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Conditional Independence in Graphs

c

a b

c

a b

• Recall that for Bayesian Networks, conditional
independence was a bit complicated

• d-separation with head-to-head links

• We would like to construct a graphical representation such
that conditional independence is straight-forward path
checking
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Markov Random Fields

A

C
B

• Markov random fields (MRFs) contain one node per
variable

• Undirected graph over these nodes
• Conditional independence will be given by simple

separation, blockage by observing a node on a path
• e.g. in above graph, A ⊥⊥ B|C
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Markov Blanket Markov

• With this simple check for conditional independence,
Markov blanket is also simple

• Recall Markov blanket MB of xi is set of nodes such that xi

conditionally independent from rest of graph given MB

• Markov blanket is neighbours
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MRF Factorization

• Remember that graphical models define a factorization of
the joint distribution

• What should be the factorization so that we end up with the
simple conditional independence check?

• For xi and xj not connected by an edge in graph:

xi ⊥⊥ xj|x\{i,j}

• So there should not be any factor ψ(xi, xj) in the factorized
form of the joint
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Cliques

• A clique in a graph is a subset of nodes such
that there is a link between every pair of
nodes in the subset

• A maximal clique is a clique for which one
cannot add another node and have the set
remain a clique

x1

x2

x3

x4
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MRF Joint Distribution

• Note that nodes in a clique cannot be made conditionally
independent from each other

• So defining factors ψ(·) on nodes in a clique is “safe”

• The joint distribution for a Markov random field is:

p(x1, . . . , xK) =
1
Z

∏
C

ψC(xC)

where xC is the set of nodes in clique C, and the product
runs over all maximal cliques

• Each ψC(xC) ≥ 0
• Z is a normalization constant
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MRF Joint Distribution Example

• The joint distribution for a Markov random field
is:

p(x1, . . . , x4) =
1
Z

∏
C

ψC(xC)

=
1
Z
ψ123(x1, x2, x3)ψ234(x2, x3, x4)

• Note that maximal cliques subsume smaller
ones: ψ123(x1, x2, x3) could include ψ12(x1, x2),
though sometimes smaller cliques are
explicitly used for clarity

x1

x2

x3

x4
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MRF Joint - Terminology

• The joint distribution for a Markov random field is:

p(x1, . . . , xK) =
1
Z

∏
C

ψC(xC)

• Each ψC(xC) is called a potential function
• Z, the normalization constant, is called the partition

function:
Z =

∑
x

∏
C

ψC(xC)

• Z is very costly to compute, since it is a sum/integral over
all possible states for all variables in x

• Don’t always need to evaluate it though, will cancel for
computing conditional probabilities
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Hammersley-Clifford

• The definition of the joint:

p(x1, . . . , xK) =
1
Z

∏
C

ψC(xC)

• Note that we started with particular conditional
independences

• We then formulated the factorization based on clique
potentials

• This formulation resulted in the right conditional
independences

• The converse is true as well, any distribution with the
conditional independences given by the undirected graph
can be represented using a product of clique potentials

• This is the Hammersley-Clifford theorem
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Energy Functions

• Often use exponential, which is non-negative, to define
potential functions:

ψC(xC) = exp{−EC(xC)}

• Minus sign − by convention
• EC(xC) is called an energy function

• From physics, low energy = high probability

• This exponential representation is known as the Boltzmann
distribution
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Energy Functions - Intuition

• Joint distribution nicely rearranges as

p(x1, . . . , xK) =
1
Z

∏
C

ψC(xC)

=
1
Z

exp{−
∑

C

EC(xC)}

• Intuition about potential functions: ψC are describing good
(low energy) sets of states for adjacent nodes

• An example of this is next
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Image Denoising

• Consider the problem of trying to correct (denoise) an
image that has been corrupted

• Assume image is binary
• Observed (noisy) pixel values yi ∈ {−1,+1}
• Unobserved true pixel values xi ∈ {−1,+1}
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Image Denoising - Graphical Model

xi

yi

• Cliques containing each true pixel value xi ∈ {−1,+1} and
observed value yi ∈ {−1,+1}

• Observed pixel value is usually same as true pixel value
• Energy function −ηxiyi, η > 0, lower energy (better) if xi = yi

