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K-Means Gaussian Mixture Models Expectation-Maximization

Learning Parameters to Probability Distributions
• We discussed probabilistic models at length
• In assignment 3 you showed that given fully observed

training data, setting parameters θi to probability
distributions is straight-forward

• However, in many settings not all variables are observed
(labelled) in the training data: xi = (xi,hi)
• e.g. Speech recognition: have speech signals, but not

phoneme labels
• e.g. Object recognition: have object labels (car, bicycle),

but not part labels (wheel, door, seat)
• Unobserved variables are called latent variables

Shape. The shape is represented by a joint Gaussian den-

sity of the locations of features within a hypothesis, once

they have been transformed into a scale-invariant space.

This is done using the scale information from the features

in the hypothesis, so avoiding an exhaustive search over

scale that other methods use. The density has parameters

θshape = {µ,Σ}. Note that, unlike appearance whose co-
variance matrices Vp, Vbg are diagonal, Σ is a full matrix.

All features not included in the hypothesis are considered

as arising from the background. The model for the back-

ground assumes features to be spread uniformly over the

image (which has area α), with locations independent of the
foreground locations. If a part is occluded it is integrated

out of the joint foreground density.

p(X|S,h, θ)
p(X|S,h, θbg)

= G(X(h)|µ,Σ)αf

Relative scale. The scale of each part p relative to a ref-
erence frame is modeled by a Gaussian density which has

parameters θscale = {tp, Up}. The parts are assumed to
be independent to one another. The background model as-

sumes a uniform distribution over scale (within a range r).

p(S|h, θ)
p(S|h, θbg)

=
P∏

p=1

G(S(hp)|tp, Up)dp rf

Occlusion and Statistics of the feature finder.

p(h|θ)
p(h|θbg)

=
pPoiss(n|M)
pPoiss(N |M)

1
nCr(N, f)

p(d|θ)

The first term models the number of features detected using

a Poisson distribution, which has a meanM . The second is

a book-keeping term for the hypothesis variable and the last

is a probability table (of size 2P ) for all possible occlusion

patterns and is a parameter of the model.

The model of Weber et al. contains the shape and oc-

clusion terms to which we have added the appearance and

relative scale terms. Since the model encompasses many of

the properties of an object, all in a probabilistic way, this

model can represent both geometrically constrained objects

(where the shape density would have a small covariance)

and objects with distinctive appearance but lacking geomet-

ric form (the appearance densities would be tight, but the

shape density would now be looser). From the equations

above we can now calculate the overall likelihood ratio from

a given set of X,S,A. The intuition is that the majority of
the hypotheses will be low scoring as they will be picking

up features from background junk on the image but hope-

fully a few features will genuinely be part of the object and

hypotheses using these will score highly. However, we must

be able to locate features over many different instances of

the object and over a range of scales in order for this ap-

proach to work.

2.2. Feature detection

Features are found using the detector of Kadir and

Brady [7]. This method finds regions that are salient over

both location and scale. For each point on the image a his-

togram P (I) is made of the intensities in a circular region
of radius (scale) s. The entropy H(s) of this histogram is

then calculated and the local maxima ofH(s) are candidate
scales for the region. The saliency of each of these candi-

dates is measured by H dP
ds (with appropriate normalization

for scale [7, 8]). The N regions with highest saliency over

the image provide the features for learning and recognition.

Each feature is defined by its centre and radius (the scale).

A good example illustrating the saliency principle is that

of a bright circle on a dark background. If the scale is too

small then only the white circle is seen, and there is no ex-

trema in entropy. There is an entropy extrema when the

scale is slightly larger than the radius of the bright circle,

and thereafter the entropy decreases as the scale increases.

In practice this method gives stable identification of fea-

tures over a variety of sizes and copes well with intra-class

variability. The saliency measure is designed to be invari-

ant to scaling, although experimental tests show that this is

not entirely the case due to aliasing and other effects. Note,

only monochrome information is used to detect and repre-

sent features.

