
Recurrent Neural Networks Long Short-Term Memory Temporal Convolutional Networks Examples

Recurrent Neural Networks
Greg Mori - CMPT 419/726

Goodfellow, Bengio, and Courville: Deep Learning textbook
Ch. 10



Recurrent Neural Networks Long Short-Term Memory Temporal Convolutional Networks Examples

Sequential Data with Neural Networks

• Sequential input / output
• Many inputs, many outputs x1:T → y1:S

• c.f. object tracking, speech recognition with HMMs;
on-line/batch processing

• One input, many outputs x→ y1:S

• e.g. image captioning
• Many inputs, one output x1:T → y

• e.g. video classification



Recurrent Neural Networks Long Short-Term Memory Temporal Convolutional Networks Examples

Outline

Recurrent Neural Networks

Long Short-Term Memory

Temporal Convolutional Networks

Examples



Recurrent Neural Networks Long Short-Term Memory Temporal Convolutional Networks Examples

Outline

Recurrent Neural Networks

Long Short-Term Memory

Temporal Convolutional Networks

Examples



Recurrent Neural Networks Long Short-Term Memory Temporal Convolutional Networks Examples

Hidden State

• Basic idea: maintain a state ht

• State at time t depends on input xt and previous state ht−1

• It’s a neural network, so relation is non-linear function of
these inputs and some parameters W:

ht = f (ht−1, xt;W)

• Parameters W and function f (·) reused at all time steps



Recurrent Neural Networks Long Short-Term Memory Temporal Convolutional Networks Examples

Outputs

• Output yt also depends on the hidden state:

yt = f (ht;Wy)

• Again, parameters/function reused across time



Recurrent Neural Networks Long Short-Term Memory Temporal Convolutional Networks Examples

Outline

Recurrent Neural Networks

Long Short-Term Memory

Temporal Convolutional Networks

Examples



Recurrent Neural Networks Long Short-Term Memory Temporal Convolutional Networks Examples

Gradients

• Basic RNN not very effective
• Need many time steps / complex model for challenging

tasks
• Gradients in learning are a problem

• Too large: can be handled with gradient clipping (truncate
gradient magnitude)

• Too small: can be handled with network structures / gating
functions (LSTM, GRU)



Recurrent Neural Networks Long Short-Term Memory Temporal Convolutional Networks Examples

Long Short-Term Memory
2

in the time domain. Such “deep” models predated deep
spatial convolution models in the literature [5], [6].

The use of RNNs in perceptual applications has been ex-
plored for many decades, with varying results. A significant
limitation of simple RNN models which strictly integrate
state information over time is known as the “vanishing
gradient” effect: the ability to backpropagate an error signal
through a long-range temporal interval becomes increas-
ingly difficult in practice. Long Short-Term Memory (LSTM)
units, first proposed in [7], are recurrent modules which
enable long-range learning. LSTM units have hidden state
augmented with nonlinear mechanisms to allow state to
propagate without modification, be updated, or be reset,
using simple learned gating functions. LSTMs have recently
been demonstrated to be capable of large-scale learning of
speech recognition [8] and language translation models [9],
[10].

We show here that convolutional networks with re-
current units are generally applicable to visual time-series
modeling, and argue that in visual tasks where static or flat
temporal models have previously been employed, LSTM-
style RNNs can provide significant improvement when
ample training data are available to learn or refine the rep-
resentation. Specifically, we show that LSTM type models
provide for improved recognition on conventional video
activity challenges and enable a novel end-to-end optimiz-
able mapping from image pixels to sentence-level natural
language descriptions. We also show that these models
improve generation of descriptions from intermediate visual
representations derived from conventional visual models.

We instantiate our proposed architecture in three ex-
perimental settings (Figure 3). First, we show that directly
connecting a visual convolutional model to deep LSTM
networks, we are able to train video recognition models
that capture temporal state dependencies (Figure 3 left;
Section 4). While existing labeled video activity datasets
may not have actions or activities with particularly com-
plex temporal dynamics, we nonetheless observe significant
improvements on conventional benchmarks.

