NEURAL NETWORKS

Chapter 20

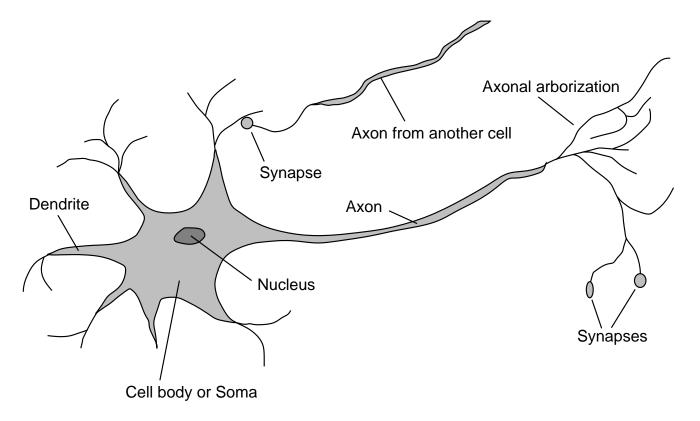
Chapter 20 1

Outline

- \Diamond Brains
- \Diamond Neural networks
- \diamondsuit Perceptrons
- \diamond Multilayer networks
- \diamondsuit Applications of neural networks

Brains

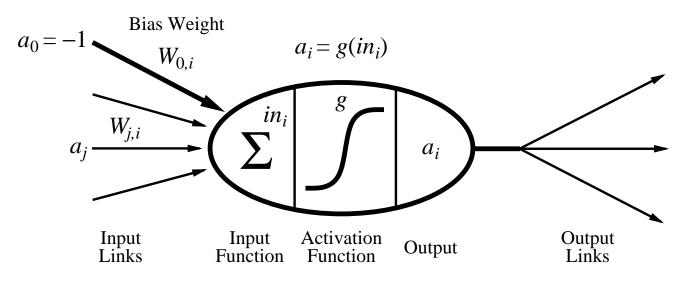
 10^{11} neurons of > 20 types, 10^{14} synapses, 1ms–10ms cycle time Signals are noisy "spike trains" of electrical potential



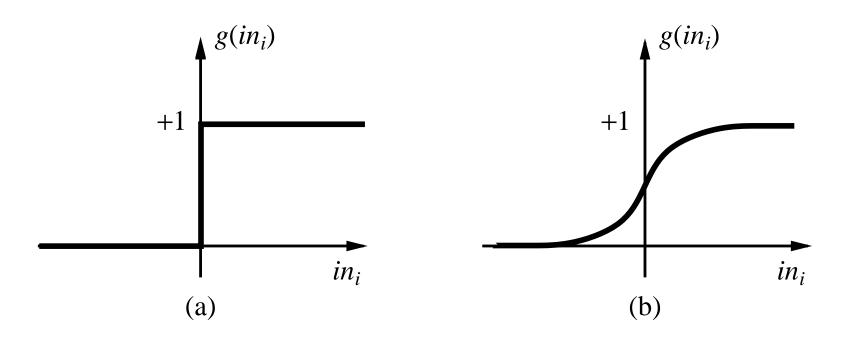
McCulloch–Pitts "unit"

Output is a "squashed" linear function of the inputs:

 $a_i \leftarrow g(in_i) = g\left(\Sigma_j W_{j,i} a_j\right)$



Activation functions



(a) is a step function or threshold function

(b) is a sigmoid function $1/(1 + e^{-x})$

Changing the bias weight $W_{0,i}$ moves the threshold location

Implementing logical functions

McCulloch and Pitts: every Boolean function can be implemented (with large enough network)

AND?

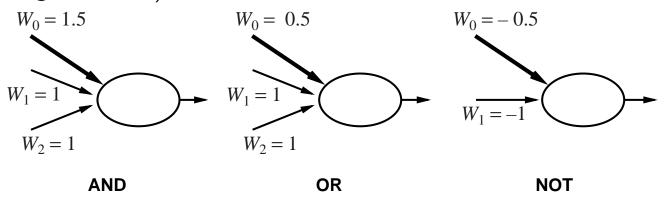
OR?

