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Markov Random Fields Inference

Conditional Independence in Graphs

¢ Recall that for Bayesian Networks, conditional
independence was a bit complicated
e d-separation with head-to-head links
e We would like to construct a graphical representation such
that conditional independence is straight-forward path
checking



Markov Random Fields

Markov Random Fields

il
e Markov random fields (MRFs) contain one node per
variable
e Undirected graph over these nodes

e Conditional independence will be given by simple
separation, blockage by observing a node on a path

e e.g. in above graph, A L B|C

Inference



Markov Random Fields Inference

Markov Blanket Markov

o With this simple check for conditional independence,
Markov blanket is also simple

¢ Recall Markov blanket MB of x; is set of nodes such that x;
conditionally independent from rest of graph given MB

e Markov blanket is neighbours



Markov Random Fields

MRF Factorization

Remember that graphical models define a factorization of
the joint distribution

What should be the factorization so that we end up with the
simple conditional independence check?

For x; and x; not connected by an edge in graph:

xi AL Xl iy

So there should not be any factor ¢ (x;,x;) in the factorized
form of the joint



Markov Random Fields

Cliques

e Aclique in a graph is a subset of nodes such
that there is a link between every pair of
nodes in the subset

¢ A maximal clique is a clique for which one
cannot add another node and have the set
remain a clique




Markov Random Fields

MRF Joint Distribution

Note that nodes in a clique cannot be made conditionally
independent from each other

e So defining factors ¢ (-) on nodes in a clique is “safe”
The joint distribution for a Markov random field is:

p(xl, e ,XK) = %ch(xc)
C

where x¢ is the set of nodes in clique C, and the product
runs over all maximal cliques

Each ¢c(xc) >0
Z is a normalization constant



Markov Random Fields Inference

MRF Joint Distribution Example

e The joint distribution for a Markov random field
is:
_ 1 11
p(xl,... ,X4) = E : wc(xc)

1
= 2%/)123(161,)62,)63)@0234()62,x3,x4)

e Note that maximal cliques subsume smaller
ones: ¢123(X1,X2,X3) could include 1/112()61,)62),
though sometimes smaller cliques are
explicitly used for clarity



Markov Random Fields

MRF Joint - Terminology
e The joint distribution for a Markov random field is:
1
p(xt,... xk) = Zl;[%/)C(xC)

e Each ¢¢(x() is called a potential function
e Z, the normalization constant, is called the partition

function:
z=3 [[vclxo)
x C

e Zis very costly to compute, since it is a sum/integral over
all possible states for all variables in x

e Don’t always need to evaluate it though, will cancel for
computing conditional probabilities



Markov Random Fields

Hammersley-Clifford

The definition of the joint:
1
Pl xk) = - 1;[¢c(x6)

¢ Note that we started with particular conditional
independences

o We then formulated the factorization based on clique
potentials

e This formulation resulted in the right conditional
independences

e The converse is true as well, any distribution with the
conditional independences given by the undirected graph
can be represented using a product of clique potentials

¢ This is the Hammersley-Clifford theorem



Markov Random Fields

Energy Functions

e Often use exponential, which is non-negative, to define
potential functions:

Ye(xc) = exp{—Ec(xc)}

e Minus sign — by convention
e Ec(xc) is called an energy function
e From physics, low energy = high probability
e This exponential representation is known as the Boltzmann
distribution



Markov Random Fields

Energy Functions - Intuition

e Joint distribution nicely rearranges as
1
P(X1>~--7XK) = Zl;[wC(xC)
1
= Zexp{- gEc(xc)}

e Intuition about potential functions: ¢ are describing good
(low energy) sets of states for adjacent nodes

e An example of this is next



Markov Random Fields

Image Denoising

Bages’

Theorewa

Consider the problem of trying to correct (denoise) an
image that has been corrupted

Assume image is binary
Observed (noisy) pixel values y; € {—1,+1}
Unobserved true pixel values x; € {—1,+1}
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Image Denoising - Graphical Model




Markov Random Fields Inference

Image Denoising - Graphical Model

¢ Cliques containing each true pixel value x; € {—1,+1} and
observed value y; € {—1,+1}
e Observed pixel value is usually same as true pixel value
e Energy function —nx;y;, n > 0, lower energy (better) if x; = y;



