
CMPT882 Assignment 1: Edge detection and Texture Recognition
Due October 1

1. Implement the Canny edge detector (ref: Trucco and Verri, Ch. 4)

• Smooth input image I by convolving with a Gaussian G = exp(−(x2 + y2)/σ2), J = I ∗ G

• Compute image derivatives Jx, Jy

• Compute edge strength Es =
√

J2
x + J2

y and direction Eo = arctan
Jy

Jx

• Perform non-maximum suppression, setting to zero values of Es that are not larger than their
neighbours along the direction perpendicular to the edge orientation in Eo.

• Implement hysteresis thresholding: given high threshold th and low threshold tl (th ≥ tl),
mark as edges all points with either:

1. Es larger than th

2. Es larger than tl and connected to an edge point ê with Es(ê) > th by other edge points
with strength Es > tl, in the direction of the edge at ê

Helpful MATLAB functions (aside from edge(..,’canny’)) include filter2, gradient, and
fspecial(’gaussian’,..). Experiment with running your edge detector on a couple of your
favourite images, with different values for σ, th, and tl.
Extra: If you are interested in edge detection, perhaps for use in a course project, try downloading
and running the “PB” code from http://www.cs.berkeley.edu/projects/vision/grouping/segbench/
Please see the course webpage for more details.

2. Perform texture recognition using histograms of textons

• Download the training and test images from the course website

• Construct a filterbank consisting of 18+18+3 filters (L1 normalized), of three different types:

1. Oriented odd-symmetric filters at 3 scales and 6 orientations, modeled as rotated copies
of the horizontal filter f(x, y) = G′

σ1
(y)Gσ2

(x). Use a ratio of 3 for σ2 : σ1. Set the 3

scales to be a “half-octave” apart, i.e. σi+1
1 =

√
2σi

1.

2. Oriented even-symmetric filters at 3 scales and 6 orientations, again rotated copies of a
horizontal filter, this time f(x, y) = G′′

σ1
(y)Gσ2

(x).

3. Radially symmetric center-surround filters at 3 scales, each modeled as a “Difference of
Gaussians” (DOG), f(x, y) = exp(−(x2 + y2)/σ1

2) − exp(−(x2 + y2)/σ2
2).

• Compute textons by filtering the training images and running kmeans to cluster the output

• Use these textons for texture recognition: for each test image, compute texton histogram and
compare to histograms for training images using χ2 distance. Assign label of closest matching
training image as label for test image.

Experiment with a few different values of K, the number of textons computed using kmeans. Look
at the texton maps computed for each image, and check that they are sensible.
There is a kmeans routine in the Netlab package, linked from the course website.