Second, we explore end-to-end trainable image to sen-
tence mappings. Strong results for machine translation
tasks have recently been reported [9], [10]; such models
are encoder-decoder pairs based on LSTM networks. We
propose a multimodal analog of this model, and describe an
architecture which uses a visual convnet to encode a deep
state vector, and an LSTM to decode the vector into a natural
language string (Figure 3 middle; Section 5). The resulting
model can be trained end-to-end on large-scale image and
text datasets, and even with modest training provides com-
petitive generation results compared to existing methods.

Finally, we show that LSTM decoders can be driven
directly from conventional computer vision methods which
predict higher-level discriminative labels, such as the se-
mantic video role tuple predictors in [11] (Figure 3, right;
Section 6). While not end-to-end trainable, such models offer
architectural and performance advantages over previous
statistical machine translation-based approaches.

We have realized a generic framework for recurrent
models in the widely adopted deep learning framework
Caffe [12], including ready-to-use implementations of RNN
and LSTM units. (See http://jeffdonahue.com/lrcn/.)

+

σ

σσ

xt
ht-1

ht
 = zt

Output 
Gate

Input 
Gate

Forget Gate

Input Modulation Gate

LSTM Unit

ϕ

xt

ht-1

ht

Output
zt

RNN Unit

σ

σ

ϕ

ft

it
gt

ot

ctct-1

Fig. 2. A diagram of a basic RNN cell (left) and an LSTM memory
cell (right) used in this paper (from [13], a slight simplification of the
architecture described in [14], which was derived from the LSTM initially
proposed in [7]).

2 BACKGROUND: RECURRENT NETWORKS

Traditional recurrent neural networks (RNNs, Figure 2, left)
model temporal dynamics by mapping input sequences to
hidden states, and hidden states to outputs via the following
recurrence equations (Figure 2, left):

ht = g(Wxhxt + Whhht�1 + bh)

zt = g(Whzht + bz)

where g is an element-wise non-linearity, such as a sigmoid
or hyperbolic tangent, xt is the input, ht 2 RN is the hidden
state with N hidden units, and zt is the output at time t.
For a length T input sequence hx1, x2, ..., xT i, the updates
above are computed sequentially as h1 (letting h0 = 0), z1,
h2, z2, ..., hT , zT .

Though RNNs have proven successful on tasks such
as speech recognition [15] and text generation [16], it can
be difficult to train them to learn long-term dynamics,
likely due in part to the vanishing and exploding gradients
problem [7] that can result from propagating the gradients
down through the many layers of the recurrent network,
each corresponding to a particular time step. LSTMs provide
a solution by incorporating memory units that explicitly
allow the network to learn when to “forget” previous hid-
den states and when to update hidden states given new
information. As research on LSTMs has progressed, hidden
units with varying connections within the memory unit
have been proposed. We use the LSTM unit as described
in [13] (Figure 2, right), a slight simplification of the one
described in [8], which was derived from the original LSTM
unit proposed in [7]. Letting �(x) = (1 + e�x)

�1 be the
sigmoid non-linearity which squashes real-valued inputs to
a [0, 1] range, and letting tanh(x) = ex�e�x

ex+e�x = 2�(2x) � 1
be the hyperbolic tangent non-linearity, similarly squashing
its inputs to a [�1, 1] range, the LSTM updates for time step
t given inputs xt, ht�1, and ct�1 are:

it = �(Wxixt + Whiht�1 + bi)

ft = �(Wxfxt + Whfht�1 + bf )

ot = �(Wxoxt + Whoht�1 + bo)

gt = tanh(Wxcxt + Whcht�1 + bc)

ct = ft � ct�1 + it � gt

ht = ot � tanh(ct)

• Hochreiter and Schmidhuber, Neural Computation 1997
• (Figure from Donohue et al. CVPR 2015)

• Gating functions g(·), f (·), o(·), reduce vanishing gradients



Recurrent Neural Networks Long Short-Term Memory Temporal Convolutional Networks Examples

Long Short-Term Memory 2

in the time domain. Such “deep” models predated deep
spatial convolution models in the literature [5], [6].