Markov Random Fields Inference

Image Denoising - Graphical Model

¢ Cliques containing each true pixel value x; € {—1,+1} and
observed value y; € {—1,+1}

e Observed pixel value is usually same as true pixel value

e Energy function —nx;y;, n > 0, lower energy (better) if x; = y;
e Cliques containing adjacent true pixel values x;, x;

o Nearby pixel values are usually the same

e Energy function —Bx;x;, 5 > 0, lower energy (better) if

Xi = X



Markov Random Fields Inference

Image Denoising - Graphical Model

o Complete energy function:

E(x,y) =8 _xxj—n Y xii
{ij} i
e Joint distribution:
1
p(x7y) = 2 exp{—E(x,y)}
e Or, as potential functions v, (x;, x;) = exp(Bxx;),
Up(xi, yi) = exp(nx;yi):

p(w.3) = 5 [Tt ) [T il )



Markov Random Fields

Image Denoising - Inference

e The denoising query is arg max, p(x|y)

e Two approaches:
e lterated conditional modes (ICM): hill climbing in x, one
variable x; at a time
e Simple to compute, Markov blanket is just observation plus
neighbouring pixels
e Graph cuts: formulate as max-flow/min-cut problem, exact
inference (for this graph)



Markov Random Fields Inference

Converting Directed Graphs into Undirected Graphs

X1 X9 TN-1 TN

Ty T2 TN_1 TN

e Consider a simple directed chain graph:

p(x) = p(x1)p(x2lx)p(xs|x) - . . pLew|xn—1)

e Can convert to undirected graph



Markov Random Fields Inference

Converting Directed Graphs into Undirected Graphs

T X9 TN-1 TN

1 Ty ITN_1 TN

e Consider a simple directed chain graph:

p(x) = p(x1)p(xa|x1)p(x3]x2) . .. p(xnxn—1)
e Can convert to undirected graph

plx) = %%,2(3617362)1&2,3(3627363) o UN— N (V=1 xN)

where 15 = p(x1)p(x2|x1), all other ¥y x = p(xi|xi—1),
Z=1



Markov Random Fields

Converting Directed Graphs into Undirected Graphs

¢ The chain was straight-forward because for each
conditional p(x;|pa;), nodes x; U pa; were contained in one
clique
¢ Hence we could define that clique potential to include that
conditional

e For a general undirected graph we can force this to occur
by “marrying” the parents
¢ Add links between all parents in pa;
¢ This process known as moralization, creating a moral graph



Markov Random Fields Inference

Strong Morals

T4

e Start with directed graph on left
e Add undirected edges between all parents of each node
¢ Remove directionality from original edges



Markov Random Fields

C/Qnstructing. Poten/tial Functions

z3

T4

e Initialize all potential functions to be 1

o With moral graph, for each p(x;|pa;), there is at least one
clique which contains all of x; U pa;
o Multiply p(x;|pa;) into potential function for one of these
cliques

e Z =1 again since:

p(x) = [[¢clxe) = [ [ plxilpar)
C i

which is already normalized

Inference



Markov Random Fields

Equivalence Between Graph Types

¢ Note that the moralized undirected graph loses some of the
conditional independence statements of the directed graph

e Further, there are certain conditional independence
assumptions which can be represented by directed graphs
which cannot be represented by undirected graphs, and
vice versa
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Equivalence Between Graph Types

A B

¢ Note that the moralized undirected graph loses some of the
conditional independence statements of the directed graph

e Further, there are certain conditional independence
assumptions which can be represented by directed graphs
which cannot be represented by undirected graphs, and
vice versa



Markov Random Fields

Equivalence Between Graph Types

A B

¢ Note that the moralized undirected graph loses some of the
conditional independence statements of the directed graph

e Further, there are certain conditional independence
assumptions which can be represented by directed graphs
which cannot be represented by undirected graphs, and
vice versa

e Directed graph: A 1L B|(, AT B|C, cannot be represented
using undirected graph
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Equivalence Between Graph Types
C

A B
A B

¢ Note that the moralized undirected graph loses some of the
conditional independence statements of the directed graph

e Further, there are certain conditional independence
assumptions which can be represented by directed graphs
which cannot be represented by undirected graphs, and
vice versa

e Directed graph: A 1L B|(, AT B|C, cannot be represented
using undirected graph



Markov Random Fields

Equivalence Between Graph Types
C

A B
A B

¢ Note that the moralized undirected graph loses some of the
conditional independence statements of the directed graph

e Further, there are certain conditional independence
assumptions which can be represented by directed graphs
which cannot be represented by undirected graphs, and
vice versa

e Directed graph: A 1L B|(, AT B|C, cannot be represented
using undirected graph

e Undirected graph: ATTB|(, A 1L BICUD, C 1. DJAUB
cannot be represented using directed graph
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Inference

