NEURAL NETWORKS

CHAPTER 20

I Outline |

¢ Brains

& Neural networks
{ Perceptrons

¢ Multilayer networks

{ Applications of neural networks

I Brains |

10 neurons of > 20 types, 10'! synapses, 1Ims—10ms cycle time
Signals are noisy “spike trains” of electrical potential

Axonal arborization

Axon from another cell

Synapse
Dendrite

Synapses

Cell body or Soma

I McCulloch—Pitts “unit”

Output is a “squashed” linear function of the inputs:
a; «— gling) = g (3,;W;,a;)

Bias Weight

&=" W, a=g(im)
\ f [¢]
n;
W'. i
g——(>
i Fleton ‘Funaien Output ik
I Activation functions |
g(in) g(in)
+1 +1
ini | ini
@ (b)

(a) is a step function or threshold function
(b) is a sigmoid function 1/(1+¢ ")

Changing the bias weight 11/;; moves the threshold location

I Implementing logical functions |

McCulloch and Pitts: every Boolean function can be implemented (with
large enough network)

AND?

OR?

NOT?
MAJORITY?

I Implementing logical functions |

McCulloch and Pitts: every Boolean function can be implemented (with
large enough network)
Wo=15 Wo= 0.5 Wo=-0.5

SO IO O
W, =1 Wo=1

AND OR NOT

Chapter 20 7

(Network structures |

Feed-forward networks:
— single-layer perceptrons
— multi-layer networks

Feed-forward networks implement functions, have no internal state

Recurrent networks:
— Hopfield networks have symmetric weights (17, ; = 11;))
g(x)=sign(x), a;,= + 1; holographic associative memory
— Boltzmann machines use stochastic activation functions,

~ MCMC in BNs
— recurrent neural nets have directed cycles with delays
= have internal state (like flip-flops), can oscillate etc.

Chapter 20 8

I Feed-forward example |

l WB
V\i4 V\é,S
D,
VEs W,
2w

Feed-forward network = a parameterized family of nonlinear functions:

a5 = g(Ws5- a3+ Wys-ay)
= gWss5-gWis-ar+Was-as)+Wys-g(Wig-ay+Woy-as))

Chapter 20 9

Perceptrons

Perceptron output
1

0.8
0.6
0.4
0.2

0

i
i
7 /’1////////////

77
W
i
i
i

i

i
’l 1 //(’
i

i

1
i
i
i

///’//

i i
)

i
i
i

1///////;'

i

Chapter 20

Il

Expressiveness of perceptrons

Consider a perceptron with g = step function (Rosenblatt, 1957, 1960)

Can represent AND, OR, NOT, majority, etc.

Represents a linear separator in input space:

Z/l"/,l'/ >0 or W-x>0

Iy

0
(©

1 Iy

Iy xor 1,

Chapter 20

n

Il

Perceptron learning

Learn by adjusting weights to reduce error on training set

The squared error for an example with input x and true output ¥ is

1 : 1 W2
E= ‘)E/‘r") =,y- hw(x))”

Chapter 20

I Perceptron learning

Learn by adjusting weights to reduce error on training set

The squared error for an example with input x and true output ¥ is

1, 1)
E= ‘)EI‘T") = _,)(]/ — hw(x))”
Perform optimization search by gradient descent:
oE
ow;

Chapter 20

13

I Perceptron learning

Learn by adjusting weights to reduce error on training set

The squared error for an example with input x and true output ¥ is

1., 1 . \\2
E= ‘)EI‘T") = _,)(]/ — hw(x))”

Perform optimization search by gradient descent:

oF OErr o 1
e = Brrx = Err (y — g(X"_Wjz)))
aw, = By = By - 95 W)

Chapter 20

I Perceptron learning

Learn by adjusting weights to reduce error on training set

The squared error for an example with input x and true output ¥ is

1., 1 . \\2
E= ‘)EI‘T") = _,)(]/ — hw(x))”

Perform optimization search by gradient descent:
oF OFErr
- = FErr x — = Frr x
ow, — " aw, —
—Err x ¢'(in) X z;

L

o) N
o, (y — (X _ W;z)))

Chapter 20

15

I Perceptron learning

Learn by adjusting weights to reduce error on training set
The squared error for an example with input x and true output ¥ is

2

1 , 1
E= ‘)EI‘T") = _,)(]/ — hw(x))

Perform optimization search by gradient descent:
o0FE OErr a .
- = Err x — = Frr x (y — g2 _ Wix;))
ow, T g, T g, W 90 7%3)
—Err x ¢'(in) X z;
Simple weight update rule:
W; — W;+ax Errxd(in)x

E.g., +ve error = increase network output
= increase weights on +ve inputs, decrease on -ve inputs

Chapter 20

16

I Perceptron learning

W = random initial values
for iter = 1 to T
for i = 1 to N (all examples)
Z = input for example i
y = output for example ¢
Weog =W
Err=y—gWyy-)
for j =1 to M (all weights)

W, =W;+a-Err-gd(Wyg-) -z,

Chapter 20

I Perceptron learning contd.

