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K-Means Gaussian Mixture Models Expectation-Maximization

Learning Parameters to Probability Distributions

e We discussed probabilistic models at length

¢ In assignment 3 you showed that given fully observed
training data, setting parameters 6, to probability
distributions is straight-forward
e However, in many settings not all variables are observed
(labelled) in the training data: x; = (x;, h;)
e e.g. Speech recognition: have speech signals, but not
phoneme labels
¢ e.g. Object recognition: have object labels (car, bicycle),
but not part labels (wheel, door, seat)
e Unobserved variables are called latent variables

S

figs from Fergus et al.
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Gaussian Mixture Models Expectation-Maximization

Unsupervised Learning

o We will start with an unsupervised
learning (clustering) problem:

e Given a dataset {x,...,xy}, each
x; € RP, partition the dataset into K
clusters
o Intuitively, a cluster is a group of
points, which are close together and
far from others



K-Means

Gaussian Mixture Models

-2
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Distortion Measure

e Formally, introduce prototypes (or
cluster centers) p, € RP

e Use binary ry, 1 if point n is in cluster %,
0 otherwise (1-of-K coding scheme
again)

e Find {p}, {ru} to minimize distortion
measure:

N K
J = ernkan - NkHQ

n=1 k=1
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Minimizing Distortion Measure

e Minimizing J directly is hard

N K
J=305" rul e — il

n=1 k=1
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Minimizing Distortion Measure

e Minimizing J directly is hard

N K
J=305" rul e — il

n=1 k=1

e However, two things are easy

o If we know g, minimizing J wrt r,
o |f we know r,,, minimizing J wrt g,
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Minimizing Distortion Measure

e Minimizing J directly is hard

N K
7= rlben — P

n=1 k=1

e However, two things are easy
o |f we know p,, minimizing J wrt r,
o |f we know r,,, minimizing J wrt g,
e This suggests an iterative procedure

o Start with initial guess for p,
o lteration of two steps:

e Minimize J wrt ry
e Minimize J wrt

¢ Rinse and repeat until convergence
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Determining Membership Variables

e Step 1 in an iteration of K-means is to
minimize distortion measure J wrt
cluster membership variables r,;

N K
J= ernkan - Hk“2

n=1 k=1
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Determining Membership Variables

e Step 1 in an iteration of K-means is to
minimize distortion measure J wrt
cluster membership variables r,;

N K
J= ernkan - Hk”2

n=1 k=1

e Terms for different data points x, are
independent, for each data point set r,;
to minimize

K

Zrnkan _ﬂkHz

k=1
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Determining Membership Variables

e Step 1 in an iteration of K-means is to
minimize distortion measure J wrt
cluster membership variables r,;

N K
J= ernkan - Hk”2

n=1 k=1

e Terms for different data points x, are
independent, for each data point set r,;
to minimize

K

Zrnkan _HkHz

k=1

e Simply set r,,, = 1 for the cluster center
u; with smallest distance
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Determining Cluster Centers

e Step 2: fix r,, minimize J wrt the cluster
centers p;

K
J = Z Fuk| e — ] |* switch order of sums
k=1 n=1

e So we can minimze wrt each p,; separately
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Determining Cluster Centers

e Step 2: fix r,, minimize J wrt the cluster

centers g
K N

J= Z Fak| 0 — ] |* switch order of sums
k=1 n=1

e So we can minimze wrt each p,; separately
o Take derivative, set to zero:

N
2Zrnk(xn — ) =0
n=1
Zn T'nikXn
= = =
-2 0 2 M Zn Fuk

i.e. mean of datapoints x,, assigned to
cluster k
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K-means Algorithm

o Start with initial guess for
e |teration of two steps:
e Minimize J wrt r
e Assign points to nearest cluster center
o Minimize J wrt p,
e Set cluster center as average of points in cluster

¢ Rinse and repeat until convergence



K-Means

Gaussian Mixture Models

K-means example

Expectation-Maximization




K-Means

Gaussian Mixture Models

K-means example

Expectation-Maximization



K-Means Gaussian Mixture Models Expectation-Maximization

K-means example




K-Means

Gaussian Mixture Models

K-means example

Expectation-Maximization



K-Means Gaussian Mixture Models Expectation-Maximization

K-means example
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K-means example
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K-means example