Inference

e Inference is the process of answering queries such as
plxalx. = e)

o We will focus on computing marginal posterior distributions
over single variables x, using

p(xp|x, =€) x p(x,,x. =€)

e The proportionality constant can be obtained by enforcing
anp(xn‘xe =e)=1



Markov Random Fields

Inference on a Chain

Ty T2 TN_1 TN

e Consider a simple undirected chain
e For inference, we want to compute p(x,,x. = e)

e First, we’ll show how to compute p(x,)
e p(x,,x. = e) will be a simple modification of this

Inference



Inference on a Chain

Ty T2 IN—1 TN

e The naive method of computing the marginal p(x,) is to
write down the factored form of the joint, and marginalize
(sum out) all other variables:

plan) = Z DY Zp

Xn—1 Xn+1

SO DI 23 (X0

Xn—1 Xn+1

e This would be slow — O(K") work if each variable could
take K values

Inference
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Inference on a Chain

T T TN_1 TN

e However, due to the factorization terms in this summation
can be rearranged nicely

¢ This will lead to efficient algorithms



Inference

Simple Algebra

e This efficiency comes from a very simple distributivity
ab + ac = a(b + ¢)
e Or more complicated version

non
Z Za,’bj = aiby+aiby+ ...+ ab,
i=1 j=1

= (a1 +...+a)(b1 + ...+ by)

e Much faster to do right hand side (2(n — 1) additions, 1
multiplication) than left hand side (n> multiplications, n* — 1
additions)



Markov Random Fields Inference

A Simple Chain

T To TN_1 TN

e First consider a chain with 3 nodes, and computing p(x3):

plxs) = D> dhia(x1, %)t (x2,%3)

= Z V23(x2,x3) [Z ¢12(x1,x2)]



Markov Random Fields Inference

Performing the sums

p(xs) = a3(x2,x3) [Z 11112(361,)62)]

e For example, if x; are binary:

YP12(x1,x2) = x1 [ CCZ Z ] Yn3(x2,%3) = x2 [ ft ‘t} }
~—— —

X2 X3



Markov Random Fields Inference

Performing the sums

p(xs) = 3(x2,x3) [Z 11112()61,)62)]

e For example, if x; are binary:

YP12(x1,x2) = x1 [ i Z ] Yn3(x2,%3) = x2 [ i ‘t} }
~—— —

X3

Y nlr,n)=[atc b+d]=pnln)

X2




Inference

Performing the sums

p(xs) = 3(x2,x3) [Z 11112()61,)62)]

e For example, if x; are binary:

YP12(x1,x2) = x1 [ i Z ] Yn3(x2,%3) = x2 [ i ‘t} }
~—— —

X2 X3

Y nlr,n)=[atc b+d]=pnln)

X

X2

bt )= [ i)

X3




Inference

Performing the sums

p(xs) = 3(x2,x3) [Z 11112()61,)62)]

e For example, if x; are binary:

YP12(x1,x2) = x1 [ i Z ] Yn3(x2,%3) = x2 [ i ‘t} }
~—— —

X3

Y nlr,n)=[atc b+d]=pnln)

X2

bt )= [ i)

X3

p(xz)=[s(a+c)+ulb+d) tlatc)+v(b+d) ]



Inference

Complexity of Inference

e There were two types of operations
e Summation
Ziblz(xl,xz)

K x K numbers in v,, takes O(K?) time
o Multiplication

V3 (x2,x3) X pia(x2)
Again O(K?) work
e For a chain of length N, we repeat these operations N — 1
times each
e O(NK?) work, versus O(K") for naive evaluation



Markov Random Fields Inference

More complicated chain

e Now consider a 5 node chain, again asking for p(x3)

p(x3) = Z Z Z Z 1o (x1,x2)123(x2, x3)1034 (X3, X4) a5 (x4, X5)

X1 X2 X4 Xs



Markov Random Fields Inference

More complicated chain

e Now consider a 5 node chain, again asking for p(x3)

p(x3) = Z Z Z Z 1o (x1,x2)123(x2, x3)1034 (X3, X4) a5 (x4, X5)

X1 X2 X4 Xs

= Z Z P12(x1, X2) 23 (X2, x3) Z Z V34(X3, X4)V45(x4, X5)

