Graphical Models - Part II Greg Mori - CMPT 419/726

Bishop PRML Ch. 8

Outline

Markov Random Fields

Inference

Outline

Markov Random Fields

Inference

Conditional Independence in Graphs

- Recall that for Bayesian Networks, conditional independence was a bit complicated
 - d-separation with head-to-head links
- We would like to construct a graphical representation such that conditional independence is straight-forward path checking

Markov Random Fields

- Markov random fields (MRFs) contain one node per variable
- · Undirected graph over these nodes
- Conditional independence will be given by simple separation, blockage by observing a node on a path
 - e.g. in above graph, $A \perp \!\!\!\perp B|C$

Markov Blanket Markov

- With this simple check for conditional independence, Markov blanket is also simple
 - Recall Markov blanket MB of x_i is set of nodes such that x_i conditionally independent from rest of graph given MB
- Markov blanket is neighbours

MRF Factorization

- Remember that graphical models define a factorization of the joint distribution
- What should be the factorization so that we end up with the simple conditional independence check?
- For x_i and x_j not connected by an edge in graph:

$$x_i \perp \!\!\!\perp x_j | \boldsymbol{x}_{\setminus \{i,j\}}$$

• So there should not be any factor $\psi(x_i, x_j)$ in the factorized form of the joint

Cliques

- A clique in a graph is a subset of nodes such that there is a link between every pair of nodes in the subset
- A maximal clique is a clique for which one cannot add another node and have the set remain a clique

MRF Joint Distribution

- Note that nodes in a clique cannot be made conditionally independent from each other
 - So defining factors $\psi(\cdot)$ on nodes in a clique is "safe"
- The joint distribution for a Markov random field is:

$$p(x_1,\ldots,x_K)=\frac{1}{Z}\prod_C\psi_C(\mathbf{x}_C)$$

where x_C is the set of nodes in clique C, and the product runs over all maximal cliques

- Each $\psi_C(\mathbf{x}_C) \geq 0$
- Z is a normalization constant

MRF Joint Distribution Example

The joint distribution for a Markov random field is:

$$p(x_1,...,x_4) = \frac{1}{Z} \prod_C \psi_C(\mathbf{x}_C)$$
$$= \frac{1}{Z} \psi_{123}(x_1,x_2,x_3) \psi_{234}(x_2,x_3,x_4)$$

• Note that maximal cliques subsume smaller ones: $\psi_{123}(x_1, x_2, x_3)$ could include $\psi_{12}(x_1, x_2)$, though sometimes smaller cliques are explicitly used for clarity

MRF Joint - Terminology

The joint distribution for a Markov random field is:

$$p(x_1,\ldots,x_K)=\frac{1}{Z}\prod_C\psi_C(\mathbf{x}_C)$$

- Each $\psi_C(x_C)$ is called a potential function
- Z, the normalization constant, is called the partition function:

$$Z = \sum_{\mathbf{x}} \prod_{C} \psi_{C}(\mathbf{x}_{C})$$

- Z is very costly to compute, since it is a sum/integral over all possible states for all variables in x
- Don't always need to evaluate it though, will cancel for computing conditional probabilities

Hammersley-Clifford

The definition of the joint:

$$p(x_1,\ldots,x_K)=\frac{1}{Z}\prod_C\psi_C(x_C)$$

- Note that we started with particular conditional independences
- We then formulated the factorization based on clique potentials
 - This formulation resulted in the right conditional independences
- The converse is true as well, any distribution with the conditional independences given by the undirected graph can be represented using a product of clique potentials
- This is the Hammersley-Clifford theorem

Energy Functions

 Often use exponential, which is non-negative, to define potential functions:

$$\psi_C(\mathbf{x}_C) = \exp\{-E_C(\mathbf{x}_C)\}\$$

- Minus sign by convention
- $E_C(x_C)$ is called an energy function
 - From physics, low energy = high probability
- This exponential representation is known as the Boltzmann distribution

Energy Functions - Intuition

Joint distribution nicely rearranges as

$$p(x_1,...,x_K) = \frac{1}{Z} \prod_C \psi_C(\mathbf{x}_C)$$
$$= \frac{1}{Z} \exp\{-\sum_C E_C(\mathbf{x}_C)\}$$

- Intuition about potential functions: ψ_C are describing good (low energy) sets of states for adjacent nodes
- An example of this is next

Image Denoising

- Consider the problem of trying to correct (denoise) an image that has been corrupted
- Assume image is binary
- Observed (noisy) pixel values $y_i \in \{-1, +1\}$
- Unobserved true pixel values $x_i \in \{-1, +1\}$