The use of RNNs in perceptual applications has been ex-
plored for many decades, with varying results. A significant
limitation of simple RNN models which strictly integrate
state information over time is known as the “vanishing
gradient” effect: the ability to backpropagate an error signal
through a long-range temporal interval becomes increas-
ingly difficult in practice. Long Short-Term Memory (LSTM)
units, first proposed in [7], are recurrent modules which
enable long-range learning. LSTM units have hidden state
augmented with nonlinear mechanisms to allow state to
propagate without modification, be updated, or be reset,
using simple learned gating functions. LSTMs have recently
been demonstrated to be capable of large-scale learning of
speech recognition [8] and language translation models [9],
[10].

We show here that convolutional networks with re-
current units are generally applicable to visual time-series
modeling, and argue that in visual tasks where static or flat
temporal models have previously been employed, LSTM-
style RNNs can provide significant improvement when
ample training data are available to learn or refine the rep-
resentation. Specifically, we show that LSTM type models
provide for improved recognition on conventional video
activity challenges and enable a novel end-to-end optimiz-
able mapping from image pixels to sentence-level natural
language descriptions. We also show that these models
improve generation of descriptions from intermediate visual
representations derived from conventional visual models.

We instantiate our proposed architecture in three ex-
perimental settings (Figure 3). First, we show that directly
connecting a visual convolutional model to deep LSTM
networks, we are able to train video recognition models
that capture temporal state dependencies (Figure 3 left;
Section 4). While existing labeled video activity datasets
may not have actions or activities with particularly com-
plex temporal dynamics, we nonetheless observe significant
improvements on conventional benchmarks.

Second, we explore end-to-end trainable image to sen-
tence mappings. Strong results for machine translation
tasks have recently been reported [9], [10]; such models
are encoder-decoder pairs based on LSTM networks. We
propose a multimodal analog of this model, and describe an
architecture which uses a visual convnet to encode a deep
state vector, and an LSTM to decode the vector into a natural
language string (Figure 3 middle; Section 5). The resulting
model can be trained end-to-end on large-scale image and
text datasets, and even with modest training provides com-
petitive generation results compared to existing methods.

Finally, we show that LSTM decoders can be driven
directly from conventional computer vision methods which
predict higher-level discriminative labels, such as the se-
mantic video role tuple predictors in [11] (Figure 3, right;
Section 6). While not end-to-end trainable, such models offer
architectural and performance advantages over previous
statistical machine translation-based approaches.

We have realized a generic framework for recurrent
models in the widely adopted deep learning framework
Caffe [12], including ready-to-use implementations of RNN
and LSTM units. (See http://jeffdonahue.com/lrcn/.)

+

σ

σσ

xt
ht-1

ht
 = zt

Output 
Gate

Input 
Gate

Forget Gate

Input Modulation Gate

LSTM Unit

ϕ

xt

ht-1

ht

Output
zt

RNN Unit

σ

σ

ϕ

ft

it
gt

ot

ctct-1

Fig. 2. A diagram of a basic RNN cell (left) and an LSTM memory
cell (right) used in this paper (from [13], a slight simplification of the
architecture described in [14], which was derived from the LSTM initially
proposed in [7]).

