivated
by the recent success of object detection/classification [18, 6] or scene categorization [10]
from unlabeled static images. Two related models are generally used, i.e., probabilis-
tic Latent Semantic Analysis (pLSA) by Hofmann [12] and Latent Dirichlet Allocation
(LDA) by Blei et al. [3]. In this paper, we choose to build a pLSA model for video analy-
sis by taking the advantages of the powerful representation and the great flexibility of the
generative graphical model. The contributions of this work are as follows:
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Figure 2:Flowchart of our approach. To represent motion patterns we first extract local space-time regions
using the space-time interest points detector [7]. These local regions are then clustered into a set of video
codewords, called codebook. Probability distributions and intermediate topics are learned automatically using a
pLSA graphical model.

• Unsupervised learning of actions using ‘video words’ representation. We apply a
pLSA model with ‘bag of video words’ representation for video analysis;

• Multiple action localization and categorization.Our approach is not only able to
categorize different actions, but also to localize different actions simultaneously in
a novel and complex video sequence.

The rest of the paper is organized in the following way. In Section 2, we describe
our approach in more details, including spatial-temporal feature representation, brief
overview of the pLSA model in our context, and the specifics of the learning and recog-
nition procedures. In Section 3, we present the experimental results on human action
recognition using real datasets, and also compare our performance with other methods.
Multiple action recognition and localization results are presented to validate the learned
model. Finally, Section 4 concludes the paper.

2 Our Approach
Given a collection of unlabeled videos, our goal is to automatically learn different classes
of actions present in the data, and apply the learned model to action categorization and
localization in the new video sequences. Our approach is illustrated in Figure 2.

2.1 Feature Representation from Space-Time Interest Points
As Figure 2 illustrates, we represent each video sequence as a collection of spatial-
temporal words by extracting space-time interest points. There is a variety of methods for
interest points detection in images [16]. But less work has been done on space-time inter-
est point detection in videos. Blank et al. [2] represent actions as space-time shapes and
extracted space-time features such as local space-time saliency, action dynamics, shape
structures and orientation for action recognition. Laptev and Lindeberg [14] propose an
extended version of the interest points detection in the spatial domain [11] into space-time



domain by requiring image values in space-time to have large variations in both dimen-
sions. As noticed in [7] and from our experience, the interest points detected using the
generalized space-time interest point detector are too sparse to characterize many com-
plex videos such as figure skating sequences in our experiments. Therefore, we use the
separable linear filter method in [7]. Here we give a brief review of this method.

Assuming a stationary camera or a process that can account for camera motion, sep-
arable linear filters are applied to the video to obtain the response function as follows:

R= (I ∗g∗hev)2 +(I ∗g∗hod)2 (1)

whereg(x,y;σ) is the 2D Gaussian smoothing kernel, applied only along the spatial
dimensions (x,y), andhev and hod are a quadrature pair of 1D Gabor filters applied
temporally, which are defined ashev(t;τ,ω) = −cos(2πtω)e−t2/τ2

and hod(t;τ,ω) =
−sin(2πtω)e−t2/τ2

. The two parametersσ andτ correspond to the spatial and temporal
scales of the detector respectively. In all cases we useω = 4/τ, effectively giving the
response functionR. To handle multiple scales, one must run the detector over a set of
spatial and temporal scales. For simplicity, we run the detector using only one scale and
rely on the codebook to encode the few changes in scale that are observed in the dataset.

It was noted in [7] that any region with spatially distinguishing characteristics under-
going a complex motion can induce a strong response. However, regions undergoing pure
translational motion, or without spatially distinguishing features will not induce a strong
response. The space-time interest points are extracted around the local maxima of the re-
sponse function. Each patch contains the volume contributed to the response function, i.e.,
its size is approximately six times the scales along each dimension. To obtain a descriptor
for each spatial-temporal cube, we calculate the brightness gradient and concatenate it to
form a vector. This descriptor is then projected to a lower dimensional space using PCA.
In [7], different descriptors have been used, such as normalized pixel values, brightness
gradient and windowed optical flow. We found that both the gradient descriptor and the
optical flow descriptor are equally effective in describing the motion information. For the
rest of the paper, we will employ results obtained with gradient descriptors.
2.2 Learning the Action Models: Latent Topic Discovery
In this section, we will describe the pLSA graphical model in the context of video mod-
eling. We follow the conventions introduced in [12, 18].

Suppose we haveN( j = 1, · · · ,N) video sequences containing video words from a
vocabulary of sizeM(i = 1, · · · ,M). The corpus of videos is summarized in anM by N
co-occurrence tablēN, wheren(wi ,d j) stores the number of occurrences of a wordwi in
videod j . In addition, there is a latent topic variablezk associated with each occurrence of
a wordwi in a videodi . Each topic corresponds to a motion category.

