
Neural networks

Chapter 20

Chapter 20 1

Outline

♦ Brains

♦ Neural networks

♦ Perceptrons

♦ Multilayer networks

♦ Applications of neural networks

Chapter 20 2

Brains

1011 neurons of > 20 types, 1014 synapses, 1ms–10ms cycle time
Signals are noisy “spike trains” of electrical potential

Axon

Cell body or Soma

Nucleus

Dendrite

Synapses

Axonal arborization

Axon from another cell

Synapse

Chapter 20 3

McCulloch–Pitts “unit”

Output is a “squashed” linear function of the inputs:

ai← g(ini) = g
(

ΣjWj,iaj

)

Output

Σ
Input
Links

Activation
Function

Input
Function

Output
Links

a0 = −1 ai = g(ini)

ai

g
iniWj,i

W0,i

Bias Weight

aj

Chapter 20 4

Activation functions

(a) (b)

+1 +1

iniini

g(ini)g(ini)

(a) is a step function or threshold function

(b) is a sigmoid function 1/(1 + e−x)

Changing the bias weight W0,i moves the threshold location

Chapter 20 5

Implementing logical functions

McCulloch and Pitts: every Boolean function can be implemented (with
large enough network)

AND?

OR?

NOT?

MAJORITY?

Chapter 20 6

Implementing logical functions

McCulloch and Pitts: every Boolean function can be implemented (with
large enough network)

AND

W0 = 1.5

W1 = 1

W2 = 1

OR

W2 = 1

W1 = 1

W0 = 0.5

NOT

W1 = –1

W0 = – 0.5

Chapter 20 7

Network structures

Feed-forward networks:
– single-layer perceptrons
– multi-layer networks

Feed-forward networks implement functions, have no internal state

Recurrent networks:
– Hopfield networks have symmetric weights (Wi,j = Wj,i)

g(x) = sign(x), ai = ± 1; holographic associative memory

– Boltzmann machines use stochastic activation functions,
≈ MCMC in BNs

– recurrent neural nets have directed cycles with delays
⇒ have internal state (like flip-flops), can oscillate etc.

Chapter 20 8

Feed-forward example

W1,3

1,4W

2,3W

2,4W

W3,5

4,5W

1

2

3

4

5

Feed-forward network = a parameterized family of nonlinear functions:

a5 = g(W3,5 · a3 + W4,5 · a4)

= g(W3,5 · g(W1,3 · a1 + W2,3 · a2) + W4,5 · g(W1,4 · a1 + W2,4 · a2))

Chapter 20 9

Perceptrons

Input
Units Units

Output
Wj,i

-4 -2 0 2 4x1
-4

-2
0

2
4

x2

0
0.2
0.4
0.6
0.8

1
Perceptron output

Chapter 20 10

Expressiveness of perceptrons

Consider a perceptron with g = step function (Rosenblatt, 1957, 1960)

Can represent AND, OR, NOT, majority, etc.

Represents a linear separator in input space:

ΣjWjxj > 0 or W · x > 0

I 1

I 2

I 1

I 2

I 1

I 2

?

(a) (b) (c)

0 1

0

1

0

1 1

0

0 1 0 1

xor I 2I 1orI 1 I 2and I 1 I 2

Chapter 20 11

Perceptron learning

Learn by adjusting weights to reduce error on training set

The squared error for an example with input x and true output y is

E =
1

2
Err

2 ≡
1

2
(y − hW(x))2

Chapter 20 12

Perceptron learning

Learn by adjusting weights to reduce error on training set

The squared error for an example with input x and true output y is

E =
1

2
Err

2 ≡
1

2
(y − hW(x))2

Perform optimization search by gradient descent:

∂E

∂Wj
=?

