Graphical Models - Part II Greg Mori - CMPT 419/726

Bishop PRML Ch. 8

Outline

Markov Random Fields

Inference

Outline

Markov Random Fields

Inference

Conditional Independence in Graphs

- Recall that for Bayesian Networks, conditional independence was a bit complicated
- d-separation with head-to-head links
- We would like to construct a graphical representation such that conditional independence is straight-forward path checking

Markov Random Fields

- Markov random fields (MRFs) contain one node per variable
- Undirected graph over these nodes
- Conditional independence will be given by simple separation, blockage by observing a node on a path
- e.g. in above graph, $A \Perp B \mid C$

Markov Blanket Markov

- With this simple check for conditional independence, Markov blanket is also simple
- Recall Markov blanket $M B$ of x_{i} is set of nodes such that x_{i} conditionally independent from rest of graph given $M B$
- Markov blanket is neighbours

MRF Factorization

- Remember that graphical models define a factorization of the joint distribution
- What should be the factorization so that we end up with the simple conditional independence check?
- For x_{i} and x_{j} not connected by an edge in graph:

$$
x_{i} \Perp x_{j} \mid \boldsymbol{x}_{\backslash\{i, j\}}
$$

- So there should not be any factor $\psi\left(x_{i}, x_{j}\right)$ in the factorized form of the joint

Cliques

- A clique in a graph is a subset of nodes such that there is a link between every pair of nodes in the subset
- A maximal clique is a clique for which one cannot add another node and have the set
 remain a clique

MRF Joint Distribution

- Note that nodes in a clique cannot be made conditionally independent from each other
- So defining factors $\psi(\cdot)$ on nodes in a clique is "safe"
- The joint distribution for a Markov random field is:

$$
p\left(x_{1}, \ldots, x_{K}\right)=\frac{1}{Z} \prod_{C} \psi_{C}\left(\boldsymbol{x}_{C}\right)
$$

where x_{C} is the set of nodes in clique C, and the product runs over all maximal cliques

- Each $\psi_{C}\left(\boldsymbol{x}_{C}\right) \geq 0$
- Z is a normalization constant

MRF Joint Distribution Example

- The joint distribution for a Markov random field is:

$$
\begin{aligned}
p\left(x_{1}, \ldots, x_{4}\right) & =\frac{1}{Z} \prod_{C} \psi_{C}\left(\boldsymbol{x}_{C}\right) \\
& =\frac{1}{Z} \psi_{123}\left(x_{1}, x_{2}, x_{3}\right) \psi_{234}\left(x_{2}, x_{3}, x_{4}\right)
\end{aligned}
$$

- Note that maximal cliques subsume smaller
 ones: $\psi_{123}\left(x_{1}, x_{2}, x_{3}\right)$ could include $\psi_{12}\left(x_{1}, x_{2}\right)$, though sometimes smaller cliques are explicitly used for clarity

MRF Joint - Terminology

- The joint distribution for a Markov random field is:

$$
p\left(x_{1}, \ldots, x_{K}\right)=\frac{1}{Z} \prod_{C} \psi_{C}\left(\boldsymbol{x}_{C}\right)
$$

- Each $\psi_{C}\left(\boldsymbol{x}_{C}\right)$ is called a potential function
- Z, the normalization constant, is called the partition function:

$$
Z=\sum_{\boldsymbol{x}} \prod_{C} \psi_{C}\left(\boldsymbol{x}_{C}\right)
$$

- Z is very costly to compute, since it is a sum/integral over all possible states for all variables in \boldsymbol{x}
- Don't always need to evaluate it though, will cancel for computing conditional probabilities

Hammersley-Clifford

- The definition of the joint:

$$
p\left(x_{1}, \ldots, x_{K}\right)=\frac{1}{Z} \prod_{C} \psi_{C}\left(\boldsymbol{x}_{C}\right)
$$