2.3. Feature representation

The feature detector identifies regions of interest on each

image. The coordinates of the centre give usX and the size

of the region gives S. Figure 2 illustrates this on two typical
images from the motorbike dataset.
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Figure 2: Output of the feature detector

Once the regions are identified, they are cropped from

the image and rescaled to the size of a small (typically

11×11) pixel patch. Thus, each patch exists in a 121 dimen-
sional space. Since the appearance densities of the model

must also exist in this space, we must somehow reduce the

dimensionality of each patch whilst retaining its distinctive-

ness, since a 121-dimensional Gaussian is unmanageable

from a numerical point of view and also the number of pa-

rameters involved (242 per model part) are too many to be

estimated.

This is done by using principal component analysis

(PCA). In the learning stage, we collect the patches from

Shape. The shape is represented by a joint Gaussian den-

sity of the locations of features within a hypothesis, once

they have been transformed into a scale-invariant space.

This is done using the scale information from the features

in the hypothesis, so avoiding an exhaustive search over

scale that other methods use. The density has parameters

θshape = {µ,Σ}. Note that, unlike appearance whose co-
variance matrices Vp, Vbg are diagonal, Σ is a full matrix.

All features not included in the hypothesis are considered

as arising from the background. The model for the back-

ground assumes features to be spread uniformly over the

image (which has area α), with locations independent of the
foreground locations. If a part is occluded it is integrated

out of the joint foreground density.

p(X|S,h, θ)
p(X|S,h, θbg)

= G(X(h)|µ,Σ)αf

Relative scale. The scale of each part p relative to a ref-
erence frame is modeled by a Gaussian density which has

parameters θscale = {tp, Up}. The parts are assumed to
be independent to one another. The background model as-

sumes a uniform distribution over scale (within a range r).

p(S|h, θ)
p(S|h, θbg)

=
P∏

p=1

G(S(hp)|tp, Up)dp rf

Occlusion and Statistics of the feature finder.

p(h|θ)
p(h|θbg)

=
pPoiss(n|M)
pPoiss(N |M)

1
nCr(N, f)

p(d|θ)

The first term models the number of features detected using

a Poisson distribution, which has a meanM . The second is

a book-keeping term for the hypothesis variable and the last

is a probability table (of size 2P ) for all possible occlusion

patterns and is a parameter of the model.

The model of Weber et al. contains the shape and oc-

clusion terms to which we have added the appearance and

relative scale terms. Since the model encompasses many of

the properties of an object, all in a probabilistic way, this

model can represent both geometrically constrained objects

(where the shape density would have a small covariance)

and objects with distinctive appearance but lacking geomet-

ric form (the appearance densities would be tight, but the

shape density would now be looser). From the equations

above we can now calculate the overall likelihood ratio from

a given set of X,S,A. The intuition is that the majority of
the hypotheses will be low scoring as they will be picking

up features from background junk on the image but hope-

fully a few features will genuinely be part of the object and

hypotheses using these will score highly. However, we must

be able to locate features over many different instances of

the object and over a range of scales in order for this ap-

proach to work.

2.2. Feature detection

Features are found using the detector of Kadir and

Brady [7]. This method finds regions that are salient over

both location and scale. For each point on the image a his-

togram P (I) is made of the intensities in a circular region
of radius (scale) s. The entropy H(s) of this histogram is

then calculated and the local maxima ofH(s) are candidate
scales for the region. The saliency of each of these candi-

dates is measured by H dP
ds (with appropriate normalization

for scale [7, 8]). The N regions with highest saliency over

the image provide the features for learning and recognition.

Each feature is defined by its centre and radius (the scale).

A good example illustrating the saliency principle is that

of a bright circle on a dark background. If the scale is too

small then only the white circle is seen, and there is no ex-

trema in entropy. There is an entropy extrema when the

scale is slightly larger than the radius of the bright circle,

and thereafter the entropy decreases as the scale increases.