• Cliques containing adjacent true pixel values xi, xj
• Nearby pixel values are usually the same
• Energy function −βxixj, β > 0, lower energy (better) if

xi = xj
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Image Denoising - Graphical Model

xi

yi

• Complete energy function:

E(x, y) = −β
∑
{i,j}

xixj − η
∑

i

xiyi

• Joint distribution:

p(x, y) =
1
Z

exp{−E(x, y)}

• Or, as potential functions ψn(xi, xj) = exp(βxixj),
ψp(xi, yi) = exp(ηxiyi):

p(x, y) =
1
Z

∏
i,j

ψn(xi, xj)
∏

i

ψp(xi, yi)
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Image Denoising - Inference

• The denoising query is arg maxx p(x|y)
• Two approaches:

• Iterated conditional modes (ICM): hill climbing in x, one
variable xi at a time

• Simple to compute, Markov blanket is just observation plus
neighbouring pixels

• Graph cuts: formulate as max-flow/min-cut problem, exact
inference (for this graph)
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Converting Directed Graphs into Undirected Graphs
x1 x2 xN−1 xN

• Consider a simple directed chain graph:

p(x) = p(x1)p(x2|x1)p(x3|x2) . . . p(xN |xN−1)

• Can convert to undirected graph

p(x) =
1
Z
ψ1,2(x1, x2)ψ2,3(x2, x3) . . . ψN−1,N(xN−1, xN)

where ψ1,2 = p(x1)p(x2|x1), all other ψk−1,k = p(xk|xk−1),
Z = 1
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Converting Directed Graphs into Undirected Graphs

• The chain was straight-forward because for each
conditional p(xi|pai), nodes xi ∪ pai were contained in one
clique

• Hence we could define that clique potential to include that
conditional

• For a general undirected graph we can force this to occur
by “marrying” the parents

• Add links between all parents in pai
• This process known as moralization, creating a moral graph
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Strong Morals

x1 x3

x4

x2

x1 x3

x4

x2

• Start with directed graph on left
• Add undirected edges between all parents of each node
• Remove directionality from original edges
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Constructing Potential Functions
x1 x3

x4

x2

x1 x3

x4

x2

• Initialize all potential functions to be 1
• With moral graph, for each p(xi|pai), there is at least one

clique which contains all of xi ∪ pai
• Multiply p(xi|pai) into potential function for one of these

cliques

• Z = 1 again since:

p(x) =
∏

C

ψC(xC) =
∏

i

p(xi|pai)

which is already normalized
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Equivalence Between Graph Types

C

A B
A

C

B

D

• Note that the moralized undirected graph loses some of the
conditional independence statements of the directed graph

• Further, there are certain conditional independence
assumptions which can be represented by directed graphs
which cannot be represented by undirected graphs, and
vice versa

• Directed graph: A ⊥⊥ B|∅, A>>B|C, cannot be represented
using undirected graph

• Undirected graph: A>>B|∅, A ⊥⊥ B|C ∪ D, C ⊥⊥ D|A ∪ B
cannot be represented using directed graph
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Inference

• Inference is the process of answering queries such as
p(xn|xe = e)

• We will focus on computing marginal posterior distributions
over single variables xn using

p(xn|xe = e) ∝ p(xn, xe = e)

• The proportionality constant can be obtained by enforcing∑
xn

p(xn|xe = e) = 1



Markov Random Fields Inference

Inference on a Chain

• Consider a simple undirected chain
• For inference, we want to compute p(xn, xe = e)
• First, we’ll show how to compute p(xn)

• p(xn, xe = e) will be a simple modification of this
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Inference on a Chain

• The naive method of computing the marginal p(xn) is to
write down the factored form of the joint, and marginalize
(sum out) all other variables:

p(xn) =
∑

x1

. . .
∑
xn−1

∑
xn+1

. . .
∑
xN

p(x)

=
∑

x1

. . .
∑
xn−1

∑
xn+1

. . .
∑
xN

1
Z

∏
C

ψC(xC)

• This would be slow – O(KN) work if each variable could
take K values
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Inference on a Chain

• However, due to the factorization terms in this summation
can be rearranged nicely

• This will lead to efficient algorithms
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Simple Algebra

• This efficiency comes from a very simple distributivity

ab + ac = a(b + c)