NOT?

MAJORITY?

Implementing logical functions

McCulloch and Pitts: every Boolean function can be implemented (with large enough network)



Network structures

Feed-forward networks:

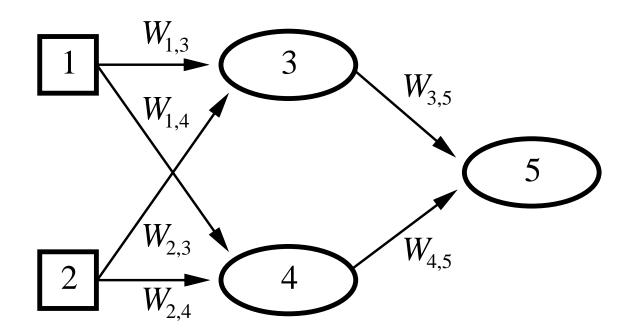
- single-layer perceptrons
- multi-layer networks

Feed-forward networks implement functions, have no internal state

Recurrent networks:

- Hopfield networks have symmetric weights $(W_{i,j} = W_{j,i})$ $g(x) = \operatorname{sign}(x), a_i = \pm 1$; holographic associative memory
- Boltzmann machines use stochastic activation functions, \approx MCMC in BNs
- recurrent neural nets have directed cycles with delays
 - \Rightarrow have internal state (like flip-flops), can oscillate etc.

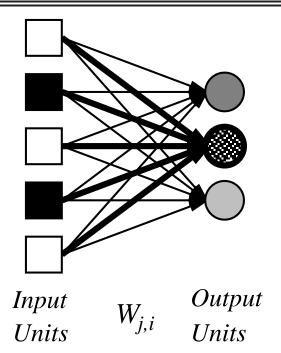
Feed-forward example

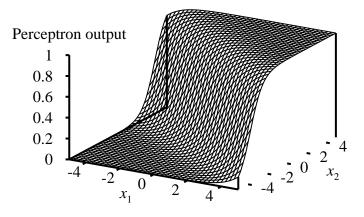


Feed-forward network = a parameterized family of nonlinear functions:

$$a_5 = g(W_{3,5} \cdot a_3 + W_{4,5} \cdot a_4) = g(W_{3,5} \cdot g(W_{1,3} \cdot a_1 + W_{2,3} \cdot a_2) + W_{4,5} \cdot g(W_{1,4} \cdot a_1 + W_{2,4} \cdot a_2))$$

Perceptrons



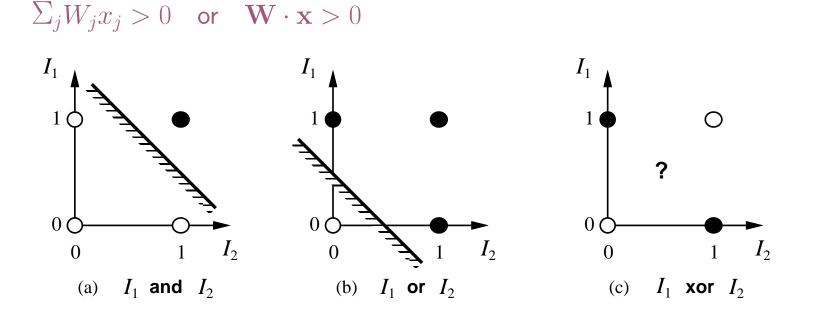


Expressiveness of perceptrons

Consider a perceptron with g = step function (Rosenblatt, 1957, 1960)

Can represent AND, OR, NOT, majority, etc.