In practice this method gives stable identification of fea-

tures over a variety of sizes and copes well with intra-class

variability. The saliency measure is designed to be invari-

ant to scaling, although experimental tests show that this is

not entirely the case due to aliasing and other effects. Note,

only monochrome information is used to detect and repre-

sent features.

2.3. Feature representation

The feature detector identifies regions of interest on each

image. The coordinates of the centre give usX and the size

of the region gives S. Figure 2 illustrates this on two typical
images from the motorbike dataset.
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Figure 2: Output of the feature detector

Once the regions are identified, they are cropped from

the image and rescaled to the size of a small (typically

11×11) pixel patch. Thus, each patch exists in a 121 dimen-
sional space. Since the appearance densities of the model

must also exist in this space, we must somehow reduce the

dimensionality of each patch whilst retaining its distinctive-

ness, since a 121-dimensional Gaussian is unmanageable

from a numerical point of view and also the number of pa-

rameters involved (242 per model part) are too many to be

estimated.

This is done by using principal component analysis

(PCA). In the learning stage, we collect the patches from

figs from Fergus et al.
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Unsupervised Learning

(a)

−2 0 2

−2

0

2

• We will start with an unsupervised
learning (clustering) problem:

• Given a dataset {x1, . . . , xN}, each
xi ∈ RD, partition the dataset into K
clusters
• Intuitively, a cluster is a group of

points, which are close together and
far from others
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Distortion Measure

(a)
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(i)
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• Formally, introduce prototypes (or
cluster centers) µk ∈ RD

• Use binary rnk, 1 if point n is in cluster k,
0 otherwise (1-of-K coding scheme
again)

• Find {µk}, {rnk} to minimize distortion
measure:

J =

N∑
n=1

K∑
k=1

rnk||xn − µk||2
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Minimizing Distortion Measure

• Minimizing J directly is hard

J =

N∑
n=1

K∑
k=1

rnk||xn − µk||2

• However, two things are easy
• If we know µk, minimizing J wrt rnk
• If we know rnk, minimizing J wrt µk

• This suggests an iterative procedure
• Start with initial guess for µk
• Iteration of two steps:

• Minimize J wrt rnk

• Minimize J wrt µk

• Rinse and repeat until convergence
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Determining Membership Variables
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• Step 1 in an iteration of K-means is to
minimize distortion measure J wrt
cluster membership variables rnk

J =

N∑
n=1

K∑
k=1

rnk||xn − µk||2

• Terms for different data points xn are
independent, for each data point set rnk

to minimize

K∑
k=1

rnk||xn − µk||2

• Simply set rnk = 1 for the cluster center
µk with smallest distance
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Determining Cluster Centers

(b)
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• Step 2: fix rnk, minimize J wrt the cluster
centers µk

J =

K∑
k=1

N∑
n=1

rnk||xn−µk||2 switch order of sums

• So we can minimze wrt each µk separately
• Take derivative, set to zero:

2
N∑

n=1

rnk(xn − µk) = 0

⇔ µk =

∑
n rnkxn∑

n rnk

i.e. mean of datapoints xn assigned to
cluster k
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Determining Cluster Centers
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K-means Algorithm

• Start with initial guess for µk
• Iteration of two steps:

• Minimize J wrt rnk

• Assign points to nearest cluster center
• Minimize J wrt µk

• Set cluster center as average of points in cluster

• Rinse and repeat until convergence
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K-means example

(a)

−2 0 2

−2

0

2



K-Means Gaussian Mixture Models Expectation-Maximization

K-means example
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K-means example
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K-means example
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K-means example
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K-means example
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K-means example
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K-means example
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K-means example
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Next step doesn’t change membership – stop
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K-means Convergence

• Repeat steps until no change in cluster assignments
• For each step, value of J either goes down, or we stop
• Finite number of possible assignments of data points to

clusters, so we are guarranteed to converge eventually
• Note it may be a local maximum rather than a global

maximum to which we converge
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K-means Example - Image Segmentation
����� ����� ������� Original image

