Quiz 1 October 24, 2016

Time: 50 minutes; Total Marks: 45 One double-sided 8.5" x 11" cheat sheet allowed

This test contains 3 questions and 5 pages

NAME: _____

STUDENT NUMBER: _____

Question	Marks	Time budget
1	/24	25 min
2	/12	10 min
3	/9	10 min

- 1. (24 marks) True or False questions. Provide a short explanation.
 - (a) True or False. If a parameter μ maximizes the likelihood for a training set \mathcal{D} , μ also maximizes the log likelihood for \mathcal{D} .

(b) True or False. The prior probability that a sample is in class k, $P(C_k)$, must be no greater than 1: i.e. $P(C_k) \leq 1$.

(c) True or False. The perceptron criterion for training a classifier is equal to the number of mis-classified training examples.

(d) True or False. For a fixed learning rate η , gradient descent and stochastic gradient descent will always obtain the same solution when training logistic regression.

(e) True or False. A neural network classifier with 1 layer of hidden units can produce non-linear decision boundaries.

(f) True or False. The weight vector w that minimizes error in a neural network is unique.

2. (12 marks) Consider regression with a single training data point: $(x_1 = 4, t_1 = 3)$ and the basis function

$$\phi_1(x) = \exp\left\{-(x-4)^2\right\}$$

- Suppose we train a model with no regularization using only the basis function φ₁(x) (no bias term): y(x) = w₁φ₁(x).
 - Draw the learned function y(x).
 - What would w_1 be?

• Suppose we added a bias term: $y(x) = w_0 + w_1 \phi_1(x)$ and trained with no regularization. What would happen?

Suppose we added a bias term: y(x) = w₀ + w₁φ₁(x) and trained with regularization only on w₁. What would happen?

3. (9 marks) Consider the training set below for two-class classification. Draw the approximate decision regions when using **1-nearest neighbour**, **3-nearest neighbour**, and **logistic regression**. Please notice the "x" in the middle of the "o" points.