2 BACKGROUND: RECURRENT NETWORKS

Traditional recurrent neural networks (RNNs, Figure 2, left)
model temporal dynamics by mapping input sequences to
hidden states, and hidden states to outputs via the following
recurrence equations (Figure 2, left):

ht = g(Wxhxt + Whhht�1 + bh)

zt = g(Whzht + bz)

where g is an element-wise non-linearity, such as a sigmoid
or hyperbolic tangent, xt is the input, ht 2 RN is the hidden
state with N hidden units, and zt is the output at time t.
For a length T input sequence hx1, x2, ..., xT i, the updates
above are computed sequentially as h1 (letting h0 = 0), z1,
h2, z2, ..., hT , zT .

Though RNNs have proven successful on tasks such
as speech recognition [15] and text generation [16], it can
be difficult to train them to learn long-term dynamics,
likely due in part to the vanishing and exploding gradients
problem [7] that can result from propagating the gradients
down through the many layers of the recurrent network,
each corresponding to a particular time step. LSTMs provide
a solution by incorporating memory units that explicitly
allow the network to learn when to “forget” previous hid-
den states and when to update hidden states given new
information. As research on LSTMs has progressed, hidden
units with varying connections within the memory unit
have been proposed. We use the LSTM unit as described
in [13] (Figure 2, right), a slight simplification of the one
described in [8], which was derived from the original LSTM
unit proposed in [7]. Letting �(x) = (1 + e�x)

�1 be the
sigmoid non-linearity which squashes real-valued inputs to
a [0, 1] range, and letting tanh(x) = ex�e�x

ex+e�x = 2�(2x) � 1
be the hyperbolic tangent non-linearity, similarly squashing
its inputs to a [�1, 1] range, the LSTM updates for time step
t given inputs xt, ht�1, and ct�1 are:

it = �(Wxixt + Whiht�1 + bi)

ft = �(Wxfxt + Whfht�1 + bf )

ot = �(Wxoxt + Whoht�1 + bo)

gt = tanh(Wxcxt + Whcht�1 + bc)

ct = ft � ct�1 + it � gt

ht = ot � tanh(ct)

it = σ(Wxixt + Whiht−1 + bi) (1)
ft = σ(Wxf xt + Whf ht−1 + bf ) (2)
ot = σ(Wxoxt + Whoht−1 + bo) (3)
gt = tanh(Wxcxt + Whcht−1 + bc) (4)
ct = ft � ct−1 + it � gt (5)
ht = ot � tanh(ct) (6)

see Graves, Liwicki, Fernandez, Bertolami, Bunke, and Schmidhuber, TPAMI 2009



Recurrent Neural Networks Long Short-Term Memory Temporal Convolutional Networks Examples

Outline

Recurrent Neural Networks

Long Short-Term Memory

Temporal Convolutional Networks

Examples



Recurrent Neural Networks Long Short-Term Memory Temporal Convolutional Networks Examples

Convolutions to Aggregate over TimeAn Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling

x0 x1 xT�1 xT. . .

ŷ1ŷ0 ŷTŷT�1. . .

Input

Hidden

Hidden

Output

d = 1

d = 2

d = 4

x2 xT�2

ŷT�2ŷ2

Residual block (k, d)

1x1 Conv 
(optional)

WeightNorm

Dilated Causal Conv

ReLU

Dropout

WeightNorm

Dilated Causal Conv

ReLU

Dropout +

ẑ(i) = (ẑ
(i)
1 , . . . , ẑ

(i)
T )

ẑ(i�1) = (ẑ
(i�1)
1 , . . . , ẑ

(i�1)
T )

x0 x1 xT. . . xT�1

++

ẑ
(1)
T�1 ẑ

(1)
T

Residual block (k=3, d=1)

Convolutional Filter
Identity Map (or 1x1 Conv)

(a) (b) (c)

Figure 1. Architectural elements in a TCN. (a) A dilated causal convolution with dilation factors d = 1, 2, 4 and filter size k = 3. The
receptive field is able to cover all values from the input sequence. (b) TCN residual block. An 1x1 convolution is added when residual
input and output have different dimensions. (c) An example of residual connection in a TCN. The blue lines are filters in the residual
function, and the green lines are identity mappings.

where d is the dilation factor, k is the filter size, and s� d · i
accounts for the direction of the past. Dilation is thus equiv-
alent to introducing a fixed step between every two adjacent
filter taps. When d = 1, a dilated convolution reduces to a
regular convolution. Using larger dilation enables an output
at the top level to represent a wider range of inputs, thus
effectively expanding the receptive field of a ConvNet.