- Note that we started with particular conditional independences
- We then formulated the factorization based on clique potentials
- This formulation resulted in the right conditional independences
- The converse is true as well, any distribution with the conditional independences given by the undirected graph can be represented using a product of clique potentials
- This is the Hammersley-Clifford theorem

Energy Functions

- Often use exponential, which is non-negative, to define potential functions:

$$
\psi_{C}\left(\boldsymbol{x}_{C}\right)=\exp \left\{-E_{C}\left(\boldsymbol{x}_{C}\right)\right\}
$$

- Minus sign - by convention
- $E_{C}\left(\boldsymbol{x}_{C}\right)$ is called an energy function
- From physics, low energy = high probability
- This exponential representation is known as the Boltzmann distribution

Energy Functions - Intuition

- Joint distribution nicely rearranges as

$$
\begin{aligned}
p\left(x_{1}, \ldots, x_{K}\right) & =\frac{1}{Z} \prod_{C} \psi_{C}\left(\boldsymbol{x}_{C}\right) \\
& =\frac{1}{Z} \exp \left\{-\sum_{C} E_{C}\left(\boldsymbol{x}_{C}\right)\right\}
\end{aligned}
$$

- Intuition about potential functions: ψ_{C} are describing good (low energy) sets of states for adjacent nodes
- An example of this is next

Image Denoising

- Consider the problem of trying to correct (denoise) an image that has been corrupted
- Assume image is binary
- Observed (noisy) pixel values $y_{i} \in\{-1,+1\}$
- Unobserved true pixel values $x_{i} \in\{-1,+1\}$

Image Denoising - Graphical Model

Image Denoising - Graphical Model

- Cliques containing each true pixel value $x_{i} \in\{-1,+1\}$ and observed value $y_{i} \in\{-1,+1\}$
- Observed pixel value is usually same as true pixel value
- Energy function $-\eta x_{i} y_{i}, \eta>0$, lower energy (better) if $x_{i}=y_{i}$

Image Denoising - Graphical Model

- Cliques containing each true pixel value $x_{i} \in\{-1,+1\}$ and observed value $y_{i} \in\{-1,+1\}$
- Observed pixel value is usually same as true pixel value
- Energy function $-\eta x_{i} y_{i}, \eta>0$, lower energy (better) if $x_{i}=y_{i}$
- Cliques containing adjacent true pixel values x_{i}, x_{j}
- Nearby pixel values are usually the same
- Energy function $-\beta x_{i} x_{j}, \beta>0$, lower energy (better) if $x_{i}=x_{j}$

Image Denoising - Graphical Model

- Complete energy function:

$$
E(\boldsymbol{x}, \boldsymbol{y})=-\beta \sum_{\{i, j\}} x_{i} x_{j}-\eta \sum_{i} x_{i} y_{i}
$$

- Joint distribution:

$$
p(\boldsymbol{x}, \boldsymbol{y})=\frac{1}{Z} \exp \{-E(\boldsymbol{x}, \boldsymbol{y})\}
$$

- Or, as potential functions $\psi_{n}\left(x_{i}, x_{j}\right)=\exp \left(\beta x_{i} x_{j}\right)$,

$$
\psi_{p}\left(x_{i}, y_{i}\right)=\exp \left(\eta x_{i} y_{i}\right)
$$

$$
p(\boldsymbol{x}, \boldsymbol{y})=\frac{1}{Z} \prod_{i, j} \psi_{n}\left(x_{i}, x_{j}\right) \prod_{i} \psi_{p}\left(x_{i}, y_{i}\right)
$$

Image Denoising - Inference

- The denoising query is $\arg \max _{x} p(\boldsymbol{x} \mid \boldsymbol{y})$
- Two approaches:
- Iterated conditional modes (ICM): hill climbing in \boldsymbol{x}, one variable x_{i} at a time
- Simple to compute, Markov blanket is just observation plus neighbouring pixels
- Graph cuts: formulate as max-flow/min-cut problem, exact inference (for this graph)

