Graphical Models - Part I
Greg Mori - CMPT 419/726

Probabilistic Models

Bayesian Networks

Probabilistic Models

- We now turn our focus to probabilistic models for pattern recognition
- Probabilities express beliefs about uncertain events, useful for decision making, combining sources of information
- Key quantity in probabilistic reasoning is the joint distribution

$$
p\left(x_{1}, x_{2}, \ldots, x_{K}\right)
$$

where x_{1} to x_{K} are all variables in model

- Address two problems
- Inference: answering queries given the joint distribution
- Learning: deciding what the joint distribution is (involves inference)
- All inference and learning problems involve manipulations of the joint distribution

Reminder - Three Tricks

- Bayes' rule:

$$
p(Y \mid X)=\frac{p(X \mid Y) p(Y)}{p(X)}=\alpha p(X \mid Y) p(Y)
$$

- Marginalization:

$$
p(X)=\sum_{y} p(X, Y=y) \text { or } p(X)=\int p(X, Y=y) d y
$$

- Product rule:

$$
p(X, Y)=p(X) p(Y \mid X)
$$

- All 3 work with extra conditioning, e.g.:

$$
\begin{gathered}
p(X \mid Z)=\sum_{y} p(X, Y=y \mid Z) \\
p(Y \mid X, Z)=\alpha p(X \mid Y, Z) p(Y \mid Z)
\end{gathered}
$$

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

- Consider model with 3 boolean random variables: cavity, catch, toothache
- Can answer query such as

$$
p(\neg \text { cavity } \mid \text { toothache })
$$

Joint Distribution

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

- Consider model with 3 boolean random variables: cavity, catch, toothache
- Can answer query such as

$$
p(\neg \text { cavity } \mid \text { toothache })=\frac{p(\neg \text { cavity }, \text { toothache })}{p(\text { toothache })}
$$

$$
p(\neg \text { cavity } \mid \text { toothache })=\frac{0.016+0.064}{0.108+0.012+0.016+0.064}=0.4
$$

Problems

- In general, to answer a query on random variables
$\boldsymbol{Q}=Q_{1}, \ldots, Q_{N}$ given evidence $\boldsymbol{E}=\boldsymbol{e}, \boldsymbol{E}=E_{1}, \ldots, E_{M}$, $\boldsymbol{e}=e_{1}, \ldots, e_{M}$:

$$
\begin{aligned}
p(\boldsymbol{Q} \mid \boldsymbol{E}=\boldsymbol{e}) & =\frac{p(\boldsymbol{Q}, \boldsymbol{E}=\boldsymbol{e})}{p(\boldsymbol{E}=\boldsymbol{e})} \\
& =\frac{\sum_{\boldsymbol{h}} p(\boldsymbol{Q}, \boldsymbol{E}=\boldsymbol{e}, \boldsymbol{H}=\boldsymbol{h})}{\sum_{\boldsymbol{q}, \boldsymbol{h}} p(\boldsymbol{Q}=\boldsymbol{q}, \boldsymbol{E}=\boldsymbol{e}, \boldsymbol{H}=\boldsymbol{h})}
\end{aligned}
$$

- The joint distribution is large
- e. g. with K boolean random variables, 2^{K} entries
- Inference is slow, previous summations take $O\left(2^{K}\right)$ time
- Learning is difficult, data for 2^{K} parameters
- Analogous problems for continuous random variables

- A and B are independent iff $p(A \mid B)=p(A)$ or $p(B \mid A)=p(B) \quad$ or $\quad p(A, B)=p(A) p(B)$
- $p($ Toothache, Catch, Cavity, Weather $)=$
$p($ Toothache, Catch, Cavity) p (Weather)
- 32 entries reduced to 12 (Weather takes one of 4 values)
- Absolute independence powerful but rare
- Dentistry is a large field with hundreds of variables, none of which are independent. What to do?