This gives us two ways to increase the receptive field of the
TCN: choosing larger filter sizes k and increasing the dila-
tion factor d, where the effective history of one such layer is
(k � 1)d. As is common when using dilated convolutions,
we increase d exponentially with the depth of the network
(i.e., d = O(2i) at level i of the network). This ensures that
there is some filter that hits each input within the effective
history, while also allowing for an extremely large effective
history using deep networks. We provide an illustration in
Figure 1(a).

3.4. Residual Connections

A residual block (He et al., 2016) contains a branch leading
out to a series of transformations F , whose outputs are
added to the input x of the block:

o = Activation(x + F(x)) (3)

This effectively allows layers to learn modifications to
the identity mapping rather than the entire transformation,
which has repeatedly been shown to benefit very deep net-
works.

Since a TCN’s receptive field depends on the network depth
n as well as filter size k and dilation factor d, stabilization of
deeper and larger TCNs becomes important. For example, in
a case where the prediction could depend on a history of size
212 and a high-dimensional input sequence, a network of up
to 12 layers could be needed. Each layer, more specifically,
consists of multiple filters for feature extraction. In our
design of the generic TCN model, we therefore employ a
generic residual module in place of a convolutional layer.

The residual block for our baseline TCN is shown in Fig-
ure 1(b). Within a residual block, the TCN has two layers
of dilated causal convolution and non-linearity, for which
we used the rectified linear unit (ReLU) (Nair & Hinton,
2010). For normalization, we applied weight normaliza-
tion (Salimans & Kingma, 2016) to the convolutional filters.
In addition, a spatial dropout (Srivastava et al., 2014) was
added after each dilated convolution for regularization: at
each training step, a whole channel is zeroed out.

However, whereas in standard ResNet the input is added
directly to the output of the residual function, in TCN (and
ConvNets in general) the input and output could have differ-
ent widths. To account for discrepant input-output widths,
we use an additional 1x1 convolution to ensure that element-
wise addition � receives tensors of the same shape (see
Figure 1(b,c)).

3.5. Discussion

We conclude this section by listing several advantages and
disadvantages of using TCNs for sequence modeling.

• Parallelism. Unlike in RNNs where the predictions for
later timesteps must wait for their predecessors to com-
plete, convolutions can be done in parallel since the same
filter is used in each layer. Therefore, in both training and
evaluation, a long input sequence can be processed as a
whole in TCN, instead of sequentially as in RNN.

• Flexible receptive field size. A TCN can change its re-
ceptive field size in multiple ways. For instance, stacking
more dilated (causal) convolutional layers, using larger
dilation factors, or increasing the filter size are all viable
options (with possibly different interpretations). TCNs
thus afford better control of the model’s memory size,
and are easy to adapt to different domains.

• Stable gradients. Unlike recurrent architectures, TCN
has a backpropagation path different from the temporal
direction of the sequence. TCN thus avoids the problem

• Control history by d (dilation, holes in the filter) and k (width
of the filter)

• Causal convolution, only use elements from the past
• Bai, Kolter, Koltun arXiv 2018



Recurrent Neural Networks Long Short-Term Memory Temporal Convolutional Networks Examples

Residual (skip) Connections
An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling

x0 x1 xT�1 xT. . .

ŷ1ŷ0 ŷTŷT�1. . .