-2 0 2

Next step doesn’t change membership — stop
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K-means Convergence

Repeat steps until no change in cluster assignments
For each step, value of J either goes down, or we stop

Finite number of possible assignments of data points to
clusters, so we are guarranteed to converge eventually

Note it may be a local maximum rather than a global
maximum to which we converge
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K-means Example - Image Segmentation

K=2 K=3 K=10 Original image

e K-means clustering on pixel colour values

e Pixels in a cluster are coloured by cluster mean

e Represent each pixel (e.g. 24-bit colour value) by a cluster
number (e.g. 4 bits for K = 10), compressed version

e This technique known as vector quantization

« Represent vector (in this case from RGB, R?) as a single
discrete value

u]
o)
I
ul
it
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Hard Assignment vs. Soft Assignment

) . ¢ In the K-means algorithm, a hard
22 2 assignment of points to clusters is made
0 . o e However, for points near the decision
oo ¥ boundary, this may not be such a good
e :
S < idea
> 5 > e Instead, we could think about making a

soft assignment of points to clusters
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Gaussian Mixture Model

e The Gaussian mixture model (or mixture of Gaussians
MoG) models the data as a combination of Gaussians

e Above shows a dataset generated by drawing samples
from three different Gaussians
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Generative Model

e The mixture of Gaussians is a generative model

e To generate a datapoint x,,, we first generate a value for a
discrete variable z, € {1,...,K}

e We then generate a value x,, ~ N (x|, X¢) for the
corresponding Gaussian
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Graphical Model

K-Means

Xn

N o 05 1
—

e Full graphical model using plate notation
¢ Note z, is a latent variable, unobserved

» Need to give conditional distributions p(z,) and p(x,|z,)
e The one-of-K representation is helpful here: z,; € {0, 1},
in = (ana cee aZnK)
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Graphical Model - Latent Component Variable

0.5

Xn

N 0 05 1
—

e Use a Bernoulli distribution for p(z,)

o i plzu=1)=m
o Parameters to this distribution {7}
e Musthave 0 < m <land S5 m =1

* p(za) = Hf:l Flfnk
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Graphical Model - Observed Variable

ZTL
T e—o
Xn
% — X
N 0 05 1
——

e Use a Gaussian distribution for p(x,|z,)
o Parameters to this distribution {g;, 3}

pEalz = 1) = N(xa|pyy, Zi)

K
plalen) = TN Cealpag Se)

k=1
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Graphical Model - Joint distribution

0.5

Xn

N 0 05 1
—

e The full joint distribution is given by:

N
p(x,z) = Hp(zn)p(xn|zn)
n=1

N K
= TITI 7N el S

n=1k=1
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MoG Marginal over Observed Variables

e The marginal distribution p(x,) for this model is:

p(xn) = Z xmzn szn xn|zn
Zn

= Z?ka\/(xn\uk,zk)

k=1

e A mixture of Gaussians
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MoG Conditional over Latent Variable

1

05

1

05

05 1

e The conditional p(z = 1]x,) will play an important role for

learning
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MoG Conditional over Latent Variable

1

1

0.5 0.5

e The conditional p(z, = 1|x,) will play an important role for
learning

o Itis denoted by ~(zu) can be computed as:

Pz = Dp(xnlz = 1)
S Pz = Dp(xalzn = 1)
TN (| i, Ei)
Zf:l WJN(onjv %)

Y(znk) = Pz = 1xn) =
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MoG Conditional over Latent Variable

1

1

0.5 0.5

e The conditional p(z, = 1|x,) will play an important role for
learning

o Itis denoted by ~(zu) can be computed as:

(an = l)p(xn|znk = 1)
V(o) = plow = %) = —o
‘ ‘ S (e = Dplalay = 1)
WkN(onk, Ek)
Zf:l WJN(onjv %))

o ~(zu) is the responsibility of component & for datapoint n
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MoG Learning

e Given a set of observations {xi,...,xy}, without the latent
variables z,,, how can we learn the parameters?