Derivative of sigmoid ¢(x) can be written in simple form:
1
Clter

Chapter 20

18

I Perceptron learning contd. |

Derivative of sigmoid ¢(x) can be written in simple form:

() !
g\x =
g l4+e
(o “g(z)?
glr) = =e "glr)
/ (1+e2)2 g
Also,
(@) 1 (2) o) =1 = e 1—g(z)
glxr = glr)+e “glx € P
g 1+e 9% g g(x)
So
S 1—g(z) ,
g(r) ; g(x)
g(x)
= (1 —g())g(z)
I Perceptron learning contd. |

Perceptron learning rule converges to a consistent function
for any linearly separable data set

k3] o]

o 1 21 -

? @ P
209 209 i

o c X

208 * Sog|

9 Wyttt 8 i

£ 0.7 =071/

8 8

206 Perceptron —— 206 /""’\/\/\\/
2 Decision tree === S

£05 £05 Perceptron

a o Decision tree ==
004 + 004 +

a 0 10 20 30 40 50 60 70 80 90 100 o 0 10 20 30 40 50 60 70 80 90 100

Training set size - MAJORITY on 11 inputs Training set size - RESTAURANT data

Chapter 20 20

I Multilayer networks |

Layers are usually fully connected;
numbers of hidden units typically chosen by hand

Output units a

Wi

Hidden units X

Input units ay

Chapter 20 21

I Expressiveness of MLPs |

All continuous functions w/ 1 hidden layer, all functions w/ 2 hidden layers

hy, (%, %)
0.; /V’ ;‘ \
g'i ’ﬂ,’m i

Chapter 20 22

I Training a MLP |

In general have n output nodes,

FE=

i

- Err?
275

where Err; = (1; — a;) and +; runs over all nodes in the output layer.

Need to calculate
OF
oW

for any IW;;.

Chapter 20 23

I Training a MLP cont. |

Can approximate derivatives by:

_ fle+h) = fl2)
(W

oW, h

What would this entail for a network with 7 weights?

Chapter 20 24

I Training a MLP cont.

|| ||

Back-propagation derivation |

Can approximate derivatives by:

f'(2)
OF
oW,

(W)

Q

What would this entail for a network with 7 weights?
- one iteration would take O(7”) time

Complicated networks have tens of thousands of weights, O(n’

intractable.

For a node 7 in the output layer:

Back-propagation is a recursive method of calculating all of these derivatives

in O(n) time.

I Back-propagation learning

In general have n output nodes,
S
E=_YFErr;,
275

where Err; =
Output layer: same as for single-layer perceptron,

Wii—Wji+axa; x A

ji

where A, = Err; x ¢'(in;)

Hidden layers: back-propagate the error from the output layer:
A= g’(z’nﬂ;ﬂ},& .

Update rule for weights in hidden layers:

Wi Wij+axapx A .

(y; — a;) and »; runs over all nodes in the output layer.

I Back-propagation derivation

For a node 7 in the output layer:
oE
oW,

N da;
= —Wi — Qi) 5757
W g

oE L Oa; JOg(in;)
ow,, ~ W gy T T ey
) time is
| I Back-propagation derivation |
For a node 7 in the output layer:
oE L Oa; JOg(in;)
ow,, ~ W gy T T ey
) din;
= —(yi~ ru)r/(hmm/{t'/,
| I Back-propagation derivation |
For a node 7 in the output layer:
oE L Oa; JOg(in;)
ow,, ~ W gy T T ey
) din; 0 .
= —(y; — (1,);/(7';1,1]ﬁ =—(y;i — (1,)y/(\1n,}Wt// (%U ,,.Ja/)

Chapter 20 27 Chapter 20 30

I Back-propagation derivation |

For a node 7 in the output layer:

oE L Oa; JOgl(in;)
ow,, ~ W gy T T ey
) din; o0 .
= —(y; — (1,);/(7';1,1]ﬁ =—(y — (1,)y/(yn,}0nt/l (%U ,,.Ja/)
= —(yi — ;)¢ (ini)a; = —a;;

where A; = (y; — a;)g'(in;)

Chapter 20 31

[Back-propagation derivation: hidden layer |

For a node j in a hidden layer:
7)) _ 5
oWy j

Chapter 20 32

[“Reminder”: Chain rule for partial derivatives |

For f(x.y), with f differentiable wrt = and v, and = and y differentiable
wrt u and v:

of _ ofor ofoy

ou dzdu Oyou
and

af Ofox Ofdy

v dxdv dyov

Chapter 20 33

[Back-propagation derivation: hidden layer

||

For a node j in a hidden layer:

OE
Wy

0
E
oWy

(aj, aj,

where {j;} are the indices of the nodes in the same layer as node ;.