Represents a linear separator in input space:



Learn by adjusting weights to reduce error on training set

The squared error for an example with input ${\bf x}$ and true output y is

$$E = \frac{1}{2}Err^2 \equiv \frac{1}{2}(y - h_{\mathbf{W}}(\mathbf{x}))^2$$

Learn by adjusting weights to reduce error on training set

The squared error for an example with input ${\bf x}$ and true output y is

$$E = \frac{1}{2}Err^2 \equiv \frac{1}{2}(y - h_{\mathbf{W}}(\mathbf{x}))^2$$

Perform optimization search by gradient descent:

$$\frac{\partial E}{\partial W_j} = ?$$

Learn by adjusting weights to reduce error on training set

The squared error for an example with input ${\bf x}$ and true output y is

$$E = \frac{1}{2}Err^2 \equiv \frac{1}{2}(y - h_{\mathbf{W}}(\mathbf{x}))^2$$

Perform optimization search by gradient descent:

$$\frac{\partial E}{\partial W_j} = Err \times \frac{\partial Err}{\partial W_j} = Err \times \frac{\partial}{\partial W_j} \left(y - g(\sum_{j=0}^n W_j x_j) \right)$$

Learn by adjusting weights to reduce error on training set

The squared error for an example with input ${\bf x}$ and true output y is

$$E = \frac{1}{2}Err^2 \equiv \frac{1}{2}(y - h_{\mathbf{W}}(\mathbf{x}))^2$$

Perform optimization search by gradient descent:

$$\frac{\partial E}{\partial W_j} = Err \times \frac{\partial Err}{\partial W_j} = Err \times \frac{\partial}{\partial W_j} \left(y - g(\sum_{j=0}^n W_j x_j) \right)$$
$$= -Err \times g'(in) \times x_j$$

Learn by adjusting weights to reduce error on training set

The squared error for an example with input ${\bf x}$ and true output y is

$$E = \frac{1}{2}Err^2 \equiv \frac{1}{2}(y - h_{\mathbf{W}}(\mathbf{x}))^2$$

Perform optimization search by gradient descent:

$$\frac{\partial E}{\partial W_j} = Err \times \frac{\partial Err}{\partial W_j} = Err \times \frac{\partial}{\partial W_j} \left(y - g(\sum_{j=0}^n W_j x_j) \right)$$
$$= -Err \times g'(in) \times x_j$$

Simple weight update rule:

 $W_j \leftarrow W_j + \alpha \times Err \times g'(in) \times x_j$

E.g., +ve error \Rightarrow increase network output \Rightarrow increase weights on +ve inputs, decrease on -ve inputs

```
 \begin{split} W &= \text{random initial values} \\ \text{for iter = 1 to T} \\ \text{for i = 1 to N (all examples)} \\ \vec{x} &= \text{input for example } i \\ y &= \text{output for example } i \\ W_{old} &= W \\ Err &= y - g(W_{old} \cdot \vec{x}) \\ \text{for j = 1 to M (all weights)} \\ W_j &= W_j + \alpha \cdot Err \cdot g'(W_{old} \cdot \vec{x}) \cdot x_j \end{split}
```

Perceptron learning contd.

Derivative of sigmoid g(x) can be written in simple form:

$$g(x) = \frac{1}{1 + e^{-x}}$$

 $g'(x) = ?$

Perceptron learning contd.

Derivative of sigmoid g(x) can be written in simple form:

$$g(x) = \frac{1}{1 + e^{-x}}$$
$$g'(x) = \frac{e^{-x}}{(1 + e^{-x})^2} = e^{-x}g(x)^2$$

Also,

$$g(x) = \frac{1}{1 + e^{-x}} \Rightarrow g(x) + e^{-x}g(x) = 1 \Rightarrow e^{-x} = \frac{1 - g(x)}{g(x)}$$