• K-means clustering on pixel colour values
• Pixels in a cluster are coloured by cluster mean
• Represent each pixel (e.g. 24-bit colour value) by a cluster

number (e.g. 4 bits for K = 10), compressed version
• This technique known as vector quantization

• Represent vector (in this case from RGB, R3) as a single
discrete value
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Hard Assignment vs. Soft Assignment

(i)

−2 0 2

−2

0

2 • In the K-means algorithm, a hard
assignment of points to clusters is made

• However, for points near the decision
boundary, this may not be such a good
idea

• Instead, we could think about making a
soft assignment of points to clusters
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Gaussian Mixture Model
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• The Gaussian mixture model (or mixture of Gaussians
MoG) models the data as a combination of Gaussians

• Above shows a dataset generated by drawing samples
from three different Gaussians
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Generative Model

x
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• The mixture of Gaussians is a generative model
• To generate a datapoint xn, we first generate a value for a

discrete variable zn ∈ {1, . . . ,K}
• We then generate a value xn ∼ N (x|µk,Σk) for the

corresponding Gaussian
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Graphical Model

xn

zn

N

µ Σ

π
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• Full graphical model using plate notation
• Note zn is a latent variable, unobserved

• Need to give conditional distributions p(zn) and p(xn|zn)

• The one-of-K representation is helpful here: znk ∈ {0, 1},
zn = (zn1, . . . , znK)
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Graphical Model - Latent Component Variable

xn

zn

N

µ Σ

π
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• Use a Bernoulli distribution for p(zn)
• i.e. p(znk = 1) = πk
• Parameters to this distribution {πk}
• Must have 0 ≤ πk ≤ 1 and

∑K
k=1 πk = 1

• p(zn) =
∏K

k=1 π
znk
k
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Graphical Model - Observed Variable

xn

zn

N

µ Σ
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• Use a Gaussian distribution for p(xn|zn)
• Parameters to this distribution {µk,Σk}

p(xn|znk = 1) = N (xn|µk,Σk)

p(xn|zn) =

K∏
k=1

N (xn|µk,Σk)
znk
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Graphical Model - Joint distribution

xn

zn

N

µ Σ

π
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• The full joint distribution is given by:

p(x, z) =

N∏
n=1

p(zn)p(xn|zn)

=
N∏

n=1

K∏
k=1

πznk
k N (xn|µk,Σk)

znk
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MoG Marginal over Observed Variables

• The marginal distribution p(xn) for this model is:

p(xn) =
∑

zn

p(xn, zn) =
∑

zn

p(zn)p(xn|zn)

=

K∑
k=1

πkN (xn|µk,Σk)

• A mixture of Gaussians
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MoG Conditional over Latent Variable
(b)
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• The conditional p(znk = 1|xn) will play an important role for
learning

• It is denoted by γ(znk) can be computed as:

γ(znk) ≡ p(znk = 1|xn) =
p(znk = 1)p(xn|znk = 1)∑K
j=1 p(znj = 1)p(xn|znj = 1)

=
πkN (xn|µk,Σk)∑K
j=1 πjN (xn|µj,Σj)

• γ(znk) is the responsibility of component k for datapoint n
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MoG Conditional over Latent Variable
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MoG Learning

• Given a set of observations {x1, . . . , xN}, without the latent
variables zn, how can we learn the parameters?
• Model parameters are θ = {πk,µk,Σk}

• Answer will be similar to k-means:
• If we know the latent variables zn, fitting the Gaussians is

easy
• If we know the Gaussians µk,Σk, finding the latent

variables is easy

• Rather than latent variables, we will use responsibilities
γ(znk)
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MoG Learning
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MoG Maximum Likelihood Learning

• Given a set of observations {x1, . . . , xN}, without the latent
variables zn, how can we learn the parameters?
• Model parameters are θ = {πk,µk,Σk}

• We can use the maximum likelihood criterion:

