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Learning Parameters to Probability Distributions

» We discussed probabilistic models at length

¢ In assignment 3 you showed that given fully observed
training data, setting parameters 6; to probability
distributions is straight-forward
o However, in many settings not all variables are observed
(labelled) in the training data: x; = (x;, k;)
» e.g. Speech recognition: have speech signals, but not
phoneme labels
» e.g. Object recognition: have object labels (car, bicycle),
but not part labels (wheel, door, seat)
o Unobserved variables are called latent variables
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Unsupervised Learning

o We will start with an unsupervised
2 Y learning (clustering) problem:
K o Given a dataset {x,...,xn}, each
x; € RP, partition the dataset into K
clusters
o Intuitively, a cluster is a group of
points, which are close together and
far from others
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Distortion Measure

o Formally, introduce prototypes (or
cluster centers) u, € RP

e Use binary ry, 1 if point n is in cluster k,
0 otherwise (1-of-K coding scheme

again)
e Find {4}, {ru} to minimize distortion
measure:
K
2
J= ernkan = |
n=1 k=1
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Determining Membership Variables

o Step 1in an iteration of K-means is to
minimize distortion measure J wrt
cluster membership variables r,;

K
7=l —

n=1 k=1

Terms for different data points x, are
independent, for each data point set r
to minimize

K

Z’"nkH-"’n*If"kH2

k=1

°

Simply set r,, = 1 for the cluster center
. With smallest distance
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Minimizing Distortion Measure

o Minimizing J directly is hard

N K
7= rutlbe — 2

n=1 k=1

o However, two things are easy
o If we know g, minimizing J wrt r,
o If we know r,,, minimizing J wrt p,
o This suggests an iterative procedure

o Start with initial guess for p,
o lteration of two steps:

o Minimize J wrt ry

e Minimize J wrt p,

¢ Rinse and repeat until convergence
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Determining Cluster Centers
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e Step 2: fix r,, minimize J wrt the cluster

centers ;.

k=1 n=1

o Take derivative, set to zero:

N
ZZ k(X0 — ) =0

%L
¥>.<, n=1
2 3 Zn T'nkXn

= M =
k annk

Fuk|n— 11| |* switch order of sums

e So we can minimze wrt each p, separately

i.e. mean of datapoints x,, assigned to

cluster k



K-Means

K-Means

Gaussian Mixture Models

K-means Algorithm

o Start with initial guess for g
o lteration of two steps:
o Minimize J wrt r,

e Assign points to nearest cluster center

o Minimize J wrt g,

e Set cluster center as average of points in cluster

« Rinse and repeat until convergence
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K-means example
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K-means example
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K-means example K-means example
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Next step doesn’t change membership — stop
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K-means Convergence K-means Example - Image Segmentation

K=2

K=10 Original image

Repeat steps until no change in cluster assignments

o For each step, value of J either goes down, or we stop

o Finite number of possible assignments of data points to
clusters, so we are guarranteed to converge eventually

¢ Note it may be a local maximum rather than a global

maximum to which we converge

o K-means clustering on pixel colour values

e Pixels in a cluster are coloured by cluster mean

« Represent each pixel (e.g. 24-bit colour value) by a cluster
number (e.g. 4 bits for K = 10), compressed version

This technique known as vector quantization

o Represent vector (in this case from RGB, R?) as a single
discrete value
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Hard Assignment vs. Soft Assignment
L R ¢ In the K-means algorithm, a hard
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assignment of points to clusters is made
* However, for points near the decision
boundary, this may not be such a good
idea
o Instead, we could think about making a
soft assignment of points to clusters
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Generative Model

e The mixture of Gaussians is a generative model

o To generate a datapoint x,,, we first generate a value for a
discrete variable z, € {1,...,K}

o We then generate a value x, ~ N (x|, i) for the
corresponding Gaussian
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Gaussian Mixture Model

05 1

e The Gaussian mixture model (or mixture of Gaussians
MoG) models the data as a combination of Gaussians

o Above shows a dataset generated by drawing samples
from three different Gaussians
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Graphical Model

o Full graphical model using plate notation
« Note z, is a latent variable, unobserved

