
Rao-Blackwellized Particle Filter Notes Greg Mori

Rao-Blackwellized Particle Filter

Recall that the main difficulty with particle filtering is that with a high dimensional state vari-
able xt, an impossibly large number of particles is needed to accurately represent P (xt|z0:t).
In some filtering problems, it is possible to exploit conditional independence of components
of the state variables x1:t in order to reduce the number of particles needed. In this lecture
we will see examples of this technique, known as Rao-Blackwellization, applied to SLAM
and visual tracking.

Simultaneous Localization and Mapping (SLAM)

We will start by considering a simple example from Murphy [2]. Let our state vector xt =
(lt, mt) be composed of two components, a robot location lt ∈ {1, . . . , NL}, and a map mt,
which is a vector of random variables, mt(i) ∈ {1, . . . , NO}, i ∈ {1, . . . , NL}. The robot can
be in one of NL locations, and the map consists of NL locations, each with one of NO possible
labels (think free space, wall, doorway, observation of landmarks, etc.)

Let the observation at time t be zt ∈ {1, . . . , NO}, i.e. the robot (possibly incorrectly)
observes the label of its current location. We can define P (zt|xt) by

P (zt = k|xt) = P (zt = k|lt = i, mt = (m1, . . . , mNL
)) =

{

po if mi = k
1 − po otherwise

(1)

The robot makes an observation error with probability 1 − po.

Remember that we also need to define a transition model P (xt|xt−1) for the state. A rea-
sonable assumption is to define a transition model for the map mt either by making it static
(mt = mt−1), or each location i could change independently over time. The location lt could
evolve based upon both the previous location lt−1 and map mt−1 (e.g. bumping into walls),
as well as another observed variable at, the action at time t. The full observation at time t
is then yt = (at, zt).

Inference

Since this world is discrete, we could in fact do exact inference to determine P (xt|y0:t).
However, the size of the state space in which xt lies is NLNNL

O . Exact inference will be
slow, and intractable in all but the smallest problems. Naive particle filtering will also run
into trouble, needing many particles to adequately sample this large, high dimensional state
space.

The reason for this explosion in complexity is that the seemingly independent map variables
mt(i) become dependent once we have an observation zt. Without knowing the current
location lt, we do not know which map variable is responsible for the observation zt.

However, this is also the insight that we will use to make approximate inference efficient.
Conditioned on a particular value for the current location lt, the map variables do become
independent. We can then marginalize them out analytically (store only a list of P (mt(i))
rather than one high-dimensional P (mt)) and not have to resort to sampling methods.

1



Rao-Blackwellized Particle Filter Notes Greg Mori

The resulting algorithm is known as Rao-Blackwellized particle filtering. Let us denote by
b
(j)
t the jth particle at time t. Each particle b

(j)
t = (l

(j)
t , m

(j)
t (i)) contains both a location l

(j)
t

and a factored representation of the map distribution m
(j)
t (i) (contrast this with full NNL

O

dimensional map). The steps of the algorithm for our particular problem are as follows:

1. Sample l
(j)
t+1 from a proposal distribution. A simple proposal distribution would be to

sample the next location l
(j)
t+1 conditioned on the previous location and map (b

(j)
t from

previous particle set) and action at+1 at this time step.

2. Update the distribution on each component of the map m
(j)
t+1(i) separately, using the

sampled location l
(j)
t+1 and the observation zt+1.

m
(j)
t+1(i) =

{

P (zt+1|m
(j)
t+1(i))P (m

(j)
t+1(i)|m

(j)
t (i)) if i = l

(j)
t+1

P (m
(j)
t+1(i)|m

(j)
t (i)) otherwise

(2)

3. Update the weights: w
(j)
t+1 = u

(j)
t+1w

(j)
t . The factor u

(j)
t+1 is determined by the proposal

distribution used, and is proportional to P (zt+1|l
(j)
t+1, b

(j)
t ) when using the (non-optimal)

proposal distribution described above.