Converting Directed Graphs into Undirected Graphs

- Consider a simple directed chain graph:

$$
p(\boldsymbol{x})=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) \ldots p\left(x_{N} \mid x_{N-1}\right)
$$

- Can convert to undirected graph

Converting Directed Graphs into Undirected Graphs

- Consider a simple directed chain graph:

$$
p(\boldsymbol{x})=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) \ldots p\left(x_{N} \mid x_{N-1}\right)
$$

- Can convert to undirected graph

$$
p(\boldsymbol{x})=\frac{1}{Z} \psi_{1,2}\left(x_{1}, x_{2}\right) \psi_{2,3}\left(x_{2}, x_{3}\right) \ldots \psi_{N-1, N}\left(x_{N-1}, x_{N}\right)
$$

where $\psi_{1,2}=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right)$, all other $\psi_{k-1, k}=p\left(x_{k} \mid x_{k-1}\right)$,
$Z=1$

Converting Directed Graphs into Undirected Graphs

- The chain was straight-forward because for each conditional $p\left(x_{i} \mid p a_{i}\right)$, nodes $x_{i} \cup p a_{i}$ were contained in one clique
- Hence we could define that clique potential to include that conditional
- For a general undirected graph we can force this to occur by "marrying" the parents
- Add links between all parents in $p a_{i}$
- This process known as moralization, creating a moral graph

Strong Morals

- Start with directed graph on left
- Add undirected edges between all parents of each node
- Remove directionality from original edges

Constructing Potential Functions

- Initialize all potential functions to be 1
- With moral graph, for each $p\left(x_{i} \mid p a_{i}\right)$, there is at least one clique which contains all of $x_{i} \cup p a_{i}$
- Multiply $p\left(x_{i} \mid p a_{i}\right)$ into potential function for one of these cliques
- $Z=1$ again since:

$$
p(\boldsymbol{x})=\prod_{C} \psi_{C}\left(\boldsymbol{x}_{C}\right)=\prod_{i} p\left(x_{i} \mid p a_{i}\right)
$$

which is already normalized

Equivalence Between Graph Types

- Note that the moralized undirected graph loses some of the conditional independence statements of the directed graph
- Further, there are certain conditional independence assumptions which can be represented by directed graphs which cannot be represented by undirected graphs, and vice versa

Equivalence Between Graph Types

- Note that the moralized undirected graph loses some of the conditional independence statements of the directed graph
- Further, there are certain conditional independence assumptions which can be represented by directed graphs which cannot be represented by undirected graphs, and vice versa

Equivalence Between Graph Types

- Note that the moralized undirected graph loses some of the conditional independence statements of the directed graph
- Further, there are certain conditional independence assumptions which can be represented by directed graphs which cannot be represented by undirected graphs, and vice versa
- Directed graph: $A \Perp B|\emptyset, A \Pi B| C$, cannot be represented using undirected graph

Equivalence Between Graph Types

- Note that the moralized undirected graph loses some of the conditional independence statements of the directed graph
- Further, there are certain conditional independence assumptions which can be represented by directed graphs which cannot be represented by undirected graphs, and vice versa
- Directed graph: $A \Perp B|\emptyset, A \Pi B| C$, cannot be represented using undirected graph

Equivalence Between Graph Types

- Note that the moralized undirected graph loses some of the conditional independence statements of the directed graph
- Further, there are certain conditional independence assumptions which can be represented by directed graphs which cannot be represented by undirected graphs, and vice versa
- Directed graph: $A \Perp B|\emptyset, A \Pi B| C$, cannot be represented using undirected graph
- Undirected graph: $A \Pi B|\emptyset, A \Perp B| C \cup D, C \Perp D \mid A \cup B$ cannot be represented using directed graph