The joint probabilityP(wi ,d j ,zk) is assumed to have the form of the graphical model
shown in Figure 3.

P(d j ,wi) = P(d j)P(wi |d j) (2)

Given that the observation pairs(d j ,wi) are assumed to be generated independently, we
can marginalize over topicszk to obtain the conditional probabilityP(wi |d j):

P(wi |d j) =
K

∑
k=1

P(zk|d j)P(wi |zk) (3)

whereP(zk|d j) is the probability of topiczk occurring in videod j ; andP(wi |zk) is the
probability of video wordwi occurring in a particular action categoryzk. K is the total
number of latent topics, hence the number of action categories in our case.



N 
Wd 

d 

P(z|d)                 P(w|z)  P(d)

z w 

walking, running, jogging...

Figure 3:pLSA graphical model. Nodes are random variables. Shaded ones are observed and unshaded ones
are unobserved. The plates indicate repetitions.

Intuitively, this model expresses each video sequence as a convex combination ofK
action category vectors, i.e., the video-specific word distributionsP(wi |d j) are obtained
by a convex combination of the aspects or action category vectorsP(wi |zk). Videos are
characterized by a specific mixture of factors with weightsP(zk|d j). This amounts to a
matrix decomposition with the constraint that both the vectors and mixture coefficients
are normalized to make them probability distributions. Essentially, each video is modeled
as a mixture of action categories - the histogram for a particular video being composed
from a mixture of the histograms corresponding to each action category.

We then fit the model by determining the action category vectors which are common
to all videos and the mixture coefficients which are specific to each video. In order to
determine the model that gives the high probability to the video words that appear in the
corpus, a maximum likelihood estimation of the parameters is obtained by maximizing
the objective function using an Expectation Maximization (EM) algorithm:

M

∏
i=1

N

∏
j=1

P(wi |d j)n(wi ,d j ) (4)

whereP(wi |d j) is given by Equation 3.

2.3 Categorization and Localization of Actions in a Testing Video
Our goal is to categorize new video sequences using learned action category models. We
have obtained the action category specific video word distributionsP(w|z) from a different
set of training sequences. When given a new video, the unseen video is ‘projected’ on the
simplex spanned by the learnedP(w|z). We need to find the mixing coefficientsP(zk|dtest)
such that the KL divergence between the measured empirical distributionP̃(w|dtest) and
P(w|dtest) = ∑K

k=1P(zk|dtest)P(w|zk) is minimized [12, 18]. Similarly to the learning sce-
nario, we apply an EM algorithm to find the solution.

Furthermore, we are also interested in localizing multiple actions in a single video
sequence. Though our ‘bag-of-video-words’ model itself does not explicitly represent
spatial relationship of local video regions, it is sufficiently discriminative to localize dif-
ferent motions within each video. This is similar to the approximate object segmentation
case in [18]. The pLSA model models the posteriors

P(zk|wi ,d j) =
P(wi |zk)P(zk|d j)

∑K
l=1P(wi |zl )P(zl |d j)

(5)

For the video word around each interest point, we can label the topics for each word
by finding the maximum posteriorsP(zk|wi ,d j). Then we can localize multiple actions



Table 1: Comparison of different methods
methods recognition accuracy (%) learning multiple actions

Our method 81.50 unlabeled Yes
Dollár et al. [7] 81.17 labeled No

Schuldt et al. [17] 71.72 labeled No
Ke et al. [13] 62.96 labeled No

corresponding to different action categories.

3 Experimental Results
We test our algorithm using two datasets: KTH human motion dataset [17], and figure
skating dataset [20]. These datasets contain videos of cluttered background, moving cam-
eras, and multiple actions. We can handle the noisy feature points arisen from dynamic
background and moving cameras by utilizing the probabilistic graphical model (pLSA),
as long as the background does not amount to an overwhelming number of feature points.
In addition, we demonstrate multiple actions categorization and localization in a set of
new videos collected by the authors. We present the datasets and experimental results in
the following sections.

3.1 Recognition and Localization of Single Actions
3.1.1 Human Action Recognition and Localization Using KTH data
KTH human motion dataset is the largest available video sequence dataset of human ac-
tions [17]. Each video has only one action. The dataset contains six types of human
actions (walking, jogging, running, boxing, hand waving and hand clapping) performed
several times by 25 subjects in different scenarios of outdoor and indoor environment with
scale change. It contains 598 sequences. Some sample images are shown in Figure 1.