• Or more complicated version

n∑
i=1

n∑
j=1

aibj = a1b1 + a1b2 + . . .+ anbn

= (a1 + . . .+ an)(b1 + . . .+ bn)

• Much faster to do right hand side (2(n− 1) additions, 1
multiplication) than left hand side (n2 multiplications, n2 − 1
additions)
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A Simple Chain

• First consider a chain with 3 nodes, and computing p(x3):

p(x3) =
∑

x1

∑
x2

ψ12(x1, x2)ψ23(x2, x3)

=
∑

x2

ψ23(x2, x3)

[∑
x1

ψ12(x1, x2)

]
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Performing the sums

p(x3) =
∑

x2

ψ23(x2, x3)

[∑
x1

ψ12(x1, x2)

]

• For example, if xi are binary:

ψ12(x1, x2) = x1

[
a b
c d

]
︸ ︷︷ ︸

x2

ψ23(x2, x3) = x2

[
s t
u v

]
︸ ︷︷ ︸

x3

∑
x1

ψ12(x1, x2) =
[

a + c b + d
]︸ ︷︷ ︸

x2

≡ µ12(x2)

ψ23(x2, x3)× µ12(x2) = x2

[
s(a + c) t(a + c)
u(b + d) v(b + d)

]
︸ ︷︷ ︸

x3

p(x3) =
[

s(a + c) + u(b + d) t(a + c) + v(b + d)
]



Markov Random Fields Inference

Performing the sums

p(x3) =
∑

x2

ψ23(x2, x3)

[∑
x1

ψ12(x1, x2)

]

• For example, if xi are binary:

ψ12(x1, x2) = x1

[
a b
c d

]
︸ ︷︷ ︸

x2

ψ23(x2, x3) = x2

[
s t
u v

]
︸ ︷︷ ︸

x3∑
x1

ψ12(x1, x2) =
[

a + c b + d
]︸ ︷︷ ︸

x2

≡ µ12(x2)

ψ23(x2, x3)× µ12(x2) = x2

[
s(a + c) t(a + c)
u(b + d) v(b + d)

]
︸ ︷︷ ︸

x3

p(x3) =
[

s(a + c) + u(b + d) t(a + c) + v(b + d)
]



Markov Random Fields Inference

Performing the sums

p(x3) =
∑

x2

ψ23(x2, x3)

[∑
x1

ψ12(x1, x2)

]

• For example, if xi are binary:

ψ12(x1, x2) = x1

[
a b
c d

]
︸ ︷︷ ︸

x2

ψ23(x2, x3) = x2

[
s t
u v

]
︸ ︷︷ ︸

x3∑
x1

ψ12(x1, x2) =
[

a + c b + d
]︸ ︷︷ ︸

x2

≡ µ12(x2)

ψ23(x2, x3)× µ12(x2) = x2

[
s(a + c) t(a + c)
u(b + d) v(b + d)

]
︸ ︷︷ ︸

x3

p(x3) =
[

s(a + c) + u(b + d) t(a + c) + v(b + d)
]



Markov Random Fields Inference

Performing the sums

p(x3) =
∑

x2

ψ23(x2, x3)

[∑
x1

ψ12(x1, x2)

]

• For example, if xi are binary:

ψ12(x1, x2) = x1

[
a b
c d

]
︸ ︷︷ ︸

x2

ψ23(x2, x3) = x2

[
s t
u v

]
︸ ︷︷ ︸

x3∑
x1

ψ12(x1, x2) =
[

a + c b + d
]︸ ︷︷ ︸

x2

≡ µ12(x2)

ψ23(x2, x3)× µ12(x2) = x2

[
s(a + c) t(a + c)
u(b + d) v(b + d)

]
︸ ︷︷ ︸

x3

p(x3) =
[

s(a + c) + u(b + d) t(a + c) + v(b + d)
]



Markov Random Fields Inference

Complexity of Inference

• There were two types of operations
• Summation ∑

x1

ψ12(x1, x2)

K × K numbers in ψ12, takes O(K2) time
• Multiplication

ψ23(x2, x3)× µ12(x2)

Again O(K2) work
• For a chain of length N, we repeat these operations N − 1

times each
• O(NK2) work, versus O(KN) for naive evaluation
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More complicated chain