Outline

Markov Random Fields

Inference

Inference

- Inference is the process of answering queries such as $p\left(x_{n} \mid \boldsymbol{x}_{e}=\boldsymbol{e}\right)$
- We will focus on computing marginal posterior distributions over single variables x_{n} using

$$
p\left(x_{n} \mid \boldsymbol{x}_{e}=\boldsymbol{e}\right) \propto p\left(x_{n}, \boldsymbol{x}_{e}=\boldsymbol{e}\right)
$$

- The proportionality constant can be obtained by enforcing $\sum_{x_{n}} p\left(x_{n} \mid \boldsymbol{x}_{e}=\boldsymbol{e}\right)=1$

Inference on a Chain

- Consider a simple undirected chain
- For inference, we want to compute $p\left(x_{n}, \boldsymbol{x}_{e}=\boldsymbol{e}\right)$
- First, we'll show how to compute $p\left(x_{n}\right)$
- $p\left(x_{n}, \boldsymbol{x}_{e}=\boldsymbol{e}\right)$ will be a simple modification of this

Inference on a Chain

- The naive method of computing the marginal $p\left(x_{n}\right)$ is to write down the factored form of the joint, and marginalize (sum out) all other variables:

$$
\begin{aligned}
p\left(x_{n}\right) & =\sum_{x_{1}} \ldots \sum_{x_{n-1}} \sum_{x_{n+1}} \ldots \sum_{x_{N}} p(\boldsymbol{x}) \\
& =\sum_{x_{1}} \ldots \sum_{x_{n-1}} \sum_{x_{n+1}} \ldots \sum_{x_{N}} \frac{1}{Z} \prod_{C} \psi_{C}\left(\boldsymbol{x}_{C}\right)
\end{aligned}
$$

- This would be slow $-O\left(K^{N}\right)$ work if each variable could take K values

Inference on a Chain

- However, due to the factorization terms in this summation can be rearranged nicely
- This will lead to efficient algorithms

Simple Algebra

- This efficiency comes from a very simple distributivity

$$
a b+a c=a(b+c)
$$

- Or more complicated version

$$
\begin{aligned}
\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} b_{j} & =a_{1} b_{1}+a_{1} b_{2}+\ldots+a_{n} b_{n} \\
& =\left(a_{1}+\ldots+a_{n}\right)\left(b_{1}+\ldots+b_{n}\right)
\end{aligned}
$$

- Much faster to do right hand side (2(n-1) additions, 1 multiplication) than left hand side (n^{2} multiplications, $n^{2}-1$ additions)

A Simple Chain

- First consider a chain with 3 nodes, and computing $p\left(x_{3}\right)$:

$$
\begin{aligned}
p\left(x_{3}\right) & =\sum_{x_{1}} \sum_{x_{2}} \psi_{12}\left(x_{1}, x_{2}\right) \psi_{23}\left(x_{2}, x_{3}\right) \\
& =\sum_{x_{2}} \psi_{23}\left(x_{2}, x_{3}\right)\left[\sum_{x_{1}} \psi_{12}\left(x_{1}, x_{2}\right)\right]
\end{aligned}
$$

Performing the sums

$$
p\left(x_{3}\right)=\sum_{x_{2}} \psi_{23}\left(x_{2}, x_{3}\right)\left[\sum_{x_{1}} \psi_{12}\left(x_{1}, x_{2}\right)\right]
$$

- For example, if x_{i} are binary:

$$
\psi_{12}\left(x_{1}, x_{2}\right)=x_{1} \underbrace{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]}_{x_{2}} \psi_{23}\left(x_{2}, x_{3}\right)=x_{2} \underbrace{\left[\begin{array}{ll}
s & t \\
u & v
\end{array}\right]}_{x_{3}}
$$

Performing the sums

$$
p\left(x_{3}\right)=\sum_{x_{2}} \psi_{23}\left(x_{2}, x_{3}\right)\left[\sum_{x_{1}} \psi_{12}\left(x_{1}, x_{2}\right)\right]
$$