Chapter 20 13

Perceptron learning

Learn by adjusting weights to reduce error on training set

The squared error for an example with input x and true output y is

E =
1

2
Err

2 ≡
1

2
(y − hW(x))2

Perform optimization search by gradient descent:

∂E

∂Wj
= Err ×

∂Err

∂Wj
= Err ×

∂

∂Wj

(

y − g(Σn
j = 0

Wjxj)
)

Chapter 20 14

Perceptron learning

Learn by adjusting weights to reduce error on training set

The squared error for an example with input x and true output y is

E =
1

2
Err

2 ≡
1

2
(y − hW(x))2

Perform optimization search by gradient descent:

∂E

∂Wj
= Err ×

∂Err

∂Wj
= Err ×

∂

∂Wj

(

y − g(Σn
j = 0

Wjxj)
)

= −Err × g′(in)× xj

Chapter 20 15

Perceptron learning

Learn by adjusting weights to reduce error on training set

The squared error for an example with input x and true output y is

E =
1

2
Err

2 ≡
1

2
(y − hW(x))2

Perform optimization search by gradient descent:

∂E

∂Wj
= Err ×

∂Err

∂Wj
= Err ×

∂

∂Wj

(

y − g(Σn
j = 0

Wjxj)
)

= −Err × g′(in)× xj

Simple weight update rule:

Wj ← Wj + α×Err × g′(in)× xj

E.g., +ve error ⇒ increase network output
⇒ increase weights on +ve inputs, decrease on -ve inputs

Chapter 20 16

Perceptron learning

W = random initial values

for iter = 1 to T

for i = 1 to N (all examples)

~x = input for example i
y = output for example i
Wold = W
Err = y − g(Wold · ~x)
for j = 1 to M (all weights)

Wj = Wj + α · Err · g′(Wold · ~x) · xj

Chapter 20 17

Perceptron learning contd.

Derivative of sigmoid g(x) can be written in simple form:

g(x) =
1

1 + e−x

g′(x) = ?

Chapter 20 18

Perceptron learning contd.

Derivative of sigmoid g(x) can be written in simple form:

g(x) =
1

1 + e−x

g′(x) =
e−x

(1 + e−x)2
= e−xg(x)2

Also,

g(x) =
1

1 + e−x
⇒ g(x) + e−xg(x) = 1 ⇒ e−x =

1− g(x)

g(x)

So

g′(x) =
1− g(x)

g(x)
g(x)2

= (1− g(x))g(x)

Chapter 20 19

Perceptron learning contd.

Perceptron learning rule converges to a consistent function
for any linearly separable data set

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100P
ro

po
rt

io
n

co
rr

ec
t o

n
te

st
 s

et

Training set size - MAJORITY on 11 inputs

Perceptron
Decision tree

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100P
ro

po
rt

io
n

co
rr

ec
t o

n
te

st
 s

et

Training set size - RESTAURANT data

Perceptron
Decision tree

Chapter 20 20

Multilayer networks

Layers are usually fully connected;
numbers of hidden units typically chosen by hand

Input units

Hidden units

Output units ai

Wj,i

aj

Wk,j

ak

Chapter 20 21

Expressiveness of MLPs

All continuous functions w/ 1 hidden layer, all functions w/ 2 hidden layers

-4 -2 0 2 4x1
-4

-2
0

2
4

x2

0
0.2
0.4
0.6
0.8

1

hW(x1, x2)

-4 -2 0 2 4x1
-4

-2
0

2
4

x2

0
0.2
0.4
0.6
0.8

1

hW(x1, x2)

Chapter 20 22

Training a MLP

In general have n output nodes,

E ≡
1

2

∑

i
Err2

i ,

where Erri = (yi − ai) and ∑

i runs over all nodes in the output layer.

Need to calculate

∂E

∂Wij

for any Wij.

Chapter 20 23

Training a MLP cont.

Can approximate derivatives by:

f ′(x) ≈
f(x + h)− f(x)

h
∂E

∂Wij
(W) ≈

E(W + (0, . . . , h, . . . , 0))− E(W)

h

What would this entail for a network with n weights?

Chapter 20 24

Training a MLP cont.

Can approximate derivatives by:

f ′(x) ≈
f(x + h)− f(x)

h
∂E

∂Wij
(W) ≈

E(W + (0, . . . , h, . . . , 0))− E(W)

h

What would this entail for a network with n weights?
- one iteration would take O(n2) time

Complicated networks have tens of thousands of weights, O(n2) time is
intractable.