θML = arg max
θ

N∏
n=1

K∑
k=1

πkN (xn|µk,Σk)

= arg max
θ

N∑
n=1

log

{
K∑

k=1

πkN (xn|µk,Σk)

}

• Unfortunately, closed-form solution not possible this time –
log of sum rather than log of product
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MoG Maximum Likelihood Learning - Problem

• Maximum likelihood criterion, 1-D:

θML = arg max
θ

N∑
n=1

log

{
K∑

k=1

πk
1√
2πσ

exp
{
−(xn − µk)

2/(2σ2)
}}

• Suppose we set µk = xn for some k and n, then we have
one term in the sum:

πk
1√

2πσk
exp

{
−(xn − µk)

2/(2σ2)
}

= πk
1√

2πσk
exp

{
−(0)2/(2σ2)

}
• In the limit as σk → 0, this goes to∞

• So ML solution is to set some µk = xn, and σk = 0!
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ML for Gaussian Mixtures

• Keeping this problem in mind, we will develop an algorithm
for ML estimation of the parameters for a MoG model
• Search for a local optimum

• Consider the log-likelihood function

`(θ) =

N∑
n=1

log

{
K∑

k=1

πkN (xn|µk,Σk)

}

• We can try taking derivatives and setting to zero, even
though no closed form solution exists
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Maximizing Log-Likelihood - Means

`(θ) =

N∑
n=1

log

{
K∑

k=1

πkN (xn|µk,Σk)

}
∂

∂µk
`(θ) =

N∑
n=1

πkN (xn|µk,Σk)∑
j πjN (xn|µj,Σj)

Σ−1
k (xn − µk)

=
N∑

n=1

γ(znk)Σ
−1
k (xn − µk)

• Setting derivative to 0, and multiply by Σk

N∑
n=1

γ(znk)µk =
N∑

n=1

γ(znk)xn

⇔ µk =
1

Nk

N∑
n=1

γ(znk)xn where Nk =

N∑
n=1

γ(znk)
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Maximizing Log-Likelihood - Means and Covariances

• Note that the mean µk is a weighted combination of points
xn, using the responsibilities γ(znk) for the cluster k

µk =
1

Nk

N∑
n=1

γ(znk)xn

• Nk =
∑N

n=1 γ(znk) is the effective number of points in the
cluster

• A similar result comes from taking derivatives wrt the
covariance matrices Σk:

Σk =
1

Nk

N∑
n=1

γ(znk)(xn − µk)(xn − µk)
T
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Maximizing Log-Likelihood - Mixing Coefficients

• We can also maximize wrt the mixing coefficients πk

• Note there is a constraint that
∑

k πk = 1
• Use Lagrange multipliers, c.f. Chapter 7

• End up with:

πk =
Nk

N
average responsibility that component k takes



K-Means Gaussian Mixture Models Expectation-Maximization

Three Parameter Types and Three Equations

• These three equations a solution does not make

µk =
1

Nk

N∑
n=1

γ(znk)xn

Σk =
1

Nk

N∑
n=1

γ(znk)(xn − µk)(xn − µk)
T

πk =
Nk

N

• All depend on γ(znk), which depends on all 3!
• But an iterative scheme can be used
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EM for Gaussian Mixtures
• Initialize parameters, then iterate:

• E step: Calculate responsibilities using current parameters

γ(znk) =
πkN (xn|µk,Σk)∑K
j=1 πjN (xn|µj,Σj)

• M step: Re-estimate parameters using these γ(znk)

µk =
1

Nk

N∑
n=1

γ(znk)xn

Σk =
1

Nk

N∑
n=1

γ(znk)(xn − µk)(xn − µk)
T

πk =
Nk

N
• This algorithm is known as the expectation-maximization

algorithm (EM)
• Next we describe its general form, why it works, and why it’s

called EM (but first an example)
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MoG EM - Example

(a)−2 0 2

−2

0

2

• Same initialization as with K-means before
• Often, K-means is actually used to initialize EM
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MoG EM - Example