Probabilistic Models

Reminder - Conditional Independence

- p (Toothache, Cavity, Catch) has $2^{3}-1=7$ independent entries
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
(1) $P($ catch \mid toothache, cavity $)=P($ catch \mid cavity $)$
- The same independence holds if I haven't got a cavity: (2) P (catch \mid toothache,\neg cavity $)=P($ catch $\mid \neg$ cavity $)$
- Catch is conditionally independent of Toothache given Cavity: $p($ Catch \mid Toothache, Cavity $)=p($ Catch \mid Cavity $)$
- Equivalent statements:
- $p($ Toothache \mid Catch, Cavity $)=p($ Toothache \mid Cavity $)$
- $p($ Toothache, Catch \mid Cavity $)=$ p(Toothache \mid Cavity) $p($ Catch \mid Cavity)
- Toothache \Perp Catch \mid Cavity
- Write out full joint distribution using chain rule:
p (Toothache, Catch, Cavity)
$=p($ Toothache \mid Catch, Cavity $) p($ Catch, Cavity $)$
$=p($ Toothache \mid Catch , Cavity $) p($ Catch \mid Cavity $) p($ Cavity $)$
$=p($ Toothache \mid Cavity $) p($ Catch \mid Cavity $) p($ Cavity $)$
$2+2+1=5$ independent numbers
- In many cases, the use of conditional independence greatly reduces the size of the representation of the joint distribution
- Graphical Models provide a visual depiction of probabilistic model
- Conditional indepence assumptions can be seen in graph
- Inference and learning algorithms can be expressed in terms of graph operations
- We will look at 2 types of graph (can be combined)
- Directed graphs: Bayesian networks
- Undirected graphs: Markov Random Fields
- Factor graphs (won't cover)
Probabistic Modots \quad Bayesian Networks
- A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions
- Syntax:
- a set of nodes, one per variable
- a directed, acyclic graph (link \approx "directly influences")
- a conditional distribution for each node given its parents:

$$
p\left(X_{i} \mid p a\left(X_{i}\right)\right)
$$

- In the simplest case, conditional distribution represented as a conditional probability table (CPT) giving the distribution over X_{i} for each combination of parent values
Probabilisic Modeds \quad Bayesian Networks

- Topology of network encodes conditional independence assertions:
- Weather is independent of the other variables
- Toothache and Catch are conditionally independent given Cavity
Probabilisio Models Bayesian Networks

Example

- I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?
- Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls
- Network topology reflects "causal" knowledge:
- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call

Prooabilisio Models Baypactness

Compactness

- Each row requires one number p for $X_{i}=$ true (the number for $X_{i}=$ false is just $1-p$)
- If each variable has no more than k parents, the complete network requires $O\left(n \cdot 2^{k}\right)$ numbers
- i.e., grows linearly with n, vs. $O\left(2^{n}\right)$ for the full joint distribution
- For burglary net, ?? numbers
- $1+1+4+2+2=10$ numbers (vs. $2^{5}-1=31$)
- Global semantics defines the full joint distribution as the product of the local conditional distributions:

$$
\begin{aligned}
& \quad P\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid p a\left(X_{i}\right)\right) \\
& \text { e.g., } P(j \wedge m \wedge a \wedge \neg b \wedge \neg e)= \\
& =P(j \mid a) P(m \mid a) P(a \mid \neg b, \neg e) P(\neg b) P(\neg e) \\
& =0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998 \\
& \approx 0.00063
\end{aligned}
$$

Global Semantics

Constructing Bayesian Networks

- Need a method such that a series of locally testable assertions of conditional independence guarantees the required global semantics

1. Choose an ordering of variables X_{1}, \ldots, X_{n}
2. For $i=1$ to n
add X_{i} to the network
select parents from X_{1}, \ldots, X_{i-1} such that $p\left(X_{i} \mid p a\left(X_{i}\right)\right)=p\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)$