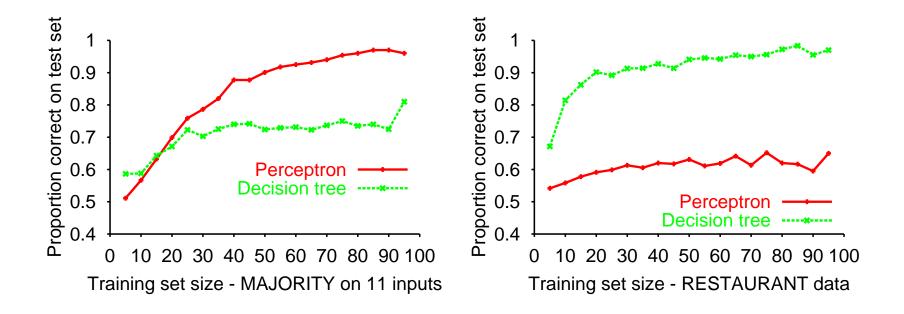
So

$$g'(x) = \frac{1 - g(x)}{g(x)}g(x)^2$$

= $(1 - g(x))g(x)$

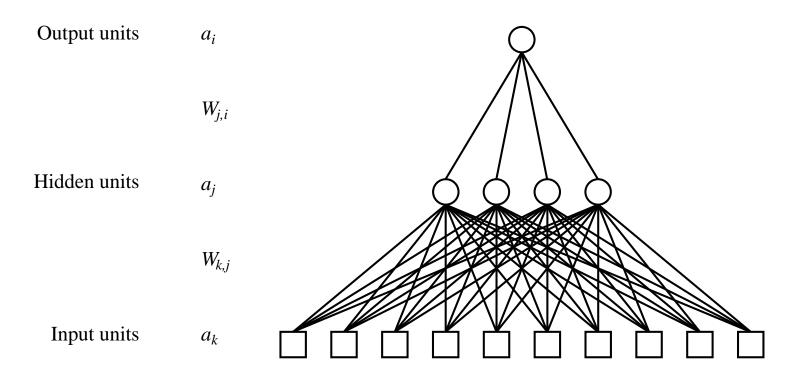
Perceptron learning contd.

Perceptron learning rule converges to a consistent function for any linearly separable data set



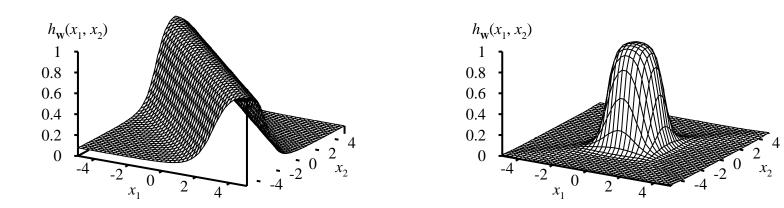
Multilayer networks

Layers are usually fully connected; numbers of hidden units typically chosen by hand



Expressiveness of MLPs

All continuous functions w/ 1 hidden layer, all functions w/ 2 hidden layers



Training a MLP

In general have \boldsymbol{n} output nodes,

$$E \equiv \frac{1}{2} \sum_{i} Err_i^2,$$

where $Err_i = (y_i - a_i)$ and Σ_i runs over all nodes in the output layer.

Need to calculate

 $\frac{\partial E}{\partial W_{ij}}$

for any W_{ij} .

Training a MLP cont.

Can approximate derivatives by:

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$
$$\frac{\partial E}{\partial W_{ij}}(\mathbf{W}) \approx \frac{E(\mathbf{W} + (0, \dots, h, \dots, 0)) - E(\mathbf{W})}{h}$$

What would this entail for a network with n weights?

Training a MLP cont.

Can approximate derivatives by:

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$
$$\frac{\partial E}{\partial W_{ij}}(\mathbf{W}) \approx \frac{E(\mathbf{W} + (0, \dots, h, \dots, 0)) - E(\mathbf{W})}{h}$$

What would this entail for a network with n weights?

- one iteration would take $O(n^2)$ time

Complicated networks have tens of thousands of weights, ${\cal O}(n^2)$ time is intractable.

Back-propagation is a recursive method of calculating all of these derivatives in ${\cal O}(n)$ time.