(b)−2 0 2

−2

0

2

• Calculate responsibilities γ(znk)
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MoG EM - Example

(c)

�����

−2 0 2

−2

0

2

• Calculate model parameters {πk,µk,Σk} using these
responsibilities



K-Means Gaussian Mixture Models Expectation-Maximization

MoG EM - Example

(d)

�����

−2 0 2

−2

0

2

• Iteration 2
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MoG EM - Example

(e)

�����

−2 0 2

−2

0

2

• Iteration 5
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MoG EM - Example

(f)

�������

−2 0 2

−2

0

2

• Iteration 20 - converged
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General Version of EM

• In general, we are interested in maximizing the likelihood

p(X|θ) =
∑

Z

p(X,Z|θ)

where X denotes all observed variables, and Z denotes all
latent (hidden, unobserved) variables

• Assume that maximizing p(X|θ) is difficult (e.g. mixture of
Gaussians)

• But maximizing p(X,Z|θ) is tractable (everything observed)

• p(X,Z|θ) is referred to as the complete-data likelihood
function, which we don’t have
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A Lower Bound

• The strategy for optimization will be to introduce a lower
bound on the likelihood
• This lower bound will be based on the complete-data

likelihood, which is easy to optimize

• Iteratively increase this lower bound
• Make sure we’re increasing the likelihood while doing so
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A Decomposition Trick

• To obtain the lower bound, we use a decomposition:

ln p(X,Z|θ) = ln p(X|θ) + ln p(Z|X,θ) product rule
ln p(X|θ) = L(q,θ) + KL(q||p)

L(q,θ) ≡
∑

Z

q(Z) ln
{

p(X,Z|θ)
q(Z)

}
KL(q||p) ≡ −

∑
Z

q(Z) ln
{

p(Z|X,θ)
q(Z)

}
• KL(q||p) is known as the Kullback-Leibler divergence

(KL-divergence), and is ≥ 0 (see p.55 PRML, next slide)
• Hence ln p(X|θ) ≥ L(q,θ)
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Kullback-Leibler Divergence
• KL(p(x)||q(x)) is a measure of the difference between

distributions p(x) and q(x):

KL(p(x)||q(x)) = −
∑

x

p(x) log
q(x)
p(x)

• Motivation: average additional amount of information
required to encode x using code assuming distribution q(x)
when x actually comes from p(x)

• Note it is not symmetric: KL(q(x)||p(x)) 6= KL(p(x)||q(x)) in
general

• It is non-negative:
• Jensen’s inequality: − ln(

∑
x xp(x)) ≤ −

∑
x p(x) ln x

• Apply to KL:

KL(p||q) = −
∑

x

p(x) log
q(x)
p(x)

≥ − ln

(∑
x

q(x)
p(x)

p(x)

)
= −ln

∑
x

q(x) = 0
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Increasing the Lower Bound - E step

• EM is an iterative optimization technique which tries to
maximize this lower bound: ln p(X|θ) ≥ L(q,θ)

• E step: Fix θold, maximize L(q,θold) wrt q
• i.e. Choose distribution q to maximize L
• Reordering bound:

L(q,θold) = ln p(X|θold)− KL(q||p)

• ln p(X|θold) does not depend on q
• Maximum is obtained when KL(q||p) is as small as possible

• Occurs when q = p, i.e. q(Z) = p(Z|X,θ)
• This is the posterior over Z, recall these are the

responsibilities from MoG model
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Increasing the Lower Bound - M step

• M step: Fix q, maximize L(q,θ) wrt θ
• The maximization problem is on

L(q,θ) =
∑

Z

q(Z) ln p(X,Z|θ)−
∑

Z

q(Z) ln q(Z)

=
∑

Z

p(Z|X,θold) ln p(X,Z|θ)−
∑

Z

p(Z|X,θold) ln p(Z|X,θold)

• Second term is constant with respect to θ

• First term is ln of complete data likelihood, which is
assumed easy to optimize
• Expected complete log likelihood – what we think complete

data likelihood will be
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Why does EM work?