Input

Hidden

Hidden

Output

d = 1

d = 2

d = 4

x2 xT�2

ŷT�2ŷ2

Residual block (k, d)

1x1 Conv 
(optional)

WeightNorm

Dilated Causal Conv

ReLU

Dropout

WeightNorm

Dilated Causal Conv

ReLU

Dropout +

ẑ(i) = (ẑ
(i)
1 , . . . , ẑ

(i)
T )

ẑ(i�1) = (ẑ
(i�1)
1 , . . . , ẑ

(i�1)
T )

x0 x1 xT. . . xT�1

++

ẑ
(1)
T�1 ẑ

(1)
T

Residual block (k=3, d=1)

Convolutional Filter
Identity Map (or 1x1 Conv)

(a) (b) (c)

Figure 1. Architectural elements in a TCN. (a) A dilated causal convolution with dilation factors d = 1, 2, 4 and filter size k = 3. The
receptive field is able to cover all values from the input sequence. (b) TCN residual block. An 1x1 convolution is added when residual
input and output have different dimensions. (c) An example of residual connection in a TCN. The blue lines are filters in the residual
function, and the green lines are identity mappings.

where d is the dilation factor, k is the filter size, and s� d · i
accounts for the direction of the past. Dilation is thus equiv-
alent to introducing a fixed step between every two adjacent
filter taps. When d = 1, a dilated convolution reduces to a
regular convolution. Using larger dilation enables an output
at the top level to represent a wider range of inputs, thus
effectively expanding the receptive field of a ConvNet.

This gives us two ways to increase the receptive field of the
TCN: choosing larger filter sizes k and increasing the dila-
tion factor d, where the effective history of one such layer is
(k � 1)d. As is common when using dilated convolutions,
we increase d exponentially with the depth of the network
(i.e., d = O(2i) at level i of the network). This ensures that
there is some filter that hits each input within the effective
history, while also allowing for an extremely large effective
history using deep networks. We provide an illustration in
Figure 1(a).

3.4. Residual Connections

A residual block (He et al., 2016) contains a branch leading
out to a series of transformations F , whose outputs are
added to the input x of the block:

o = Activation(x + F(x)) (3)

This effectively allows layers to learn modifications to
the identity mapping rather than the entire transformation,
which has repeatedly been shown to benefit very deep net-
works.

Since a TCN’s receptive field depends on the network depth
n as well as filter size k and dilation factor d, stabilization of
deeper and larger TCNs becomes important. For example, in
a case where the prediction could depend on a history of size
212 and a high-dimensional input sequence, a network of up
to 12 layers could be needed. Each layer, more specifically,
consists of multiple filters for feature extraction. In our
design of the generic TCN model, we therefore employ a
generic residual module in place of a convolutional layer.

The residual block for our baseline TCN is shown in Fig-
ure 1(b). Within a residual block, the TCN has two layers
of dilated causal convolution and non-linearity, for which
we used the rectified linear unit (ReLU) (Nair & Hinton,
2010). For normalization, we applied weight normaliza-
tion (Salimans & Kingma, 2016) to the convolutional filters.
In addition, a spatial dropout (Srivastava et al., 2014) was
added after each dilated convolution for regularization: at
each training step, a whole channel is zeroed out.

However, whereas in standard ResNet the input is added
directly to the output of the residual function, in TCN (and
ConvNets in general) the input and output could have differ-
ent widths. To account for discrepant input-output widths,
we use an additional 1x1 convolution to ensure that element-
wise addition � receives tensors of the same shape (see
Figure 1(b,c)).

3.5. Discussion

We conclude this section by listing several advantages and
disadvantages of using TCNs for sequence modeling.

• Parallelism. Unlike in RNNs where the predictions for
later timesteps must wait for their predecessors to com-
plete, convolutions can be done in parallel since the same
filter is used in each layer. Therefore, in both training and
evaluation, a long input sequence can be processed as a
whole in TCN, instead of sequentially as in RNN.