Image Denoising - Graphical Model

Image Denoising - Graphical Model

- Cliques containing each true pixel value $x_i \in \{-1, +1\}$ and observed value $y_i \in \{-1, +1\}$
 - Observed pixel value is usually same as true pixel value
 - Energy function $-\eta x_i y_i$, $\eta > 0$, lower energy (better) if $x_i = y_i$

Image Denoising - Graphical Model

- Cliques containing each true pixel value x_i ∈ {-1,+1} and observed value y_i ∈ {-1,+1}
 - Observed pixel value is usually same as true pixel value
 - Energy function $-\eta x_i y_i$, $\eta > 0$, lower energy (better) if $x_i = y_i$
- Cliques containing adjacent true pixel values x_i, x_i
 - Nearby pixel values are usually the same
 - Energy function $-\beta x_i x_j$, $\beta > 0$, lower energy (better) if $x_i = x_j$

Image Denoising - Graphical Model

Complete energy function:

$$E(\mathbf{x}, \mathbf{y}) = -\beta \sum_{\{i,j\}} x_i x_j - \eta \sum_i x_i y_i$$

Joint distribution:

$$p(\mathbf{x}, \mathbf{y}) = \frac{1}{7} \exp\{-E(\mathbf{x}, \mathbf{y})\}\$$

• Or, as potential functions $\psi_n(x_i, x_i) = \exp(\beta x_i x_i)$, $\psi_p(x_i, y_i) = \exp(\eta x_i y_i)$:

$$p(\mathbf{x}, \mathbf{y}) = \frac{1}{Z} \prod_{i,j} \psi_n(x_i, x_j) \prod_i \psi_p(x_i, y_i)$$

Image Denoising - Inference

- The denoising query is $\arg \max_{x} p(x|y)$
- Two approaches:
 - Iterated conditional modes (ICM): hill climbing in x, one variable x_i at a time
 - Simple to compute, Markov blanket is just observation plus neighbouring pixels
 - Graph cuts: formulate as max-flow/min-cut problem, exact inference (for this graph)

Converting Directed Graphs into Undirected Graphs

Consider a simple directed chain graph:

$$p(\mathbf{x}) = p(x_1)p(x_2|x_1)p(x_3|x_2)\dots p(x_N|x_{N-1})$$

· Can convert to undirected graph

Converting Directed Graphs into Undirected Graphs

Consider a simple directed chain graph:

$$p(\mathbf{x}) = p(x_1)p(x_2|x_1)p(x_3|x_2)\dots p(x_N|x_{N-1})$$

Can convert to undirected graph

$$p(\mathbf{x}) = \frac{1}{Z} \psi_{1,2}(x_1, x_2) \psi_{2,3}(x_2, x_3) \dots \psi_{N-1,N}(x_{N-1}, x_N)$$

where
$$\psi_{1,2} = p(x_1)p(x_2|x_1)$$
, all other $\psi_{k-1,k} = p(x_k|x_{k-1})$, $Z = 1$

Converting Directed Graphs into Undirected Graphs

- The chain was straight-forward because for each conditional $p(x_i|pa_i)$, nodes $x_i \cup pa_i$ were contained in one clique
 - Hence we could define that clique potential to include that conditional
- For a general undirected graph we can force this to occur by "marrying" the parents
 - Add links between all parents in pa_i
 - This process known as moralization, creating a moral graph

Strong Morals

- Start with directed graph on left
- Add undirected edges between all parents of each node
- Remove directionality from original edges

Constructing Potential Functions

- Initialize all potential functions to be 1
- With moral graph, for each $p(x_i|pa_i)$, there is at least one clique which contains all of $x_i \cup pa_i$
 - Multiply $p(x_i|pa_i)$ into potential function for one of these cliques
- Z=1 again since:

$$p(\mathbf{x}) = \prod_{C} \psi_{C}(\mathbf{x}_{C}) = \prod_{i} p(x_{i}|pa_{i})$$

which is already normalized

- Note that the moralized undirected graph loses some of the conditional independence statements of the directed graph
- Further, there are certain conditional independence assumptions which can be represented by directed graphs which cannot be represented by undirected graphs, and vice versa

- Note that the moralized undirected graph loses some of the conditional independence statements of the directed graph
- Further, there are certain conditional independence assumptions which can be represented by directed graphs which cannot be represented by undirected graphs, and vice versa