e Model parameters are 0 = {m, p, Xy }
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MoG Learning

e Given a set of observations {xi,...,xy}, without the latent
variables z,,, how can we learn the parameters?

e Model parameters are 0 = {m, p, Xy }
e Answer will be similar to k-means:

o If we know the latent variables z,, fitting the Gaussians is
easy

¢ If we know the Gaussians p,, 3, finding the latent
variables is easy
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MoG Learning

e Given a set of observations {xi,...,xy}, without the latent
variables z,,, how can we learn the parameters?

e Model parameters are 0 = {m, p, Xy }
e Answer will be similar to k-means:

o If we know the latent variables z,, fitting the Gaussians is
easy

¢ If we know the Gaussians p,, 3, finding the latent
variables is easy

¢ Rather than latent variables, we will use responsibilities
’Y(an)
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MoG Maximum Likelihood Learning

e Given a set of observations {xi,...,xy}, without the latent
variables z,,, how can we learn the parameters?

e Model parameters are 6 = {m, ., 3¢}
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MoG Maximum Likelihood Learning

e Given a set of observations {xi,...,xy}, without the latent
variables z,,, how can we learn the parameters?

e Model parameters are 6 = {m, ., 3¢}
e We can use the maximum likelihood criterion:

N K
Oy = arg moax 1_[1 ; N (x| g, X))
n= =

N K
] P>
argmgxz og {Z TN (X g k)}

n=1 k=1

e Unfortunately, closed-form solution not possible this time —
log of sum rather than log of product
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MoG Maximum Likelihood Learning - Problem

e Maximum likelihood criterion, 1-D:

N K
1
O — Y log ¢ S mi—m—exp {— (s — )/ (207
ML argméaxn:1 og{k:1 Wk\/ﬂa exp {—(x, — x)*/ (20 )}}
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MoG Maximum Likelihood Learning - Problem

e Maximum likelihood criterion, 1-D:
N K |
o = argmax lo Te——— exp { —(x, — )/ (202
ML g & ; g{; k\/ﬂa P{ ( 1) /(U)}}

e Suppose we set 1 = x, for some k and n, then we have
one term in the sum:

1 2 2
Moo { = — )/ (207))

T o {~(07/20%)

= 7Tk
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MoG Maximum Likelihood Learning - Problem

e Maximum likelihood criterion, 1-D:
N K |
o = argmax lo Te——— exp { —(x, — )/ (202
ML g & ; g{; k\/ﬂa P{ ( 1) /(U)}}

e Suppose we set 1 = x, for some k and n, then we have
one term in the sum:

1 2 2
Moo { = — )/ (207))

1
= m J2ron €xp {_(0)2/(202)}

e In the limit as o, — 0, this goes to oo
e So ML solution is to set some i = x,,, and o = 0!
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ML for Gaussian Mixtures

e Keeping this problem in mind, we will develop an algorithm
for ML estimation of the parameters for a MoG model

e Search for a local optimum
e Consider the log-likelihood function

() = Zlog{ZﬂkN(xnlubEk)}
n=1 k=1

e We can try taking derivatives and setting to zero, even
though no closed form solution exists
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Maximizing Log-Likelihood - Means

N K
(o) - Zlog{zw<xn|uk,zk>}
n=1 k=1

5, Y N (Gl )

—l(0) = X (x, —

TR b v v R
N

= Z’Y(an)zijl(xn — )

n=1
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Maximizing Log-Likelihood - Means

N K
(o) - Zlog{zww(xnmk,zk)}
n=1 k=1

0 ’ l TN (| 1y, i)

— (O) = > x, —
o' T T N el m) T
N
= Z’Y(an)zijl(xn — )
n=1

e Setting derivative to 0, and multiply by X
N N
D A=Y ()
n=1 n=1

N N
1
& = 3 D2 e where N = 3 (e
n=1

n=1
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Maximizing Log-Likelihood - Means and Covariances

¢ Note that the mean u, is a weighted combination of points
x,, using the responsibilities ~(z,) for the cluster k