Back-propagation learning

In general have \boldsymbol{n} output nodes,

$$E \equiv \frac{1}{2} \sum_{i} Err_i^2,$$

where $Err_i = (y_i - a_i)$ and Σ_i runs over all nodes in the output layer.

Output layer: same as for single-layer perceptron,

 $W_{j,i} \leftarrow W_{j,i} + \alpha \times a_j \times \Delta_i$

where $\Delta_i = Err_i \times g'(in_i)$

Hidden layers: **back-propagate** the error from the output layer:

$$\Delta_j = g'(in_j) \sum_i W_{j,i} \Delta_i \; .$$

Update rule for weights in hidden layers:

$$W_{k,j} \leftarrow W_{k,j} + \alpha \times a_k \times \Delta_j$$
.

$$\frac{\partial E}{\partial W_{j,i}} = -(y_i - a_i) \frac{\partial a_i}{\partial W_{j,i}}$$

$$\frac{\partial E}{\partial W_{j,i}} = -(y_i - a_i)\frac{\partial a_i}{\partial W_{j,i}} = -(y_i - a_i)\frac{\partial g(in_i)}{\partial W_{j,i}}$$

$$\frac{\partial E}{\partial W_{j,i}} = -(y_i - a_i) \frac{\partial a_i}{\partial W_{j,i}} = -(y_i - a_i) \frac{\partial g(in_i)}{\partial W_{j,i}}$$
$$= -(y_i - a_i)g'(in_i) \frac{\partial in_i}{\partial W_{j,i}}$$

$$\frac{\partial E}{\partial W_{j,i}} = -(y_i - a_i) \frac{\partial a_i}{\partial W_{j,i}} = -(y_i - a_i) \frac{\partial g(in_i)}{\partial W_{j,i}}$$
$$= -(y_i - a_i)g'(in_i) \frac{\partial in_i}{\partial W_{j,i}} = -(y_i - a_i)g'(in_i) \frac{\partial}{\partial W_{j,i}} \left(\sum_k W_{k,i} a_j\right)$$

$$\begin{aligned} \frac{\partial E}{\partial W_{j,i}} &= -(y_i - a_i) \frac{\partial a_i}{\partial W_{j,i}} = -(y_i - a_i) \frac{\partial g(in_i)}{\partial W_{j,i}} \\ &= -(y_i - a_i) g'(in_i) \frac{\partial in_i}{\partial W_{j,i}} = -(y_i - a_i) g'(in_i) \frac{\partial}{\partial W_{j,i}} \left(\sum_k W_{k,i} a_j\right) \\ &= -(y_i - a_i) g'(in_i) a_j = -a_j \Delta_i \end{aligned}$$

where
$$\Delta_i = (y_i - a_i)g'(in_i)$$

$$\frac{\partial E}{\partial W_{k,j}} = ?$$

"Reminder": Chain rule for partial derivatives

For f(x, y), with f differentiable wrt x and y, and x and y differentiable wrt u and v:

$$\frac{\partial f}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u}$$

and

$$\frac{\partial f}{\partial v} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v}$$

For a node j in a hidden layer:

$$\frac{\partial E}{\partial W_{k,j}} = \frac{\partial}{\partial W_{k,j}} E(a_{j_1}, a_{j_2}, \dots, a_{j_m})$$

where $\{j_i\}$ are the indices of the nodes in the same layer as node j.

For a node j in a hidden layer:

$$\frac{\partial E}{\partial W_{k,j}} = \frac{\partial E}{\partial a_j} \frac{\partial a_j}{\partial W_{k,j}} + \sum_i \frac{\partial E}{\partial a_i} \frac{\partial a_i}{\partial W_{k,j}}$$

where Σ_i runs over all other nodes i in the same layer as node j.