- Note that the moralized undirected graph loses some of the conditional independence statements of the directed graph
- Further, there are certain conditional independence assumptions which can be represented by directed graphs which cannot be represented by undirected graphs, and vice versa
- Directed graph: $A \perp \!\!\! \perp B | \emptyset, A \top \!\!\! \top B | C$, cannot be represented using undirected graph

- Note that the moralized undirected graph loses some of the conditional independence statements of the directed graph
- Further, there are certain conditional independence assumptions which can be represented by directed graphs which cannot be represented by undirected graphs, and vice versa
- Directed graph: $A \perp \!\!\! \perp B | \emptyset, A \top \!\!\! \top B | C$, cannot be represented using undirected graph

- Note that the moralized undirected graph loses some of the conditional independence statements of the directed graph
- Further, there are certain conditional independence assumptions which can be represented by directed graphs which cannot be represented by undirected graphs, and vice versa
- Directed graph: $A \perp \!\!\! \perp B | \emptyset, A \top \!\!\! \top B | C$, cannot be represented using undirected graph
- Undirected graph: $A \perp \!\!\!\!\perp B | \emptyset, A \perp \!\!\!\perp B | C \cup D, C \perp \!\!\!\!\perp D | A \cup B$ cannot be represented using directed graph

Outline

Markov Random Fields

Inference

Inference

- Inference is the process of answering queries such as $p(x_n|\mathbf{x}_e = \mathbf{e})$
- We will focus on computing marginal posterior distributions over single variables x_n using

$$p(x_n|\mathbf{x}_e=\mathbf{e}) \propto p(x_n,\mathbf{x}_e=\mathbf{e})$$

• The proportionality constant can be obtained by enforcing $\sum_{x_e} p(x_e|x_e|e) = 1$

Inference on a Chain

- Consider a simple undirected chain
- For inference, we want to compute $p(x_n, x_e = e)$
- First, we'll show how to compute $p(x_n)$
 - $p(x_n, x_e = e)$ will be a simple modification of this

Inference on a Chain

• The naive method of computing the marginal $p(x_n)$ is to write down the factored form of the joint, and marginalize (sum out) all other variables:

$$p(x_n) = \sum_{x_1} \dots \sum_{x_{n-1}} \sum_{x_{n+1}} \dots \sum_{x_N} p(x)$$
$$= \sum_{x_1} \dots \sum_{x_{n-1}} \sum_{x_{n+1}} \dots \sum_{x_N} \frac{1}{Z} \prod_C \psi_C(x_C)$$

 This would be slow – O(K^N) work if each variable could take K values

Inference on a Chain

- However, due to the factorization terms in this summation can be rearranged nicely
- This will lead to efficient algorithms

Simple Algebra

This efficiency comes from a very simple distributivity

$$ab + ac = a(b+c)$$

Or more complicated version

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_i b_j = a_1 b_1 + a_1 b_2 + \dots + a_n b_n$$
$$= (a_1 + \dots + a_n)(b_1 + \dots + b_n)$$

• Much faster to do right hand side (2(n-1)) additions, 1 multiplication) than left hand side (n^2) multiplications, n^2-1 additions)

A Simple Chain

• First consider a chain with 3 nodes, and computing $p(x_3)$:

$$p(x_3) = \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \psi_{23}(x_2, x_3)$$
$$= \sum_{x_2} \psi_{23}(x_2, x_3) \left[\sum_{x_1} \psi_{12}(x_1, x_2) \right]$$

Performing the sums

$$p(x_3) = \sum_{x_2} \psi_{23}(x_2, x_3) \left[\sum_{x_1} \psi_{12}(x_1, x_2) \right]$$

$$\psi_{12}(x_1, x_2) = x_1 \underbrace{\left[\begin{array}{c} a & b \\ c & d \end{array}\right]}_{x_2} \quad \psi_{23}(x_2, x_3) = x_2 \underbrace{\left[\begin{array}{c} s & t \\ u & v \end{array}\right]}_{x_3}$$

Performing the sums

$$p(x_3) = \sum_{x_2} \psi_{23}(x_2, x_3) \left[\sum_{x_1} \psi_{12}(x_1, x_2) \right]$$

$$\psi_{12}(x_1, x_2) = x_1 \underbrace{\begin{bmatrix} a & b \\ c & d \end{bmatrix}}_{x_2} \qquad \psi_{23}(x_2, x_3) = x_2 \underbrace{\begin{bmatrix} s & t \\ u & v \end{bmatrix}}_{x_3}$$
$$\sum_{x_1} \psi_{12}(x_1, x_2) = \underbrace{\begin{bmatrix} a + c & b + d \end{bmatrix}}_{x_1} \equiv \mu_{12}(x_2)$$