Chapter 20

34

[Back-propagation derivation: hidden layer

||

For a node j in a hidden layer:

0E
oWy

where ¥, runs over all other nodes 7 in the same layer as node j.

OF Oa;j

= Da;0W,,

)

da;

>
7 da; OV

Chapter 20

35

[Back-propagation derivation: hidden layer

||

For a node j
oFE
oWy j

in a hidden layer:

OF Oa;j

)
-

da;

+ X ;
(1)(1/(‘)”}“/ i (',)(I,(')”/,,/

OF Oa;
Oa;OW}

Chapter 20

36

[Back-propagation derivation: hidden layer | [Back-propagation derivation: hidden layer |

For a node j in a hidden layer: For a node j in a hidden layer:
oF OF Oa;j OF Oa; oF OF Oa;j OF Oa;
— = +X - o = A A T X o A
(‘)”'},_, (()(I/(r)”l,/ i (")(l,‘(‘)”/,,/ ()”A, ()(I/d”/\,/ i (')(l,‘()”/,,/
OF Oa Ja; S OF Oa (.
= - : =0 f , = ! : =0 f
da, 00 since oW, or i # j da, 00 since o, ori # j
oE (in) oE (in)
= ~g'(inj)a = -g'(inj)a
da, ging)a da, ging)a

OE _ O by
da; % OayOa;

where > runs over all nodes /4 that node j connects to.

Chapter 20 40

[Back-propagation derivation: hidden layer | [Back-propagation derivation: hidden layer |
For a node j in a hidden layer: For a node j in a hidden layer:
oF OF Oa;j OF Oa; oF OF Oa;j OF 0Oa;
— = +X B A T oo T X oo
(‘)”'},_, (()(I/(r)”l,/ i (")(l,‘(‘)”/,,/ ()”A, ()(I/d”/\,/ i (')(l,‘()”/,,/
OF Oa Ja; S OFE Oa) Ja; S
= - ince — =0 f , = ’ : =0 f ,
da,ows, o, ~ VA da oW, o, ~ A
L o O 0
= g lin;la = g ltn;la
da, ging)ay da, ging)a
)) OF Oay,
“E 9 R et
Oa; Oa; k& Oaj. Oa;
OE , .
=X 7 ing)W
; (A)(”‘!/(’“L) j.k
[Back-propagation derivation: hidden layer | [Back-propagation derivation: hidden layer |
For a node j in a hidden layer: If we define
i’)ll%‘ N OF Oa;j s OF 0Oa; A; = g'(ing) \7‘ WA
(‘)”'},_, (()(I/(r)”l,/ i (")(l,‘(‘)”v/,,/ '
OF Oa; da, o then
= 92U Gnce S O fori 4
da, o, S g, ~OfriA 0B
OL E A A
= 8. g(ina, MWy
Oa;
0F ()
¢ = —Flay, ak,, ..., a,)

OJa; Oa;

where {/;} are the indices of the nodes in the layer after node ;.

Chapter 20 Chapter 20 42

I Back-propagation pseudocode |

for iter =1 to T
L‘/nf'u,‘ — I/‘//
for e = 1 to N (all examples)
Z = input for example e
y = output for example e
run 7 forward through network, computing all {a;},{in;}
for all nodes ¢ (in reverse order)
(y; —a;) X ¢'(in;) if i is output node
g'(in) s Wi g Ay 0.W.
for all weights Wj;
Wi = WY +a X a; x A;
I/V . I/I//'VL(’,U'

compute A; =

Chapter 20 43

I Back-propagation learning contd. |

At each epoch, sum gradient updates for all examples and apply

Restaurant data:

Total error on training set

0 50 100 150 200 250 300 350 400
Number of epochs

Usual problems with slow convergence, local minima

Chapter 20 44

I Back-propagation learning contd. |

Restaurant data:

I
» n P s L A
09} P
. e
e
A
i
08 ¥ R

0.7

06 {/:

% correct on test set

Multilayer network —-—
i Decision tree--+--

0.5 ki]
0.4

0O 10 20 30 40 50 60 70 80 90 100
Training set size

Chapter 20 45

Il

Handwritten digit recognition

o

/

>

3

“

S

&

5
) |

e

21I917|#17]6]7

3-nearest-neighbor = 2.4% error
400-300~10 unit MLP = 1.6% error
LeNet: 768-192-30-10 unit MLP = 0.9% error

Chapter 20 46

[Summary |

Most brains have lots of neurons; each neuron ~ linear—threshold unit (?)
Perceptrons (one-layer networks) insufficiently expressive

Multi-layer networks are sufficiently expressive; can be trained by gradient
descent, i.e., error back-propagation

Many applications: speech, driving, handwriting, credit cards, etc.

Chapter 20 47