$$\frac{\partial E}{\partial W_{k,j}} = \frac{\partial E}{\partial a_j} \frac{\partial a_j}{\partial W_{k,j}} + \sum_i \frac{\partial E}{\partial a_i} \frac{\partial a_i}{\partial W_{k,j}}$$
$$= \frac{\partial E}{\partial a_j} \frac{\partial a_j}{\partial W_{k,j}} \quad \text{since } \frac{\partial a_i}{\partial W_{k,j}} = 0 \text{ for } i \neq j$$

$$\frac{\partial E}{\partial W_{k,j}} = \frac{\partial E}{\partial a_j} \frac{\partial a_j}{\partial W_{k,j}} + \sum_i \frac{\partial E}{\partial a_i} \frac{\partial a_i}{\partial W_{k,j}}$$
$$= \frac{\partial E}{\partial a_j} \frac{\partial a_j}{\partial W_{k,j}} \quad \text{since } \frac{\partial a_i}{\partial W_{k,j}} = 0 \text{ for } i \neq j$$
$$= \frac{\partial E}{\partial a_j} \cdot g'(in_j)a_k$$

$$\frac{\partial E}{\partial W_{k,j}} = \frac{\partial E}{\partial a_j} \frac{\partial a_j}{\partial W_{k,j}} + \sum_i \frac{\partial E}{\partial a_i} \frac{\partial a_i}{\partial W_{k,j}}$$
$$= \frac{\partial E}{\partial a_j} \frac{\partial a_j}{\partial W_{k,j}} \quad \text{since } \frac{\partial a_i}{\partial W_{k,j}} = 0 \text{ for } i \neq j$$
$$= \frac{\partial E}{\partial a_j} \cdot g'(in_j)a_k$$

$$\frac{\partial E}{\partial a_j} = ?$$

For a node j in a hidden layer:

$$\frac{\partial E}{\partial W_{k,j}} = \frac{\partial E}{\partial a_j} \frac{\partial a_j}{\partial W_{k,j}} + \sum_i \frac{\partial E}{\partial a_i} \frac{\partial a_i}{\partial W_{k,j}}$$
$$= \frac{\partial E}{\partial a_j} \frac{\partial a_j}{\partial W_{k,j}} \quad \text{since } \frac{\partial a_i}{\partial W_{k,j}} = 0 \text{ for } i \neq j$$
$$= \frac{\partial E}{\partial a_j} \cdot g'(in_j)a_k$$

$$\frac{\partial E}{\partial a_j} = \frac{\partial}{\partial a_j} E(a_{k_1}, a_{k_2}, \dots, a_{k_m})$$

where $\{k_i\}$ are the indices of the nodes in the layer after node j.

For a node j in a hidden layer:

$$\frac{\partial E}{\partial W_{k,j}} = \frac{\partial E}{\partial a_j} \frac{\partial a_j}{\partial W_{k,j}} + \sum_i \frac{\partial E}{\partial a_i} \frac{\partial a_i}{\partial W_{k,j}}$$
$$= \frac{\partial E}{\partial a_j} \frac{\partial a_j}{\partial W_{k,j}} \quad \text{since } \frac{\partial a_i}{\partial W_{k,j}} = 0 \text{ for } i \neq j$$
$$= \frac{\partial E}{\partial a_j} \cdot g'(in_j)a_k$$

$$\frac{\partial E}{\partial a_j} = \sum_k \frac{\partial E}{\partial a_k} \frac{\partial a_k}{\partial a_j}$$

where Σ_k runs over all nodes k that node j connects to.

$$\frac{\partial E}{\partial W_{k,j}} = \frac{\partial E}{\partial a_j} \frac{\partial a_j}{\partial W_{k,j}} + \sum_i \frac{\partial E}{\partial a_i} \frac{\partial a_i}{\partial W_{k,j}}$$
$$= \frac{\partial E}{\partial a_j} \frac{\partial a_j}{\partial W_{k,j}} \quad \text{since } \frac{\partial a_i}{\partial W_{k,j}} = 0 \text{ for } i \neq j$$
$$= \frac{\partial E}{\partial a_j} \cdot g'(in_j)a_k$$

$$\frac{\partial E}{\partial a_j} = \sum_k \frac{\partial E}{\partial a_k} \frac{\partial a_k}{\partial a_j} \\ = \sum_k \frac{\partial E}{\partial a_k} g'(in_k) W_{j,k}$$