N
1
K = ﬁk E 1 Y(zuk )Xn
n—=

o Ny =N 7(zu) is the effective number of points in the
cluster
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Maximizing Log-Likelihood - Means and Covariances

¢ Note that the mean u, is a weighted combination of points
x,, using the responsibilities ~(z,) for the cluster k

N
1
My = ﬁk E 1 ’Y(an)xn
n=

o N; = Z’nvzl ~v(zux) is the effective number of points in the
cluster

¢ A similar result comes from taking derivatives wrt the
covariance matrices 3;:

N
1
Xy = Ne Z’Y(an)(xn — ) (xn — ﬂk)T
n=1
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Maximizing Log-Likelihood - Mixing Coefficients

e We can also maximize wrt the mixing coefficients 7
 Note there is a constraint that >, m; = 1
e Use Lagrange multipliers, c.f. Chapter 7
e End up with:
N
average responsibility that component & takes

Tk
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Three Parameter Types and Three Equations

e These three equations a solution does not make

N
1
Ky = MZ’Y(an)xn
n=1
N
X = Ne Z’Y(an)(xn — ) (0 — )"
n=1
N
T, = —
¢ N

¢ All depend on v(z,), which depends on all 3!
e But an iterative scheme can be used
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EM for Gaussian Mixtures

e Initialize parameters, then iterate:
o E step: Calculate responsibilities using current parameters

N (% |y, X))
S TN (e, 5))

V(an) =
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EM for Gaussian Mixtures

e Initialize parameters, then iterate:
o E step: Calculate responsibilities using current parameters

TN (x| g, k)
S TN (e, 5))

o M step: Re-estimate parameters using these (z.)

V(an) =

N
1
He = ﬁk ;'}/(an)xn
1 N
Ek = ﬁk Z’V(an)(xn - l'l’k)(x” - u‘k)T
n=1
Ny
Tk = -

N
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EM for Gaussian Mixtures

e Initialize parameters, then iterate:
o E step: Calculate responsibilities using current parameters

TN (x| g, k)
S TN (e, 5))

o M step: Re-estimate parameters using these (z.)

V(an) =

N
1
He = ﬁk ;'}/(an)xn
1 N
Ek = ﬁk Z’V(an)(xﬂ - l'l’k)(x” - u‘k)T
n=1
Ny
Y = -
¢ N

e This algorithm is known as the expectation-maximization
algorithm (EM)
o Next we describe its general form, why it works, and why it's
called EM (but first an example)
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MoG EM - Example

2
2%
Siglad
° )
0 K 4
iR T
o lo~
-2 1
-2 0 (a) 2

e Same initialization as with K-means before
o Often, K-means is actually used to initialize EM
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MoG EM - Example

2 [ ]
o SN
.. A
0 . ° o . =o~ o
U3 SR
) (O
-2 1
-2 0 (b 2

o Calculate responsibilities v(zux)
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MoG EM - Example

e Calculate model parameters {m, p;, X} using these
responsibilities
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MoG EM - Example

e |teration 2
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MoG EM - Example

e lteration 5
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MoG EM - Example

2 .
L =20 . '.:.;3
03 s
2 O8
0 ° .30 i
N e
Yo h'e T
L7
o{(6)*
T O
-2 0 (f) 2

e lteration 20 - converged
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General Version of EM
e In general, we are interested in maximizing the likelihood
p(X|6) = Zp (X,Z|0)

where X denotes all observed variables, and Z denotes all
latent (hidden, unobserved) variables
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General Version of EM

e In general, we are interested in maximizing the likelihood

p(X|6) = Zp (X,Z|0)

where X denotes all observed variables, and Z denotes all
latent (hidden, unobserved) variables

o Assume that maximizing p(X|0) is difficult (e.g. mixture of
Gaussians)

e But maximizing p(X,Z|6) is tractable (everything observed)

e p(X,Z|0) is referred to as the complete-data likelihood
function, which we don’t have
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A Lower Bound

e The strategy for optimization will be to introduce a lower
bound on the likelihood

e This lower bound will be based on the complete-data
likelihood, which is easy to optimize

e [teratively increase this lower bound
e Make sure we're increasing the likelihood while doing so
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A Decomposition Trick