4. Resample the new set of particles by uniformly sampling according to these weights.

Visual Tracking - Continuous Variables

We will now consider a problem involving continuous random variables, and see how the
Kalman filter we first discussed becomes applicable. We will consider the problem of visual
tracking, the method described in [1].

In the case of visual tracking, the state vector xt = (lt, at), the location lt of the target being
tracked, and its appearance at. As usual, we will be interested in a variation of the following
filtering equation:

P (lt, at|z0:t) = αP (zt|lt, at)

∫

lt−1

∫

at−1

P (lt, at|lt−1, at−1)P (lt−1, at−1|z0:t−1) (3)

In particular, we desire the marginal posterior over location:

P (lt|z0:t) = α

∫

at

P (zt|lt, at)

∫

lt−1

∫

at−1

P (lt, at|lt−1, at−1)P (lt−1, at−1|z0:t−1) (4)

We will approximate the posterior P (lt−1, at−1|z0:t−1) by a set of particles, {l
(i)
t−1, w

(i)
t−1, α

(i)
t−1(at−1)}

N
i=1.

The α
(i)
t−1(at−1) are conditional distributions over appearance (rather than samples of appear-

ance states).

P (lt−1, at−1|z0:t−1) = P (lt−1|z0:t−1)P (at−1|lt−1, z0:t−1) (5)

≈
∑

i

w
(i)
t−1δ(l

(i)
t−1)α

(i)
t−1(at−1) (6)

α
(i)
t−1(at−1) ≡ P (at−1|l

(i)
t−1, z0:t−1) (7)

2



Rao-Blackwellized Particle Filter Notes Greg Mori

Substituting this approximation into Equation 4, we obtain:

P (lt|z0:t) ≈ α
∑

i

w
(i)
t−1

∫

at

P (zt|lt, at)

∫

at−1

P (at|lt, l
(i)
t−1, at−1)P (lt|l

(i)
t−1, at−1)α

(i)
t−1(at−1) (8)

In order to proceed, we make one further simplification, that location lt is conditionally
independent of at−1 given lt−1:

P (lt|l
(i)
t−1, at−1) = P (lt|l

(i)
t−1) (9)

We now obtain our final filtering equation by plugging this into Equation 8:

P (lt|z0:t) ≈ α
∑

i

w
(i)
t−1P (lt|l

(i)
t−1)

∫

at

P (zt|lt, at)

∫

at−1

P (at|lt, l
(i)
t−1, at−1)α

(i)
t−1(at−1) (10)

We can do importance sampling from this distribution in the usual fashion, using
∑

i w
(i)
t−1P (lt|l

(i)
t−1)

as the proposal density.

Similar to the previous section, the final algorithm is as below. For each time step, repeat
for j = 1, 2, . . . , N :

1. Randomly select a particle l
(i)
t−1 from the previous time set, by sampling uniformly

according to weights w
(i)
t−1.

2. Sample a new particle l
(j)
t ∼ P (lt|l

(i)
t−1)

3. Calculate the posterior density α
(j)
t (at) on the appearance at:

α
(j)
t (at) = k

(j)
t P (zt|l

(j)
t , at)

∫

at−1

P (at|l
(j)
t , l

(i)
t−1, at−1)α

(i)
t−1(at−1) (11)

4. Set w
(j)
t = 1/k

(j)
t .

If we restrict the distributions P (zt|l
(j)
t , at) and P (at|l

(j)
t , l

(i)
t−1, at−1) to be linear Gaussians,

then each α
(j)
t (at) will be a multivariate Gaussian, and its update can be performed using a

Kalman filter. This also makes the computation of k
(j)
t , and hence w

(j)
t straight-forward.

Acknowledgements

These notes are derived from [2] and [1].

References

[1] Z. Khan, T. Balch, and F. Dellaert. A rao-blackwellized particle filter for eigentracking. In
Proc. IEEE Comput. Soc. Conf. Comput. Vision and Pattern Recogn., 2004.

[2] K. Murphy. Bayesian map learning in dynamic environments. In NIPS ’99 (Neural Info. Proc.
Systems), 1999.

3