If we define

$$\Delta_j \equiv g'(in_j) \mathop{\scriptstyle\sum}_k W_{j,k} \Delta_k$$

then

$$\frac{\partial E}{\partial W_{k,j}} = -\Delta_j a_k$$

Back-propagation pseudocode

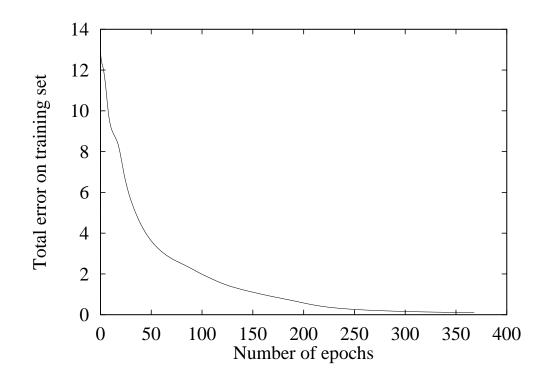
for iter = 1 to T

$$W^{new} = W$$

for e = 1 to N (all examples)
 $\vec{x} = \text{ input for example } e$
 $\vec{y} = \text{ output for example } e$
run \vec{x} forward through network, computing all $\{a_i\}, \{in_i\}$
for all nodes i (in reverse order)
compute $\Delta_i = \begin{cases} (y_i - a_i) \times g'(in_i) & \text{if i is output node} \\ g'(in_i) \Sigma_k W_{i,k} \Delta_k & \text{o.w.} \end{cases}$
for all weights $W_{j,i}$
 $W_{j,i}^{new} = W_{j,i}^{new} + \alpha \times a_j \times \Delta_i$
 $W = W^{new}$

Back-propagation learning contd.

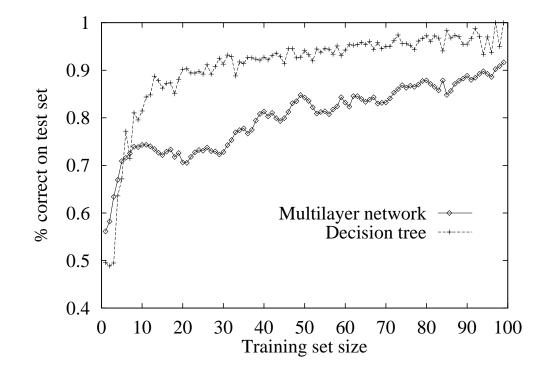
At each epoch, sum gradient updates for all examples and apply Restaurant data:



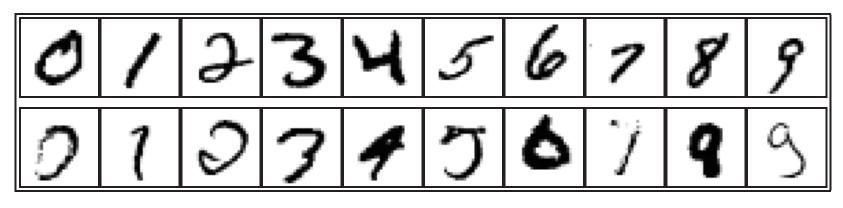
Usual problems with slow convergence, local minima

Back-propagation learning contd.

Restaurant data:



Handwritten digit recognition



3-nearest-neighbor = 2.4% error 400–300–10 unit MLP = 1.6% error LeNet: 768–192–30–10 unit MLP = 0.9% error

Summary

Most brains have lots of neurons; each neuron \approx linear-threshold unit (?)

Perceptrons (one-layer networks) insufficiently expressive

Multi-layer networks are sufficiently expressive; can be trained by gradient descent, i.e., error back-propagation

Many applications: speech, driving, handwriting, credit cards, etc.