Performing the sums

$$p(x_3) = \sum_{x_2} \psi_{23}(x_2, x_3) \left[\sum_{x_1} \psi_{12}(x_1, x_2) \right]$$

$$\psi_{12}(x_1, x_2) = x_1 \underbrace{\begin{bmatrix} a & b \\ c & d \end{bmatrix}}_{x_2} \qquad \psi_{23}(x_2, x_3) = x_2 \underbrace{\begin{bmatrix} s & t \\ u & v \end{bmatrix}}_{x_3}$$

$$\sum_{x_1} \psi_{12}(x_1, x_2) = \underbrace{\begin{bmatrix} a + c & b + d \end{bmatrix}}_{x_2} \equiv \mu_{12}(x_2)$$

$$\psi_{23}(x_2, x_3) \times \mu_{12}(x_2) = x_2 \underbrace{\begin{bmatrix} s(a+c) & t(a+c) \\ u(b+d) & v(b+d) \end{bmatrix}}_{x_3}$$

Performing the sums

$$p(x_3) = \sum_{x_2} \psi_{23}(x_2, x_3) \left[\sum_{x_1} \psi_{12}(x_1, x_2) \right]$$

$$\psi_{12}(x_1, x_2) = x_1 \underbrace{\begin{bmatrix} a & b \\ c & d \end{bmatrix}}_{x_2} \qquad \psi_{23}(x_2, x_3) = x_2 \underbrace{\begin{bmatrix} s & t \\ u & v \end{bmatrix}}_{x_3}$$

$$\sum_{x_1} \psi_{12}(x_1, x_2) = \underbrace{\begin{bmatrix} a + c & b + d \end{bmatrix}}_{x_2} \equiv \mu_{12}(x_2)$$

$$\psi_{23}(x_2, x_3) \times \mu_{12}(x_2) = x_2 \underbrace{\begin{bmatrix} s(a+c) & t(a+c) \\ u(b+d) & v(b+d) \end{bmatrix}}_{x_3}$$

$$p(x_3) = \begin{bmatrix} s(a+c) + u(b+d) & t(a+c) + v(b+d) \end{bmatrix}$$

Complexity of Inference

- There were two types of operations
 - Summation

$$\sum_{x_1} \psi_{12}(x_1, x_2)$$

 $K \times K$ numbers in ψ_{12} , takes $O(K^2)$ time

Multiplication

$$\psi_{23}(x_2,x_3) \times \mu_{12}(x_2)$$

Again $O(K^2)$ work

- For a chain of length N, we repeat these operations N-1 times each
 - $O(NK^2)$ work, versus $O(K^N)$ for naive evaluation

More complicated chain

$$p(x_3) = \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} \psi_{12}(x_1, x_2) \psi_{23}(x_2, x_3) \psi_{34}(x_3, x_4) \psi_{45}(x_4, x_5)$$

More complicated chain

$$p(x_3) = \sum_{x_1} \sum_{x_2} \sum_{x_4} \sum_{x_5} \psi_{12}(x_1, x_2) \psi_{23}(x_2, x_3) \psi_{34}(x_3, x_4) \psi_{45}(x_4, x_5)$$

$$= \sum_{x_2} \sum_{x_1} \psi_{12}(x_1, x_2) \psi_{23}(x_2, x_3) \sum_{x_4} \sum_{x_5} \psi_{34}(x_3, x_4) \psi_{45}(x_4, x_5)$$

More complicated chain

$$p(x_3) = \sum_{x_1} \sum_{x_2} \sum_{x_4} \sum_{x_5} \psi_{12}(x_1, x_2) \psi_{23}(x_2, x_3) \psi_{34}(x_3, x_4) \psi_{45}(x_4, x_5)$$

$$= \sum_{x_2} \sum_{x_1} \psi_{12}(x_1, x_2) \psi_{23}(x_2, x_3) \sum_{x_4} \sum_{x_5} \psi_{34}(x_3, x_4) \psi_{45}(x_4, x_5)$$

$$= \left[\sum_{x_2} \sum_{x_1} \psi_{12}(x_1, x_2) \psi_{23}(x_2, x_3) \right] \left[\sum_{x_4} \sum_{x_5} \psi_{34}(x_3, x_4) \psi_{45}(x_4, x_5) \right]$$