Back-propagation is a recursive method of calculating all of these derivatives
in O(n) time.

Chapter 20 25

Back-propagation learning

In general have n output nodes,

E ≡
1

2

∑

i
Err2

i ,

where Erri = (yi − ai) and ∑

i runs over all nodes in the output layer.

Output layer: same as for single-layer perceptron,

Wj,i ← Wj,i + α× aj ×∆i

where ∆i = Err i × g′(in i)

Hidden layers: back-propagate the error from the output layer:

∆j = g′(inj)
∑

i
Wj,i∆i .

Update rule for weights in hidden layers:

Wk,j ← Wk,j + α× ak ×∆j .

Chapter 20 26

Back-propagation derivation

For a node i in the output layer:

∂E

∂Wj,i
= −(yi − ai)

∂ai

∂Wj,i

Chapter 20 27

Back-propagation derivation

For a node i in the output layer:

∂E

∂Wj,i
= −(yi − ai)

∂ai

∂Wj,i
= −(yi − ai)

∂g(in i)

∂Wj,i

Chapter 20 28

Back-propagation derivation

For a node i in the output layer:

∂E

∂Wj,i
= −(yi − ai)

∂ai

∂Wj,i
= −(yi − ai)

∂g(in i)

∂Wj,i

= −(yi − ai)g
′(in i)

∂in i

∂Wj,i

Chapter 20 29

Back-propagation derivation

For a node i in the output layer:

∂E

∂Wj,i
= −(yi − ai)

∂ai

∂Wj,i
= −(yi − ai)

∂g(in i)

∂Wj,i

= −(yi − ai)g
′(in i)

∂in i

∂Wj,i
= −(yi − ai)g

′(in i)
∂

∂Wj,i

∑

k
Wk,iaj

Chapter 20 30

Back-propagation derivation

For a node i in the output layer:

∂E

∂Wj,i
= −(yi − ai)

∂ai

∂Wj,i
= −(yi − ai)

∂g(in i)

∂Wj,i

= −(yi − ai)g
′(in i)

∂in i

∂Wj,i
= −(yi − ai)g

′(in i)
∂

∂Wj,i

∑

k
Wk,iaj

= −(yi − ai)g
′(in i)aj = −aj∆i

where ∆i = (yi − ai)g
′(in i)

Chapter 20 31

Back-propagation derivation: hidden layer

For a node j in a hidden layer:

∂E

∂Wk,j
= ?

Chapter 20 32

“Reminder”: Chain rule for partial derivatives

For f(x, y), with f differentiable wrt x and y, and x and y differentiable
wrt u and v:

∂f

∂u
=

∂f

∂x

∂x

∂u
+

∂f

∂y

∂y

∂u

and

∂f

∂v
=

∂f

∂x

∂x

∂v
+

∂f

∂y

∂y

∂v

Chapter 20 33

Back-propagation derivation: hidden layer

For a node j in a hidden layer:

∂E

∂Wk,j
=

∂

∂Wk,j
E(aj1, aj2, . . . , ajm)

where {ji} are the indices of the nodes in the same layer as node j.

Chapter 20 34

Back-propagation derivation: hidden layer

For a node j in a hidden layer:

∂E

∂Wk,j
=

∂E

∂aj

∂aj

∂Wk,j
+

∑

i

∂E

∂ai

∂ai

∂Wk,j

where ∑

i runs over all other nodes i in the same layer as node j.

Chapter 20 35

Back-propagation derivation: hidden layer

For a node j in a hidden layer:

∂E

∂Wk,j
=

∂E

∂aj

∂aj

∂Wk,j
+

∑

i

∂E

∂ai

∂ai

∂Wk,j

=
∂E

∂aj

∂aj

∂Wk,j
since

∂ai

∂Wk,j
= 0 for i 6= j

Chapter 20 36

Back-propagation derivation: hidden layer

For a node j in a hidden layer:

∂E

∂Wk,j
=

∂E

∂aj

∂aj

∂Wk,j
+

∑

i

∂E

∂ai

∂ai

∂Wk,j

=
∂E

∂aj

∂aj

∂Wk,j
since

∂ai

∂Wk,j
= 0 for i 6= j

=
∂E

∂aj
· g′(inj)ak

Chapter 20 37

Back-propagation derivation: hidden layer

For a node j in a hidden layer:

∂E

∂Wk,j
=

∂E

∂aj

∂aj

∂Wk,j
+

∑

i

∂E

∂ai

∂ai

∂Wk,j

=
∂E

∂aj

∂aj

∂Wk,j
since

∂ai

∂Wk,j
= 0 for i 6= j

=
∂E

∂aj
· g′(inj)ak

∂E

∂aj
= ?