• In the M-step we changed from θold to θnew

• This increased the lower bound L, unless we were at a
maximum (so we would have stopped)

• This must have caused the log likelihood to increase
• The E-step set q to make the KL-divergence 0:

ln p(X|θold) = L(q,θold) + KL(q||p) = L(q,θold)

• Since the lower bound L increased when we moved from
θold to θnew:

ln p(X|θold) = L(q,θold) < L(q,θnew)

= ln p(X|θnew)− KL(q||pnew)

• So the log-likelihood has increased going from θold to θnew
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Bounding Example
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Figure 1: EM example: Mixture components and data. The data consists of three

samples drawn from each mixture component, shown above as circles and triangles.

The means of the mixture components are −2 and 2, respectively.
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Figure 2: The true likelihood function of the two component means θ1 and θ2, given

the data in Figure 1.

2

Consider 2 component 1-D MoG with known variances
(example from F. Dellaert)
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Figure 1: EM example: Mixture components and data. The data consists of three

samples drawn from each mixture component, shown above as circles and triangles.

The means of the mixture components are −2 and 2, respectively.
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the data in Figure 1.

2

• True likelihood function
• Recall we’re fitting means θ1, θ2
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Figure 1: EM example: Mixture components and data. The data consists of three

samples drawn from each mixture component, shown above as circles and triangles.

The means of the mixture components are −2 and 2, respectively.
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Figure 3: Lower Bounds

3

• Lower bound the likelihood function using averaging
distribution q(Z)
• ln p(X|θ) = L(q,θ) + KL(q(Z)||p(Z|X,θ))
• Since q(Z) = p(Z|X,θold), bound is tight (equal to actual

likelihood) at θ = θold
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Figure 1: EM example: Mixture components and data. The data consists of three

samples drawn from each mixture component, shown above as circles and triangles.

The means of the mixture components are −2 and 2, respectively.
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3

• Lower bound the likelihood function using averaging
distribution q(Z)
• ln p(X|θ) = L(q,θ) + KL(q(Z)||p(Z|X,θ))
• Since q(Z) = p(Z|X,θold), bound is tight (equal to actual

likelihood) at θ = θold
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Figure 1: EM example: Mixture components and data. The data consists of three

samples drawn from each mixture component, shown above as circles and triangles.

The means of the mixture components are −2 and 2, respectively.
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3

• Lower bound the likelihood function using averaging
distribution q(Z)
• ln p(X|θ) = L(q,θ) + KL(q(Z)||p(Z|X,θ))
• Since q(Z) = p(Z|X,θold), bound is tight (equal to actual

likelihood) at θ = θold
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Figure 1: EM example: Mixture components and data. The data consists of three

samples drawn from each mixture component, shown above as circles and triangles.

The means of the mixture components are −2 and 2, respectively.
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3

• Lower bound the likelihood function using averaging
distribution q(Z)
• ln p(X|θ) = L(q,θ) + KL(q(Z)||p(Z|X,θ))
• Since q(Z) = p(Z|X,θold), bound is tight (equal to actual

likelihood) at θ = θold
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EM - Summary

• EM finds local maximum to likelihood

p(X|θ) =
∑

Z

p(X,Z|θ)

• Iterates two steps:
• E step “fills in” the missing variables Z (calculates their

distribution)
• M step maximizes expected complete log likelihood

(expectation wrt E step distribution)

• This works because these two steps are performing a
coordinate-wise hill-climbing on a lower bound on the
likelihood p(X|θ)
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Conclusion

• Readings: Ch. 9.1, 9.2, 9.4
• K-means clustering
• Gaussian mixture model
• What about K?

• Model selection: either cross-validation or Bayesian version
(average over all values for K)

• Expectation-maximization, a general method for learning
parameters of models when not all variables are observed
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