» Need to give conditional distributions p(z,) and p(xn|zx)
e The one-of-K representation is helpful here: z,; € {0, 1},
Zn = (Znh cee 7ZnK)
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Graphical Model - Latent Component Variable

05

o Use a Bernoulli distribution for p(z,)

sieplzu=1)=m
o Parameters to this distribution {m}
e Musthave 0 <7 < land S5 m =1

o p(za) = [T 7
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Graphical Model - Joint distribution

05

N 0 05 1

e The full joint distribution is given by:

p(x,z)

N
[1rG@p(xalzn)
n=1

N K
TTTT i el b, )

n=1k=1

K-Means Gaussian Mixture Models Expectation-Maximization

Graphical Model - Observed Variable

N 0 05 1

o Use a Gaussian distribution for p(x,|z,)
o Parameters to this distribution { s, X}

Pl =1) = N(xa|p, Zi)
K
plele) = [Nl 2o
k=1
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MoG Marginal over Observed Variables

e The marginal distribution p(x,,) for this model is:

plxn) = Zp(x,,,z,,)zz:p(z,,)p(x,,\zn)

Zn

K
D N (el g )

k=1

o A mixture of Gaussians
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MoG Conditional over Latent Variable MoG Learning

1

05

o Given a set of observations {xi,...,xy}, without the latent
variables z,, how can we learn the parameters?

cor coon * Model parameters are 0 = {m, p;, ¢}
e The conditional p(zx = 1|x,) will play an important role for e Answer will be similar to k-means:
learning o If we know the latent variables z,, fitting the Gaussians is

. . easy

* Itis denoted by 7(zu) can be computed as: o If we know the Gaussians p,, X, finding the latent
B . - Pz = Dp(alz = 1) variables is easy
V(i) = plawe = br) - = Sk P = Dpltalay = 1) « Rather than latent variables, we will use responsibilities
Nl S V@)
Z]{(:I TN (xa| 1y, X))
o v(zu) is the responsibility of component k for datapoint n
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MoG Maximum Likelihood Learning MoG Maximum Likelihood Learning - Problem

o Maximum likelihood criterion, 1-D:

e Given a set of observations {xi,...,xy}, without the latent N «
variables z,, how can we learn the parameters? 1 5 5
= 1 J— _ _ 2
o Model parameters are 0 = {m, p;, ¢} O e mgx Z:I o8 {kz; K V2ro P { Con = )/ 20 )}
n= =

e We can use the maximum likelihood criterion:

N K e Suppose we set i = x, for some k and n, then we have
Oy, = arg max H Z TN (| e, i) one term in the sum:
n=1 k=1
1
N K Tk exp {—(x, — )%/ (202)
= arg maaxz log {Z TN (X s Ek)} V2moy {=to }
n=1 k=1 1 2 2
= m———exp1—(0)°/(20
N p{—(0°/(20%)}

o Unfortunately, closed-form solution not possible this time —

log of sum rather than log of product
o In the limit as o, — 0, this goes to co

e So ML solution is to set some . = x,,, and o = 0!
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ML for Gaussian Mixtures Maximizing Log-Likelihood - Means
N K
ue) = ZIOg{ZWkN(xn|Hk72k)}
« Keeping this problem in mind, we will develop an algorithm n=1 k=1
for ML estimation of the parameters for a MoG model N
. 0 _ W\/(xnluk, ) —1
e Search for a local optimum —0) = Z = e ()
. . ) Ok — 2 TN (eal s )
o Consider the log-likelihood function n=1

|
M=

V() " (e — 1)
1

N K =
(o) = Zlog{Zﬂ'k./\f(xnuk,Ek)} "
n=1 k=1

o Setting derivative to 0, and multiply by 3

N N
DG =Y A(zw)x
n=1 n=1

o We can try taking derivatives and setting to zero, even
though no closed form solution exists

N N
1
= S g where = 3 e
n=1

n=1
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Maximizing Log-Likelihood - Means and Covariances Maximizing Log-Likelihood - Mixing Coefficients