Chapter 20 38

Back-propagation derivation: hidden layer

For a node j in a hidden layer:

∂E

∂Wk,j
=

∂E

∂aj

∂aj

∂Wk,j
+

∑

i

∂E

∂ai

∂ai

∂Wk,j

=
∂E

∂aj

∂aj

∂Wk,j
since

∂ai

∂Wk,j
= 0 for i 6= j

=
∂E

∂aj
· g′(inj)ak

∂E

∂aj
=

∂

∂aj
E(ak1

, ak2
, . . . , akm)

where {ki} are the indices of the nodes in the layer after node j.

Chapter 20 39

Back-propagation derivation: hidden layer

For a node j in a hidden layer:

∂E

∂Wk,j
=

∂E

∂aj

∂aj

∂Wk,j
+

∑

i

∂E

∂ai

∂ai

∂Wk,j

=
∂E

∂aj

∂aj

∂Wk,j
since

∂ai

∂Wk,j
= 0 for i 6= j

=
∂E

∂aj
· g′(inj)ak

∂E

∂aj
=

∑

k

∂E

∂ak

∂ak

∂aj

where ∑

k runs over all nodes k that node j connects to.

Chapter 20 40

Back-propagation derivation: hidden layer

For a node j in a hidden layer:

∂E

∂Wk,j
=

∂E

∂aj

∂aj

∂Wk,j
+

∑

i

∂E

∂ai

∂ai

∂Wk,j

=
∂E

∂aj

∂aj

∂Wk,j
since

∂ai

∂Wk,j
= 0 for i 6= j

=
∂E

∂aj
· g′(inj)ak

∂E

∂aj
=

∑

k

∂E

∂ak

∂ak

∂aj

=
∑

k

∂E

∂ak
g′(ink)Wj,k

Chapter 20 41

Back-propagation derivation: hidden layer

If we define

∆j ≡ g′(inj)
∑

k
Wj,k∆k

then

∂E

∂Wk,j
= −∆jak

Chapter 20 42

Back-propagation pseudocode

for iter = 1 to T

W new = W
for e = 1 to N (all examples)

~x = input for example e
~y = output for example e
run ~x forward through network, computing all {ai}, {ini}
for all nodes i (in reverse order)

compute ∆i =

(yi − ai)× g′(ini) if i is output node

g′(ini)
∑

k Wi,k∆k o.w.

for all weights Wj,i

W new
j,i = W new

j,i + α× aj ×∆i

W = W new

Chapter 20 43

Back-propagation learning contd.

At each epoch, sum gradient updates for all examples and apply

Restaurant data:

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300 350 400

T
ot

al
 e

rr
or

 o
n

tr
ai

ni
ng

 s
et

Number of epochs

Usual problems with slow convergence, local minima

Chapter 20 44

Back-propagation learning contd.

Restaurant data:

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

%
 c

or
re

ct
 o

n
te

st
 s

et

Training set size

Multilayer network
Decision tree

Chapter 20 45

Handwritten digit recognition

3-nearest-neighbor = 2.4% error
400–300–10 unit MLP = 1.6% error
LeNet: 768–192–30–10 unit MLP = 0.9% error

Chapter 20 46

Summary

Most brains have lots of neurons; each neuron ≈ linear–threshold unit (?)

Perceptrons (one-layer networks) insufficiently expressive

Multi-layer networks are sufficiently expressive; can be trained by gradient
descent, i.e., error back-propagation

Many applications: speech, driving, handwriting, credit cards, etc.

Chapter 20 47