- For example, if x_{i} are binary:

$$
\begin{gathered}
\psi_{12}\left(x_{1}, x_{2}\right)=x_{1} \underbrace{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]}_{x_{2}} \quad \psi_{23}\left(x_{2}, x_{3}\right)=x_{2} \underbrace{\left[\begin{array}{ll}
s & t \\
u & v
\end{array}\right]}_{x_{3}} \\
\sum_{x_{1}} \psi_{12}\left(x_{1}, x_{2}\right)=\underbrace{\left[\begin{array}{cc}
a+c & b+d
\end{array}\right]}_{x_{2}} \equiv \mu_{12}\left(x_{2}\right)
\end{gathered}
$$

Performing the sums

$$
p\left(x_{3}\right)=\sum_{x_{2}} \psi_{23}\left(x_{2}, x_{3}\right)\left[\sum_{x_{1}} \psi_{12}\left(x_{1}, x_{2}\right)\right]
$$

- For example, if x_{i} are binary:

$$
\begin{array}{r}
\psi_{12}\left(x_{1}, x_{2}\right)=x_{1} \underbrace{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]}_{x_{2}} \quad \psi_{23}\left(x_{2}, x_{3}\right)=x_{2} \underbrace{\left[\begin{array}{ll}
s & t \\
u & v
\end{array}\right]}_{x_{3}} \\
\sum_{x_{1}} \psi_{12}\left(x_{1}, x_{2}\right)=\underbrace{\left[\begin{array}{ll}
a+c & b+d
\end{array}\right]}_{x_{2}} \equiv \mu_{12}\left(x_{2}\right) \\
\psi_{23}\left(x_{2}, x_{3}\right) \times \mu_{12}\left(x_{2}\right)=x_{2} \underbrace{\left[\begin{array}{cc}
s(a+c) & t(a+c) \\
u(b+d) & v(b+d)
\end{array}\right]}_{x_{3}}
\end{array}
$$

Performing the sums

$$
p\left(x_{3}\right)=\sum_{x_{2}} \psi_{23}\left(x_{2}, x_{3}\right)\left[\sum_{x_{1}} \psi_{12}\left(x_{1}, x_{2}\right)\right]
$$

- For example, if x_{i} are binary:

$$
\begin{gathered}
\psi_{12}\left(x_{1}, x_{2}\right)=x_{1} \underbrace{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]}_{x_{2}} \quad \psi_{23}\left(x_{2}, x_{3}\right)=x_{2} \underbrace{\left[\begin{array}{ll}
s & t \\
u & v
\end{array}\right]}_{x_{3}} \\
\sum_{x_{1}} \psi_{12}\left(x_{1}, x_{2}\right)=\underbrace{\left[\begin{array}{cc}
a+c & b+d
\end{array}\right]}_{x_{2}} \equiv \mu_{12}\left(x_{2}\right) \\
\psi_{23}\left(x_{2}, x_{3}\right) \times \mu_{12}\left(x_{2}\right)=x_{2} \underbrace{\left[\begin{array}{cc}
s(a+c) & t(a+c) \\
u(b+d) & v(b+d)
\end{array}\right]}_{x_{3}} \\
p\left(x_{3}\right)=[s(a+c)+u(b+d) \quad t(a+c)+v(b+d)
\end{gathered}
$$

Complexity of Inference

- There were two types of operations
- Summation

$$
\sum_{x_{1}} \psi_{12}\left(x_{1}, x_{2}\right)
$$

$K \times K$ numbers in ψ_{12}, takes $O\left(K^{2}\right)$ time

- Multiplication

$$
\psi_{23}\left(x_{2}, x_{3}\right) \times \mu_{12}\left(x_{2}\right)
$$

Again $O\left(K^{2}\right)$ work

- For a chain of length N, we repeat these operations $N-1$ times each
- $O\left(N K^{2}\right)$ work, versus $O\left(K^{N}\right)$ for naive evaluation