We build video codewords from two videos of each action from three subjects. Be-
cause the number of space-time patches used to extract the video codewords is usually
very large, we randomly select a smaller number of space-time patches (around 60,000)
to accommodate the requirements of memory. We perform leave-one-out cross-validation
to test the efficacy of our approach in recognition, i.e., for each run we learn a model from
the videos of 24 subjects (except those used to build codewords), and test the videos of
the remaining subject. The three subjects used for forming the codebook are excluded
from the testing. The result is reported as the average of 25 runs.

The confusion matrix for a six-class model for the KTH dataset is given in Figure 4(a)
using 500 codewords. It shows large confusion between ‘running’ and ‘jogging’, as well
as ‘handclapping’ and ‘boxing’. This is consistent with our intuition that similar actions
are more easily confused with each other, such as those involving hand motions or leg
motions. We test the effect of the number of video codewords on recognition accuracy, as
illustrated in Figure 4(b). As the size of codebook increases, the classification rate peaks
at around 500. We also compare our results with the best results from [7]) (performance
average =81.17%) using Support Vector Machine (SVM) with the same experimental
settings. Our results by unsupervised learning are on par with the current state-of-the-
art results obtained by fully supervised training. The comparison of different methods is
listed in Table 1. We also test the LDA model [3] on this dataset, and find that pLSA is
slightly better than LDA in recognition performance with the same number of codewords.

We apply the learned model to localize the actions for test videos in KTH dataset
in Figure 5. We also test our action localization using the same model for the Caltech
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Figure 4: (a) confusion matrix for the KTH dataset using 500 codewords (performance average =81.50%);
horizontal lines are ground truth, and vertical columns are model results; (b) classification accuracy vs. code-
book size for the KTH dataset; (c) confusion matrix for the figure skating dataset using 1200 codewords (per-
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Figure 5:The action categories are embedded into video frames using different colors. Most spatial-temporal
words are labeled by the corresponding action color for each video. The figure is best viewed in color and with
PDF magnification.

human motion dataset [19] as shown in Figure 6(a). Most of the action sequences from
this dataset can be correctly recognized. For the clarity of presentation, we only draw the
video words of the most probable topic with their corresponding color.
3.1.2 Recognition and Localization of Figure Skating Actions
We use the figure skating dataset in [20]1. We adapt 32 video sequences of 7 people each
with three actions: stand-spin, camel-spin and sit-spin, as shown in Figure 1.

We build video codewords from the videos of six persons. We again perform leave-
one-out cross-validation to test the efficacy of our approach in recognition, i.e., for each
run we learn a model from the videos of six subjects, and test those of the remaining
subject. The result is reported as the average of seven runs. The confusion matrix for a
three-class model for the figure skating dataset is shown in Figure 4(c) using 1200 code-
words. The larger size of codewords is useful to avoid overfitting of the generative model.
The learned 3-class model is also used for action localization as shown in Figure 6(b).

1This work addresses the problem of motion recognition from still images. There is much other work to
model motion in still images, which is out of the scope of this paper.
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3.2 Recognition and Localization of Multiple Actions in a Long
Video Sequence

One of the main goals of our work is to test how well our algorithm could identify multiple
actions within a video sequence. For this purpose, we test several long figure skating
sequences as well as our own complex video sequences.

For multiple actions in a single sequence, we first identify how many action categories
are significantly induced byP(zk|wi ,d j). Then we apply K-means to find that number of
clusters. By counting the number of video words within each cluster with respect to the
action categories, we recognize the actions within that video. The bounding box is plotted
according to the principle axis and eigen-values induced by the spatial distribution of
video words in each cluster. Figure 7 illustrates examples of multiple actions recognition
and localization in one video sequence using the learned six-class model.

For the long skating video sequences, we extract a windowed sequence around each
frame and identify significant actions using the learned three-class model. Then that frame
is labeled as the identified action category. Figure 7 shows examples of action recognition
in a long figure skating sequence. The three actions, i.e., stand-spin, camel-spin and sit-
spin, are correctly recognized and labeled using different colors. (Please refer to the link
of video demo: http://visionlab.ece.uiuc.edu/niebles/humanactions.htm)

4 Conclusion
In this paper, we have presented an unsupervised learning approach, i.e., a ‘bag-of-video-
words’ model combined with a space-time interest points detector, for human action cat-
egorization and localization. Using two challenging datasets, our experiments validate
the proposed model in classification performance. Our algorithm can also localize mul-
tiple actions in complex motion sequences containing multiple actions. The results are
promising, though we acknowledge the lack of large and challenging video datasets to



thoroughly test our algorithm, which poses an interesting topic for future investigation.
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Figure 7: Multiple action recognition and localization in long and complex video sequences. The figure is
best viewed in color and withPDF magnification.