• Flexible receptive field size. A TCN can change its re-
ceptive field size in multiple ways. For instance, stacking
more dilated (causal) convolutional layers, using larger
dilation factors, or increasing the filter size are all viable
options (with possibly different interpretations). TCNs
thus afford better control of the model’s memory size,
and are easy to adapt to different domains.

• Stable gradients. Unlike recurrent architectures, TCN
has a backpropagation path different from the temporal
direction of the sequence. TCN thus avoids the problem

• Include residual connections to allow long-range modeling
and gradient flow



Recurrent Neural Networks Long Short-Term Memory Temporal Convolutional Networks Examples

Outline

Recurrent Neural Networks

Long Short-Term Memory

Temporal Convolutional Networks

Examples



Recurrent Neural Networks Long Short-Term Memory Temporal Convolutional Networks Examples

Example: Image Captioning

• Karpathy and Fei-Fei, CVPR 2015



Recurrent Neural Networks Long Short-Term Memory Temporal Convolutional Networks Examples

Example: Video Description

LSTM LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM LSTM LSTM

time

<pad> <pad> <pad> <BOS>

man

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM

is talking <EOS>

<pad> <pad> <pad> <pad> <pad>

<pad>

A

Encoding stage Decoding stage

Figure 2. We propose a stack of two LSTMs that learn a representation of a sequence of frames in order to decode it into a sentence that
describes the event in the video. The top LSTM layer (colored red) models visual feature inputs. The second LSTM layer (colored green)
models language given the text input and the hidden representation of the video sequence. We use <BOS> to indicate begin-of-sentence
and <EOS> for the end-of-sentence tag. Zeros are used as a <pad> when there is no input at the time step.

loss is propagated back in time, the LSTM learns to gener-
ate an appropriate hidden state representation (hn) of the
input sequence. The output (zt) of the second LSTM layer
is used to obtain the emitted word (y). We apply a softmax
function to get the probability distribution over the words y0

in the vocabulary V :

p(y|zt) =
exp(Wyzt)P

y02V exp(Wy0zt)
(5)

We note that, during the decoding phase, the visual frame
representation for the first LSTM layer is simply a vector
of zeros that acts as padding input. We require an explicit
end-of-sentence tag (<EOS>) to terminate each sentence
since this enables the model to define a distribution over
sequences of varying lengths. At test time, during each de-
coding step we choose the word yt with the maximum prob-
ability after the softmax (from Equation 5) until it emits the
<EOS> token.

3.3. Video and text representation

RGB frames. Similar to previous LSTM-based image cap-
tioning efforts [8, 40] and video-to-text approaches [39, 43],
we apply a convolutional neural network (CNN) to input
images and provide the output of the top layer as input to
the LSTM unit. In this work, we report results using the out-
put of the fc7 layer (after applying the ReLU non-linearity)
on the Caffe Reference Net (a variant of AlexNet) and also
the 16-layer VGG model [32]. We use CNNs that are pre-
trained on the 1.2M image ILSVRC-2012 object classifica-
tion subset of the ImageNet dataset [30] and made available
publicly via the Caffe ModelZoo.1 Each input video frame
is scaled to 256x256, and is cropped to a random 227x227

1https://github.com/BVLC/caffe/wiki/Model-Zoo

region. It is then processed by the CNN. We remove the
original last fully-connected classification layer and learn a
new linear embedding of the features to a 500 dimensional
space. The lower dimension features form the input (xt)
to the first LSTM layer. The weights of the embedding are
learned jointly with the LSTM layers during training.
Optical Flow. In addition to CNN outputs from raw im-
age (RGB) frames, we also incorporate optical flow mea-
sures as input sequences to our architecture. Others [24, 8]
have shown that incorporating optical flow information to
LSTMs improves activity classification. As many of our
descriptions are activity centered, we explore this option
for video description as well. We follow the approach in
[8, 9] and first extract classical variational optical flow fea-
tures [2]. We then create flow images (as seen in Figure 1)
in a manner similar to [9], by centering x and y flow values
around 128 and multiplying by a scalar such that flow values
fall between 0 and 255. We also calculate the flow magni-
tude and add it as a third channel to the flow image. We
then use a CNN [9] initialized with weights trained on the
UCF101 video dataset to classify optical flow images into
101 activity classes. The fc6 layer activations of the CNN
are embedded in a lower 500 dimensional space which is
then given as input to the LSTM. The rest of the LSTM ar-
chitecture remains unchanged for flow inputs.