¢ To obtain the lower bound, we use a decomposition:

Inp(X,Z|6) = Inp(X|0)+ Inp(Z|X,0) product rule
Inp(X|0) = L(q,0)+ KL(q|lp)

fa0) = Sann{ ")
S {0

e KL(q||p) is known as the Kullback-Leibler divergence
(KL-divergence), and is > 0 (see p.55 PRML, next slide)

e Hence Inp(X|0) > L(q,0)

KL(ql|p)
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Kullback-Leibler Divergence

e KL(p(x)||q(x)) is a measure of the difference between
distributions p(x) and g(x):

KL(p(x)||q(x) ZP x)log 1)

X

e Motivation: average additional amount of information
required to encode x using code assuming distribution g(x)
when x actually comes from p(x)
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Kullback-Leibler Divergence

e KL(p(x)||q(x)) is a measure of the difference between
distributions p(x) and g(x):

x
KL(p(x)||q(x) ZP x)log T2 o)

e Motivation: average additional amount of information
required to encode x using code assuming distribution g(x)
when x actually comes from p(x)

o Note it is not symmetric: KL(g(x)||p(x)) # KL(p(x)||g(x)) in
general
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Kullback-Leibler Divergence

e KL(p(x)||q(x)) is a measure of the difference between
distributions p(x) and g(x):

KL(p(x)||q(x) ZP x)log 1)

X

e Motivation: average additional amount of information
required to encode x using code assuming distribution g(x)
when x actually comes from p(x)

o Note it is not symmetric: KL(g(x)||p(x)) # KL(p(x)||g(x)) in
general

¢ |t is non-negative:

e Jensen’'s inequality: —In(}" xp(x)) < =3 p(x)Inx
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Kullback-Leibler Divergence

e KL(p(x)||q(x)) is a measure of the difference between
distributions p(x) and g(x):

x
KL(p(x)||q(x) ZP x)log T2 o)

e Motivation: average additional amount of information
required to encode x using code assuming distribution g(x)
when x actually comes from p(x)

o Note it is not symmetric: KL(g(x)||p(x)) # KL(p(x)||g(x)) in
general

¢ |t is non-negative:

e Jensen’'s inequality: —In(}" xp(x)) < =3 p(x)Inx
e Apply to KL:

KL(plo) = = 3o og 2> (ZPE;C;IJ(X)>=—MZ¢I(X)=
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Increasing the Lower Bound - E step

e EM is an iterative optimization technique which tries to
maximize this lower bound: Inp(X|0) > L(q, )
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Increasing the Lower Bound - E step

e EM is an iterative optimization technique which tries to
maximize this lower bound: Inp(X|0) > L(q, )
o E step: Fix 8°, maximize L(q,8°%) wrt ¢

e i.e. Choose distribution ¢ to maximize £
e Reordering bound:

L(q,6™) = Inp(X|6°) — KL(4llp)
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Increasing the Lower Bound - E step

e EM is an iterative optimization technique which tries to
maximize this lower bound: Inp(X|0) > L(q, )

o E step: Fix 8°, maximize L(q, 8°) wrt ¢

e i.e. Choose distribution ¢ to maximize £
e Reordering bound:

L(q,6™) = Inp(X|6°) — KL(4llp)

e Inp(X|0°") does not depend on ¢
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Increasing the Lower Bound - E step

e EM is an iterative optimization technique which tries to
maximize this lower bound: Inp(X|0) > L(q, )

o E step: Fix 8°, maximize L(q, 8°) wrt ¢

e i.e. Choose distribution ¢ to maximize £
e Reordering bound:

L(q,6™) = Inp(X|6°) — KL(4llp)