More complicated chain

- Now consider a 5 node chain, again asking for $p\left(x_{3}\right)$

$$
p\left(x_{3}\right)=\sum_{x_{1}} \sum_{x_{2}} \sum_{x_{4}} \sum_{x_{5}} \psi_{12}\left(x_{1}, x_{2}\right) \psi_{23}\left(x_{2}, x_{3}\right) \psi_{34}\left(x_{3}, x_{4}\right) \psi_{45}\left(x_{4}, x_{5}\right)
$$

More complicated chain

- Now consider a 5 node chain, again asking for $p\left(x_{3}\right)$

$$
\begin{aligned}
p\left(x_{3}\right) & =\sum_{x_{1}} \sum_{x_{2}} \sum_{x_{4}} \sum_{x_{5}} \psi_{12}\left(x_{1}, x_{2}\right) \psi_{23}\left(x_{2}, x_{3}\right) \psi_{34}\left(x_{3}, x_{4}\right) \psi_{45}\left(x_{4}, x_{5}\right) \\
& =\sum_{x_{2}} \sum_{x_{1}} \psi_{12}\left(x_{1}, x_{2}\right) \psi_{23}\left(x_{2}, x_{3}\right) \sum_{x_{4}} \sum_{x_{5}} \psi_{34}\left(x_{3}, x_{4}\right) \psi_{45}\left(x_{4}, x_{5}\right)
\end{aligned}
$$

More complicated chain

- Now consider a 5 node chain, again asking for $p\left(x_{3}\right)$

$$
\begin{aligned}
p\left(x_{3}\right) & =\sum_{x_{1}} \sum_{x_{2}} \sum_{x_{4}} \sum_{x_{5}} \psi_{12}\left(x_{1}, x_{2}\right) \psi_{23}\left(x_{2}, x_{3}\right) \psi_{34}\left(x_{3}, x_{4}\right) \psi_{45}\left(x_{4}, x_{5}\right) \\
& =\sum_{x_{2}} \sum_{x_{1}} \psi_{12}\left(x_{1}, x_{2}\right) \psi_{23}\left(x_{2}, x_{3}\right) \sum_{x_{4}} \sum_{x_{5}} \psi_{34}\left(x_{3}, x_{4}\right) \psi_{45}\left(x_{4}, x_{5}\right) \\
& =\left[\sum_{x_{2}} \sum_{x_{1}} \psi_{12}\left(x_{1}, x_{2}\right) \psi_{23}\left(x_{2}, x_{3}\right)\right]\left[\sum_{x_{4}} \sum_{x_{5}} \psi_{34}\left(x_{3}, x_{4}\right) \psi_{45}\left(x_{4}, x_{5}\right)\right]
\end{aligned}
$$

More complicated chain

- Now consider a 5 node chain, again asking for $p\left(x_{3}\right)$

$$
\begin{aligned}
p\left(x_{3}\right) & =\sum_{x_{1}} \sum_{x_{2}} \sum_{x_{4}} \sum_{x_{5}} \psi_{12}\left(x_{1}, x_{2}\right) \psi_{23}\left(x_{2}, x_{3}\right) \psi_{34}\left(x_{3}, x_{4}\right) \psi_{45}\left(x_{4}, x_{5}\right) \\
& =\sum_{x_{2}} \sum_{x_{1}} \psi_{12}\left(x_{1}, x_{2}\right) \psi_{23}\left(x_{2}, x_{3}\right) \sum_{x_{4}} \sum_{x_{5}} \psi_{34}\left(x_{3}, x_{4}\right) \psi_{45}\left(x_{4}, x_{5}\right) \\
& =\left[\sum_{x_{2}} \sum_{x_{1}} \psi_{12}\left(x_{1}, x_{2}\right) \psi_{23}\left(x_{2}, x_{3}\right)\right]\left[\sum_{x_{4}} \sum_{x_{5}} \psi_{34}\left(x_{3}, x_{4}\right) \psi_{45}\left(x_{4}, x_{5}\right)\right]
\end{aligned}
$$

- Each of these factors resembles the previous, and can be computed efficiently
- Again $O\left(N K^{2}\right)$ work