In our combined model, we use a shallow fusion tech-
nique to integrate flow and RGB features. At each time
step of the decoding phase, the model proposes a set of can-
didate words. We then rescore these hypotheses with the
weighted sum of the scores by the flow and RGB networks,
where we only need to recompute the score of each new
word p(yt = y0) as:

↵ · prgb(yt = y0) + (1 � ↵) · pflow(yt = y0)
the hyper-parameter ↵ is tuned on the validation set.

• S. Venugopalan, M. Rohrbach, J. Donahue, R. Mooney, T.
Darrell, K. Saenko, ICCV 2015



Recurrent Neural Networks Long Short-Term Memory Temporal Convolutional Networks Examples

Example: Machine Translation

Figure 1: The model architecture of GNMT, Google’s Neural Machine Translation system. On the left
is the encoder network, on the right is the decoder network, in the middle is the attention module. The
bottom encoder layer is bi-directional: the pink nodes gather information from left to right while the green
nodes gather information from right to left. The other layers of the encoder are uni-directional. Residual
connections start from the layer third from the bottom in the encoder and decoder. The model is partitioned
into multiple GPUs to speed up training. In our setup, we have 8 encoder LSTM layers (1 bi-directional layer
and 7 uni-directional layers), and 8 decoder layers. With this setting, one model replica is partitioned 8-ways
and is placed on 8 di�erent GPUs typically belonging to one host machine. During training, the bottom
bi-directional encoder layers compute in parallel first. Once both finish, the uni-directional encoder layers
can start computing, each on a separate GPU. To retain as much parallelism as possible during running
the decoder layers, we use the bottom decoder layer output only for obtaining recurrent attention context,
which is sent directly to all the remaining decoder layers. The softmax layer is also partitioned and placed on
multiple GPUs. Depending on the output vocabulary size we either have them run on the same GPUs as the
encoder and decoder networks, or have them run on a separate set of dedicated GPUs.

context ai for the current time step is computed according to the following formulas:

st = AttentionFunction(yi≠1,xt) ’t, 1 Æ t Æ M

pt = exp(st)/
Mÿ

t=1
exp(st) ’t, 1 Æ t Æ M

ai =
Mÿ

t=1
pt.xt

(4)

where AttentionFunction in our implementation is a feed forward network with one hidden layer.

3.1 Residual Connections
As mentioned above, deep stacked LSTMs often give better accuracy over shallower models. However, simply
stacking more layers of LSTM works only to a certain number of layers, beyond which the network becomes

4

• Wu et al., Google’s Neural Machine Translation System:
Bridging the Gap between Human and Machine
Translation, arXiv 2016



Recurrent Neural Networks Long Short-Term Memory Temporal Convolutional Networks Examples

Conclusion

• Readings: http://www.deeplearningbook.org/
contents/rnn.html

• Recurrent neural networks, can model sequential
inputs/outputs

• Input includes state (output) from previous time
• Different structures:

• RNN with multiple inputs/outputs
• Gated recurrent unit (GRU)
• Long short-term memory (LSTM)

• Error gradients back-propagated across entire sequence

http://www.deeplearningbook.org/contents/rnn.html
http://www.deeplearningbook.org/contents/rnn.html

	Recurrent Neural Networks
	Long Short-Term Memory
	Temporal Convolutional Networks
	Examples