X2 x| X4 X5



Markov Random Fields Inference

More complicated chain

e Now consider a 5 node chain, again asking for p(x3)

p(x3) = Z Z Z Z 1o (x1,x2)123(x2, x3)1034 (X3, X4) a5 (x4, X5)

X1 X2 X4 Xs

= Z Z P12(x1, X2) 23 (X2, x3) Z Z V34(X3, X4)V45(x4, X5)

X2 x| X4 X5

= DD v, x)tas(x, x ] [221/134 X3, X4) a5 (X4, X5)

Xy x| X4 X5



Inference

More complicated chain

e Now consider a 5 node chain, again asking for p(x3)

p(x3) = Z Z Z Z 1o (x1,x2)123(x2, x3)1034 (X3, X4) a5 (x4, X5)

X1 X2 X4 Xs

= Z Z P12(x1, X2) 23 (X2, x3) Z Z V34(X3, X4)V45(x4, X5)

X2 X X4 X5
= DD v, x)tas(x, x ] [221#34 X3, X4) a5 (X4, X5)
X2 X1 X4 X5

e Each of these factors resembles the previous, and can be
computed efficiently

e Again O(NK?) work



Inference

Messa e Passmg

J3n 1) P«a Ty Nﬁ Tn) Nﬁ(xn+l)
xq Tn—1 Tn Tn+1 TN

e The factors can be thought of as messages being passed
between nodes in the graph

pia(x2) =D ia(x1,x2)

X1

is a message passed from node x; to node x; containing all
information in node x;

e In general,

P 1k () =Y et k(51,50 k2,1 (K1)

Xk—1

e Possible to do so because of conditional independence



Inference

Computing All Marginals

Ma(mnfl) /‘fa(xn) :uﬁ(‘rn) Mﬂ(x’ﬂ+1)

Computing one marginal p(x,) takes O(NK?) time

Naively running same algorithms for all nodes in a chain
would take O(N?K?) time

But this isn’t necessary, same messages can be reused at
all nodes in the chain

Pass all messages from one end of the chain to the other,
pass all messages in the other direction too

Can compute marginal at any node by multiplying the two
messages delivered to the node

e 2(N — 1)K?* work, twice as much as for just one node
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Including Evidence

e If a node x,_; = e is observed, simply clamp to observed
value rather than summing:

Pkt 1) = D k1 a1, %) 2.1 (K1)

Xk—1

becomes

Pi—1,k(Xk) = Yr—1 (Xk—1 = €, X)) pk—2,k—1(Xk—1 = €)



Inference

Trees

e The algorithm for a tree-structured graph is
very similar to that for chains

e Formulation in PRML uses factor graphs, we'll
just give the intuition here

o Consider calcuating the marginal p(x,) for the
center node of the graph at right

e Treat x, as root of tree, pass messages from
leaf nodes up to root



Trees

Message passing similar to that in chains, but
possibly multiple messages reaching a node

With multiple messages, multiply them
together

As before, sum out variables

pk—1k(xk) = Z Yk 1 g (X1, X)) k2,5~ 1 (X—1)

Xk—1

Known as sum-product algorithm
Complexity still O(NK?)

Inference



Most Likely Configuration

A similar algorithm exists for finding

arg max p(xp,...,xy)
X1yeeesXN

Replace summation operations with maximize
operations
Maximum of products at each node

Known as max-sum, since often take
log-probability to avoid underflow errors

Inference



Inference

General Graphs

¢ Junction tree algorithm is an exact inference method for
arbitrary graphs
e A particular tree structure defined over cliques of variables
¢ Inference ends up being exponential in maximum clique
size
e Therefore slow in many cases
e Approximate inference techniques
o Loopy belief propagation: run message passing scheme
(sum-product) for a while
e Sometimes works
e Not guaranteed to converge
o Variational methods: approximate desired distribution using
analytically simple forms, find parameters to make these
forms similar to actual desired distribution (Ch. 10, we won’t
cover)
e Sampling methods: represent desired distribuion with a set
of samples, as more samples are used, obtain more
accurate representation (Ch. 11, we will cover)



Inference

Conclusion

Readings: Ch. 8

Graphical models depict conditional independence
assumptions
Directed graphs (Bayesian networks)
o Factorization of joint distribution as conditional on node
given parents
Undirected graphs (Markov random fields)
e Factorization of joint distribution as clique potential
functions
Inference algorithm sum-product, based on local message
passing
e Works for tree-structured graphs
o Non-tree-structured graphs, either slow exact or
approximate inference
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