More complicated chain

$$p(x_3) = \sum_{x_1} \sum_{x_2} \sum_{x_4} \sum_{x_5} \psi_{12}(x_1, x_2) \psi_{23}(x_2, x_3) \psi_{34}(x_3, x_4) \psi_{45}(x_4, x_5)$$

$$= \sum_{x_2} \sum_{x_1} \psi_{12}(x_1, x_2) \psi_{23}(x_2, x_3) \sum_{x_4} \sum_{x_5} \psi_{34}(x_3, x_4) \psi_{45}(x_4, x_5)$$

$$= \left[\sum_{x_2} \sum_{x_1} \psi_{12}(x_1, x_2) \psi_{23}(x_2, x_3) \right] \left[\sum_{x_4} \sum_{x_5} \psi_{34}(x_3, x_4) \psi_{45}(x_4, x_5) \right]$$

- Each of these factors resembles the previous, and can be computed efficiently
 - Again $O(NK^2)$ work

Inference

 The factors can be thought of as messages being passed between nodes in the graph

$$\mu_{12}(x_2) \equiv \sum_{x_1} \psi_{12}(x_1, x_2)$$

is a message passed from node x_1 to node x_2 containing all information in node x_1

In general,

$$\mu_{k-1,k}(x_k) = \sum_{x_{k-1}} \psi_{k-1,k}(x_{k-1}, x_k) \mu_{k-2,k-1}(x_{k-1})$$

Possible to do so because of conditional independence

Computing All Marginals

- Computing one marginal $p(x_n)$ takes $O(NK^2)$ time
- Naively running same algorithms for all nodes in a chain would take $O(N^2K^2)$ time
- But this isn't necessary, same messages can be reused at all nodes in the chain
- Pass all messages from one end of the chain to the other, pass all messages in the other direction too
- Can compute marginal at any node by multiplying the two messages delivered to the node
 - $2(N-1)K^2$ work, twice as much as for just one node

Including Evidence

• If a node $x_{k-1} = e$ is observed, simply clamp to observed value rather than summing:

$$\mu_{k-1,k}(x_k) = \sum_{x_{k-1}} \psi_{k-1,k}(x_{k-1}, x_k) \mu_{k-2,k-1}(x_{k-1})$$

becomes

$$\mu_{k-1,k}(x_k) = \psi_{k-1,k}(x_{k-1} = e, x_k)\mu_{k-2,k-1}(x_{k-1} = e)$$

Trees

- The algorithm for a tree-structured graph is very similar to that for chains
- Formulation in PRML uses factor graphs, we'll just give the intuition here
- Consider calcuating the marginal $p(x_n)$ for the center node of the graph at right
- Treat x_n as root of tree, pass messages from leaf nodes up to root

Trees

- Message passing similar to that in chains, but possibly multiple messages reaching a node
- With multiple messages, multiply them together
- As before, sum out variables

$$\mu_{k-1,k}(x_k) = \sum_{x_{k-1}} \psi_{k-1,k}(x_{k-1}, x_k) \mu_{k-2,k-1}(x_{k-1})$$

- Known as sum-product algorithm
- Complexity still O(NK²)

Most Likely Configuration

· A similar algorithm exists for finding

$$\arg\max_{x_1,\ldots,x_N}p(x_1,\ldots,x_N)$$

- Replace summation operations with maximize operations
- Maximum of products at each node
- Known as max-sum, since often take log-probability to avoid underflow errors

General Graphs

- Junction tree algorithm is an exact inference method for arbitrary graphs
 - A particular tree structure defined over cliques of variables
 - Inference ends up being exponential in maximum clique size
 - Therefore slow in many cases
- Approximate inference techniques
 - Loopy belief propagation: run message passing scheme (sum-product) for a while
 - Sometimes works
 - Not guaranteed to converge
 - Variational methods: approximate desired distribution using analytically simple forms, find parameters to make these forms similar to actual desired distribution (Ch. 10, we won't cover)
 - Sampling methods: represent desired distribuion with a set of samples, as more samples are used, obtain more accurate representation (Ch. 11, we will cover)

Conclusion

- Readings: Ch. 8
- Graphical models depict conditional independence assumptions
- Directed graphs (Bayesian networks)
 - Factorization of joint distribution as conditional on node given parents
- Undirected graphs (Markov random fields)
 - Factorization of joint distribution as clique potential functions
- Inference algorithm sum-product, based on local message passing
 - Works for tree-structured graphs
 - Non-tree-structured graphs, either slow exact or approximate inference

