CMPT 882 – Recognition Problems in Computer Vision

Greg Mori

Outline

- Intro to class
- Administrative details

Overview

- This class is about visual "recognition"
 - Objects: cups, cars, horses, ... accordions to zebras
 - Textures: grass, leaves, dirt, water, ...
 - Human figures: faces; whole body; elbows, wrists, knees,...
 - Human actions: running, jumping, waving, ...
 - Places: office, city street, beach, jungle, …
- Goal is to provide view of state-of-art for these problems

Objects

- What is "Object recognition?"
 - overloaded term

- Is there a car in this image?
 - Object/image categorization
 - Object category recognition
 - Where is the car?
 - Object localization
 - Object detection
 - Which car is it?
 - Object recognition
 - Object identification

Challenges in Recognition

- Intra-class variation
- Object pose variation
- Background clutter
- Occlusion
- Lighting

Object Recognition - Shape

• Template matching using shape

Berg et al. CVPR 05

Object Recognition – Appearance

• Histograms of gradients

Dalal and Triggs CVPR 05

Object Recognition – Local Features

• D. Lowe SIFT (ICCV 99, IJCV 04)

Fast Object Retrieval

- Stewenius + Nister, CVPR 06
 - 50,000 images at 8Hz (laptop)

cf. SnapTell

Object Recognition – Part-based Models

• Constellation models

Fergus et al. CVPR 03

Car

• Latent SVM

Felzenszwalb et al. CVPR 08

Photosynth

• Noah Snavely, Steven M. Seitz, Richard Szeliski, "Photo tourism: Exploring photo collections in 3D," SIGGRAPH06

Photo tourism video

Textures

Clothing Textures

Human Figures

• Faces (Viola + Jones CVPR 01)

Human Figures

• Implicit shape model

Leibe et al. CVPR 05

Leibe et al. CVPR 07

Human Figures – Pose Estimation

Mori and Malik, ECCV 02

Human Actions

Efros et al. ICCV 03

Shechtman and Irani CVPR 05

Real-time Gesture Recognition

Bayazit et al. MVA 09

Places

Fei-Fei and Perona, CVPR 05

Using Context

We know there is a keyboard present in this scene even if we cannot see it clearly.

We know there is no keyboard present in this scene

... even if there is one indeed. Slide: Torralba

Course Plan

- Read research papers
 - For each topic I present important papers
 - Students each present a recent paper
 - We discuss
- Do a project
 - Gain in-depth experience on a problem and algorithm

Introductions

Prerequisite

- No formal prerequisites
- You will need to do the usual things
 - Math (continuous), programming, reading, writing, presenting
- Ask me if you are concerned

Grading Scheme

- 10% Class participation
 - Participate in discussions about papers, ask/answer questions
- 10% Reading assignments
 - 1 or 2 papers each week; the ones I present
- 10% Paper presentation
 - List of recommended papers online
- 10% Assignment
 - Small programming assignment on edges and texture
- 60% Project
 - Individual or in small groups
 - Presentation, written report

Reading Assignments

- Similar to mini paper review
 - One paragraph summarizing paper
 - Critical discussion (what you like / don't like)
 - Questions you have (for me to explain)
- Due before start of lecture via email
- These details and list of papers are online

Paper Presentations

- Choose one recent paper from area that interests you
 - Recommended list online
- 20 minute presentation
 - 10+ minutes questions/discussion
 - Feel free to use slides provided by authors

Assignment

- Short programming assignment
 - Canny edge detection
 - Texture recognition
- Out next week, due 2 weeks later
- Choice of language yours
 - MATLAB recommended

Project

- Major component of course
- Recommended projects:
 - Object category recognition (Caltech 101)
 - Human action recognition (Weizmann)
- Implement existing technique
 - Or variant thereof
- Proposal, presentation, report

- Object category recognition
 - 101 classes, ~50-100 examples of each

Weizmann Human Action Dataset

• 9 subjects, each performs 9* actions

- Wednesday
 - Edge detection basics
- Next week
 - Edge detection, texture