- The factors can be thought of as messages being passed between nodes in the graph

$$
\mu_{12}\left(x_{2}\right) \equiv \sum_{x_{1}} \psi_{12}\left(x_{1}, x_{2}\right)
$$

is a message passed from node x_{1} to node x_{2} containing all information in node x_{1}

- In general,

$$
\mu_{k-1, k}\left(x_{k}\right)=\sum_{x_{k-1}} \psi_{k-1, k}\left(x_{k-1}, x_{k}\right) \mu_{k-2, k-1}\left(x_{k-1}\right)
$$

- Possible to do so because of conditional independence

Computing All Marginals

- Computing one marginal $p\left(x_{n}\right)$ takes $O\left(N K^{2}\right)$ time
- Naively running same algorithms for all nodes in a chain would take $O\left(N^{2} K^{2}\right)$ time
- But this isn't necessary, same messages can be reused at all nodes in the chain
- Pass all messages from one end of the chain to the other, pass all messages in the other direction too
- Can compute marginal at any node by multiplying the two messages delivered to the node
- $2(N-1) K^{2}$ work, twice as much as for just one node

Including Evidence

- If a node $x_{k-1}=e$ is observed, simply clamp to observed value rather than summing:

$$
\mu_{k-1, k}\left(x_{k}\right)=\sum_{x_{k-1}} \psi_{k-1, k}\left(x_{k-1}, x_{k}\right) \mu_{k-2, k-1}\left(x_{k-1}\right)
$$

becomes

$$
\mu_{k-1, k}\left(x_{k}\right)=\psi_{k-1, k}\left(x_{k-1}=e, x_{k}\right) \mu_{k-2, k-1}\left(x_{k-1}=e\right)
$$

Trees

- The algorithm for a tree-structured graph is very similar to that for chains
- Formulation in PRML uses factor graphs, we'll just give the intuition here
- Consider calcuating the marginal $p\left(x_{n}\right)$ for the center node of the graph at right

- Treat x_{n} as root of tree, pass messages from leaf nodes up to root

Trees

- Message passing similar to that in chains, but possibly multiple messages reaching a node
- With multiple messages, multiply them together
- As before, sum out variables

$$
\mu_{k-1, k}\left(x_{k}\right)=\sum_{x_{k-1}} \psi_{k-1, k}\left(x_{k-1}, x_{k}\right) \mu_{k-2, k-1}\left(x_{k-1}\right)
$$

- Known as sum-product algorithm
- Complexity still $O\left(N K^{2}\right)$

Most Likely Configuration

- A similar algorithm exists for finding

$$
\arg \max _{x_{1}, \ldots, x_{N}} p\left(x_{1}, \ldots, x_{N}\right)
$$

- Replace summation operations with maximize operations
- Maximum of products at each node

- Known as max-sum, since often take log-probability to avoid underflow errors

General Graphs

- Junction tree algorithm is an exact inference method for arbitrary graphs
- A particular tree structure defined over cliques of variables
- Inference ends up being exponential in maximum clique size
- Therefore slow in many cases
- Approximate inference techniques
- Loopy belief propagation: run message passing scheme (sum-product) for a while
- Sometimes works
- Not guaranteed to converge
- Variational methods: approximate desired distribution using analytically simple forms, find parameters to make these forms similar to actual desired distribution (Ch. 10, we won't cover)
- Sampling methods: represent desired distribuion with a set of samples, as more samples are used, obtain more accurate representation (Ch. 11, we will cover)

Conclusion

- Readings: Ch. 8
- Graphical models depict conditional independence assumptions
- Directed graphs (Bayesian networks)
- Factorization of joint distribution as conditional on node given parents
- Undirected graphs (Markov random fields)
- Factorization of joint distribution as clique potential functions
- Inference algorithm sum-product, based on local message passing
- Works for tree-structured graphs
- Non-tree-structured graphs, either slow exact or approximate inference