* Note that the mean p, is a weighted combination of points
x,, using the responsibilities v(zu) for the cluster k

1 & e We can also maximize wrt the mixing coefficients m;
=N pRRICTEE « Note there is a constraint that 3°, m = 1
o Use Lagrange multipliers, c.f. Chapter 7

n=1

o Ny =Y v(zu) is the effective number of points in the * End up with: N
cluster T, = ﬁk
o A similar result comes from taking derivatives wrt the -
. : . average responsibility that component k takes
covariance matrices 3:

N
1
= ﬁk E YV (znk) (en — ) (X — Nk)T
n=1
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Three Parameter Types and Three Equations EM for Gaussian Mixtures

o Initialize parameters, then iterate:
o E step: Calculate responsibilities using current parameters

e These three equations a solution does not make TN (] gy, i)
V) = g —— =
| N Ej:l 71'j-/\/(xn‘/ljyzj)
K = Fk Zl ¥ (@nk)Xn o M step: Re-estimate parameters using these ~(zu)
= N
N 1
1 12 = 3N ’Y(an)xn
= Ni Z'Y(an)(xn — ) (= )" ‘ Ne ;
n=1 N
1 T
o = & 5 = N Z'Y(an)(xn = ) (6 — )
N n=1
. Nk
e All depend on ~(z), which depends on all 3! T = N
e But an iterative scheme can be used e This algorithm is known as the expectation-maximization

algorithm (EM)
o Next we describe its general form, why it works, and why it's
called EM (but first an example)
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MoG EM - Example MoG EM - Example
2
s 0®® ¢ 2
o % ..:
o SNy
0 L oe% 0
.l:‘o.' e
o lo~
-2 8° -
-2 0 @ 2 -2 0 @ 2

e Same initialization as with K-means before

Calculate responsibilities
o Often, K-means is actually used to initialize EM ) P V()
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MoG EM - Example MoG EM - Example

2

L=1 2
0

0
-2

-2

-2 0 2
© -2 0 () 2
o Calculate model parameters {m, 3} using these .
© modelp {7, b 3} using o lteration 2
responsibilities
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MoG EM - Example MoG EM - Example

2 2 .
L=20 3 oo®
R4
1.
0 0 S
o, Sge e
') .
L7
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-2 5 ‘.‘o
2 0 (o) 2 -2 0 ® 2

o lteration 5 e lteration 20 - converged
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General Version of EM A Lower Bound

¢ In general, we are interested in maximizing the likelihood

p(X|0) = Zp (X.Z|6) o The strategy for optimization will be to introduce a lower

bound on the likelihood

where X denotes all observed variables, and Z denotes all e This lower bound will be based on the complete-data
latent (hidden, unobserved) variables likelihood, which is easy to optimize

 Assume that maximizing p(X|0) is difficult (e.g. mixture of e lteratively increase this lower bound
Gaussians) o Make sure we're increasing the likelihood while doing so

o But maximizing p(X, Z|0) is tractable (everything observed)

e p(X,Z|0) is referred to as the complete-data likelihood
function, which we don’t have
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A Decomposition Trick Kullback-Leibler Divergence

e KL(p(x)||g(x)) is a measure of the difference between

« To obtain the lower bound, we use a decomposition: distributions p(x) and ¢(x):

Inp(X,Z|6) = Inp(X|0)+Inp(Z|X,0) product rule KL(p(x)||g(x) Zp log
Inp(X|6) = L(q,0)+ KL(4llp)
p(X,Z|0
L(q,0) = Z q(Z {T‘)} * Motivation: average additional amount of information
required to encode x using code assuming distribution g(x)
_ r(Z|X,0) when x actually comes from p(x)

KL(qllp) = - Zq T « Note it is not symmetric: KL(g(x)||p(x)) # KL(p(x)|lq(x)) in

general

. . . o |tis non-negative:
e KL(q||p) is known as the Kullback-Leibler divergence « Jensen's inequality: — In(S". 1p(x)) < — 5. p(x) Inx