• Now consider a 5 node chain, again asking for p(x3)

p(x3) =
∑

x1

∑
x2

∑
x4

∑
x5

ψ12(x1, x2)ψ23(x2, x3)ψ34(x3, x4)ψ45(x4, x5)

=
∑

x2

∑
x1

ψ12(x1, x2)ψ23(x2, x3)
∑

x4

∑
x5

ψ34(x3, x4)ψ45(x4, x5)

=

[∑
x2

∑
x1

ψ12(x1, x2)ψ23(x2, x3)

][∑
x4

∑
x5

ψ34(x3, x4)ψ45(x4, x5)

]

• Each of these factors resembles the previous, and can be
computed efficiently

• Again O(NK2) work
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Message Passing

x1 xn−1 xn xn+1 xN

µα(xn−1) µα(xn) µβ(xn) µβ(xn+1)

• The factors can be thought of as messages being passed
between nodes in the graph

µ12(x2) ≡
∑

x1

ψ12(x1, x2)

is a message passed from node x1 to node x2 containing all
information in node x1

• In general,

µk−1,k(xk) =
∑
xk−1

ψk−1,k(xk−1, xk)µk−2,k−1(xk−1)

• Possible to do so because of conditional independence
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Computing All Marginals

x1 xn−1 xn xn+1 xN

µα(xn−1) µα(xn) µβ(xn) µβ(xn+1)

• Computing one marginal p(xn) takes O(NK2) time
• Naively running same algorithms for all nodes in a chain

would take O(N2K2) time
• But this isn’t necessary, same messages can be reused at

all nodes in the chain
• Pass all messages from one end of the chain to the other,

pass all messages in the other direction too
• Can compute marginal at any node by multiplying the two

messages delivered to the node
• 2(N − 1)K2 work, twice as much as for just one node
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Including Evidence

• If a node xk−1 = e is observed, simply clamp to observed
value rather than summing:

µk−1,k(xk) =
∑
xk−1

ψk−1,k(xk−1, xk)µk−2,k−1(xk−1)

becomes

µk−1,k(xk) = ψk−1,k(xk−1 = e, xk)µk−2,k−1(xk−1 = e)
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Trees

• The algorithm for a tree-structured graph is
very similar to that for chains

• Formulation in PRML uses factor graphs, we’ll
just give the intuition here

• Consider calcuating the marginal p(xn) for the
center node of the graph at right

• Treat xn as root of tree, pass messages from
leaf nodes up to root
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Trees

• Message passing similar to that in chains, but
possibly multiple messages reaching a node

• With multiple messages, multiply them
together

• As before, sum out variables

µk−1,k(xk) =
∑
xk−1

ψk−1,k(xk−1, xk)µk−2,k−1(xk−1)

• Known as sum-product algorithm
• Complexity still O(NK2)



Markov Random Fields Inference

Most Likely Configuration

• A similar algorithm exists for finding

arg max
x1,...,xN

p(x1, . . . , xN)

• Replace summation operations with maximize
operations

• Maximum of products at each node
• Known as max-sum, since often take

log-probability to avoid underflow errors
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General Graphs
• Junction tree algorithm is an exact inference method for

arbitrary graphs
• A particular tree structure defined over cliques of variables
• Inference ends up being exponential in maximum clique

size
• Therefore slow in many cases

• Approximate inference techniques
• Loopy belief propagation: run message passing scheme

(sum-product) for a while
• Sometimes works
• Not guaranteed to converge

• Variational methods: approximate desired distribution using
analytically simple forms, find parameters to make these
forms similar to actual desired distribution (Ch. 10, we won’t
cover)

• Sampling methods: represent desired distribuion with a set
of samples, as more samples are used, obtain more
accurate representation (Ch. 11, we will cover)
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Conclusion

• Readings: Ch. 8
• Graphical models depict conditional independence

assumptions
• Directed graphs (Bayesian networks)

• Factorization of joint distribution as conditional on node
given parents

• Undirected graphs (Markov random fields)
• Factorization of joint distribution as clique potential

functions
• Inference algorithm sum-product, based on local message

passing
• Works for tree-structured graphs
• Non-tree-structured graphs, either slow exact or

approximate inference
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