In p(X|6°) does not depend on ¢
Maximum is obtained when KL(q||p) is as small as possible
e Occurs when g =p, i.e. ¢(Z) = p(Z|X, 6)
e This is the posterior over Z, recall these are the
responsibilities from MoG model
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Increasing the Lower Bound - M step

e M step: Fix ¢, maximize L(q, 0) wrt 6
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Increasing the Lower Bound - M step

e M step: Fix ¢, maximize L(q, 0) wrt 6
e The maximization problem is on

Zq )Inp(X,Z|0) Zq )Ing(Z

=> p(ZX,6°") Inp(X, zye > p(ZIX, 00’d) Inp(Z|X, 6°')
z V/
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Increasing the Lower Bound - M step

e M step: Fix ¢, maximize L(q, 0) wrt 6
e The maximization problem is on

Zq )Inp(X,Z|0) Zq )Ing(Z

=> p(ZX,6°") Inp(X, zye > p(ZIX, 00’d) Inp(Z|X, 6°')
z V/

e Second term is constant with respect to 6
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Increasing the Lower Bound - M step

M step: Fix ¢, maximize L(q, 0) wrt 6
The maximization problem is on

Zq )Inp(X,Z|0) Zq )Ing(Z

=> p(ZX,6°") Inp(X, zye > p(ZIX, 00’d) Inp(Z|X, 6°')
z V/

Second term is constant with respect to 6
First term is In of complete data likelihood, which is
assumed easy to optimize

o Expected complete log likelihood — what we think complete
data likelihood will be



Expectation-Maximization

Why does EM work?

« In the M-step we changed from ° to 6"

e This increased the lower bound £, unless we were at a
maximum (so we would have stopped)
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Why does EM work?

K-Means

« In the M-step we changed from ° to 6"

e This increased the lower bound L, unless we were at a
maximum (so we would have stopped)

e This must have caused the log likelihood to increase
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Why does EM work?

K-Means

e In the M-step we changed from 6°/¢ to ""
e This increased the lower bound L, unless we were at a
maximum (so we would have stopped)
e This must have caused the log likelihood to increase
e The E-step set g to make the KL-divergence 0:

Inp(X[6™) = L(q,6) + KL(4llp) = L(g,6")
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Why does EM work?

K-Means

e In the M-step we changed from 6°/¢ to ""
e This increased the lower bound L, unless we were at a
maximum (so we would have stopped)
e This must have caused the log likelihood to increase
e The E-step set g to make the KL-divergence 0:

Inp(X[6™) = L(q,6) + KL(4llp) = L(g,6")

¢ Since the lower bound £ increased when we moved from
Oold tO Onew:

Inp(X|0°!) = L(q,6°) < L(q,0"")
= Inp(X|6"") — KL(q|[p"")

e So the log-likelihood has increased going from 6 to "
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Bounding Example

I . . I . . . 1 .
15 —4 -3 -2 = o 1 2 3 4 5

Consider 2 component 1-D MoG with known variances
(example from F. Dellaert)
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Bounding Example

e True likelihood function
¢ Recall we're fitting means 6y, 6,
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Bounding Example

e Lower bound the likelihood function using averaging
distribution ¢(Z)
e Inp(X|0) = L(q.0) + KL(4(Z)||p(Z|X,0))
« Since ¢(Z) = p(Z|X, 6°"), bound is tight (equal to actual
likelihood) at 6 = 6°
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e Lower bound the likelihood function using averaging
distribution ¢(Z)
e Inp(X|0) = L(q.0) + KL(4(Z)||p(Z|X,0))
« Since ¢(Z) = p(Z|X, 6°"), bound is tight (equal to actual
likelihood) at 6 = 6°
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EM - Summary

e EM finds local maximum to likelihood

p(X|0) = p(X,Z|6)
z

e lterates two steps:

o E step “fills in” the missing variables Z (calculates their
distribution)

o M step maximizes expected complete log likelihood
(expectation wrt E step distribution)

e This works because these two steps are performing a
coordinate-wise hill-climbing on a lower bound on the
likelihood p(X|0)
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Conclusion

Readings: Ch. 9.1,9.2,9.4
K-means clustering
Gaussian mixture model
What about K?

¢ Model selection: either cross-validation or Bayesian version
(average over all values for K)

Expectation-maximization, a general method for learning
parameters of models when not all variables are observed
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