(KL-divergence), and is > 0 (see p.55 PRML, next slide) o Apply to KL:

e Hence Inp(X|0) > L(q,0)
KL(plla) = = 3 1og (Z a0 ) =Y g =0

p)” .
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Increasing the Lower Bound - E step

o EM is an iterative optimization technique which tries to
maximize this lower bound: Inp(X|0) > L(g, 0)
« E step: Fix 8°¢, maximize L(q, 0°/) wrt ¢

o i.e. Choose distribution ¢ to maximize £
o Reordering bound:

L(q,6"") = Inp(X|6"") — KL(4llp)

o Inp(X|6°") does not depend on ¢
e Maximum is obtained when KL(q||p) is as small as possible
e Occurs when g = p, i.e. ¢(Z) = p(Z|X, 0)
e This is the posterior over Z, recall these are the
responsibilities from MoG model
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Why does EM work?

o In the M-step we changed from 6° to ™"
e This increased the lower bound £, unless we were at a
maximum (so we would have stopped)
o This must have caused the log likelihood to increase
o The E-step set ¢ to make the KL-divergence 0:

Inp(X|0°) = L(q,6™)+ KL(q|lp) = L(q,0")
e Since the lower bound £ increased when we moved from
00111 to Gnew:

Inp(X|6°) L(q,0") < L(q,0"")

Inp(X|6"") — KL(q||p"")

« So the log-likelihood has increased going from 8° to 6"
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Increasing the Lower Bound - M step

M step: Fix ¢, maximize £(q,0) wrt 6
The maximization problem is on

Zq YInp(X,Z|0) — Zq )Ing(Z)

= " p(ZIX,0°“) Inp(X, z\e > p(zlx, e"ld) Inp(Z|X, 8°%)
z z

Second term is constant with respect to 6

First term is In of complete data likelihood, which is
assumed easy to optimize
o Expected complete log likelihood — what we think complete
data likelihood will be
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Bounding Example

° °

—0.1
Is ) ) = = o 1 B s @ 5

Consider 2 component 1-D MoG with known variances
(example from F. Dellaert)
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Bounding Example Bounding Example

o Lower bound the likelihood function using averaging
distribution ¢(Z)

« True likelihood function e Inp(X|0) = L(q,0) + KL(q(Z)||p(Z|X, 0))

« Since ¢(Z) = p(Z|X, 8°%), bound is tight (equal to actual

» Recall we're fitting means 6, 6, likelihood) at & — 67
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Bounding Example Bounding Example

o Lower bound the likelihood function using averaging o Lower bound the likelihood function using averaging
distribution ¢(Z) distribution ¢(Z)
e Inp(X|0) = L(q,0) + KL(4(Z)||p(Z|X, 6)) e Inp(X|0) = L(q,0) + KL(4(Z)||p(Z|X, 6))
« Since ¢(Z) = p(Z|X, 8°%), bound is tight (equal to actual « Since ¢(Z) = p(Z|X, 8°%), bound is tight (equal to actual

likelihood) at 6 = 6° likelihood) at 6 = 6°*
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Bounding Example EM - Summary

e EM finds local maximum to likelihood

p(X10) = " p(X,Z|6)
VA

o lterates two steps:
o E step “fills in” the missing variables Z (calculates their
distribution)
* M step maximizes expected complete log likelihood
(expectation wrt E step distribution)

o Lower bound the likelihood function using averaging

distribution ¢(Z) « This works because these two steps are performing a
e Inp(X|6) = L(q,6) + KL(q(Z)||p(Z|X, 6)) coordinate-wise hill-climbing on a lower bound on the
« Since ¢(Z) = p(Z|X, 8°%), bound is tight (equal to actual likelihood p(X]8)

likelihood) at 6 = 6°*

K-Means Gaussian Mixture Models Expectation-Maximization

Conclusion

e Readings: Ch. 9.1,9.2,9.4
o K-means clustering

e Gaussian mixture model

e What about K?

* Model selection: either cross-validation or Bayesian version
(average over all values for K)

o Expectation-maximization, a general method for learning
parameters of models when not all variables are observed
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