- This choice of parents guarantees the global semantics:

$$
\begin{aligned}
p\left(X_{1}, \ldots, X_{n}\right) & =\prod_{i=1}^{n} p\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right) \quad \text { (chain rule) } \\
& =\prod_{i=1}^{n} p\left(X_{i} \mid p a\left(X_{i}\right)\right) \quad \text { (by construction) }
\end{aligned}
$$

Suppose we choose the ordering M, J, A, B, E

Alarm
$P(J \mid M)=P(J) ? \quad$ No
$P(A \mid J, M)=P(A \mid J) ? P(A \mid J, M)=P(A) ?$

Probabilistic Models
 Example

Suppose we choose the ordering M, J, A, B, E

$P(J \mid M)=P(J) ? \quad$ No
$P(A \mid J, M)=P(A \mid J) ? P(A \mid J, M)=P(A)$? \quad No
$P(B \mid A, J, M)=P(B \mid A)$?
$P(B \mid A, J, M)=P(B) ?$

Example

Suppose we choose the ordering M, J, A, B, E

$P(J \mid M)=P(J)$? No
$P(A \mid J, M)=P(A \mid J) ? P(A \mid J, M)=P(A)$? No
$P(B \mid A, J, M)=P(B \mid A)$? Yes
$P(B \mid A, J, M)=P(B)$? No
$P(E \mid B, A, J, M)=P(E \mid A)$?
$P(E \mid B, A, J, M)=P(E \mid A, B)$?

Example

Suppose we choose the ordering M, J, A, B, E

$P(J \mid M)=P(J) ? \quad$ No
$P(A \mid J, M)=P(A \mid J) ? P(A \mid J, M)=P(A)$? No
$P(B \mid A, J, M)=P(B \mid A)$? Yes
$P(B \mid A, J, M)=P(B)$? No
$P(E \mid B, A, J, M)=P(E \mid A)$? No
$P(E \mid B, A, J, M)=P(E \mid A, B)$? Yes

Example contd.

- Deciding conditional independence is hard in noncausal directions
- (Causal models and conditional independence seem hardwired for humans!)
- Assessing conditional probabilities is hard in noncausal directions
- Network is less compact: $1+2+4+2+4=13$ numbers needed

- Bayesian polynomial regression model
- Observations $\boldsymbol{t}=\left(t_{1}, \ldots, t_{N}\right)$
- Vector of coefficients \boldsymbol{w}
- Inputs \boldsymbol{x} and noise variance σ^{2} were assumed fixed, not stochastic and hence not in model
- Joint distribution:

$$
p(\boldsymbol{t}, \boldsymbol{w})=p(\boldsymbol{w}) \prod_{n=1}^{N} p\left(t_{n} \mid \boldsymbol{w}\right)
$$

Probabilistic Models
 Example - Car Insurance

- A shorthand for writing repeated nodes such as the t_{n} uses plates

Deterministic Model Parameters

- Can also include deterministic parameters (not stochastic) as small nodes
- Bayesian polynomial regression model:

$$
p\left(\boldsymbol{t}, \boldsymbol{w} \mid \boldsymbol{x}, \alpha, \sigma^{2}\right)=p(\boldsymbol{w} \mid \alpha) \prod_{n=1}^{N} p\left(t_{n} \mid \boldsymbol{w}, x_{n}, \sigma^{2}\right)
$$

Predictions

- Suppose we wished to predict the value \hat{t} for a new input \hat{x}
- The Bayesian network used for this inference task would be this one

Observations

- In polynomial regression, we assumed we had a training set of N pairs $\left(x_{n}, t_{n}\right)$
- Convention is to use shaded nodes for observed random variables

Specifying Distributions - Discrete Variables

- Earlier we saw the use of conditional probability tables (CPT) for specifying a distribution over discrete random variables with discrete-valued parents
- For a variable with no parents,
 with K possible states:

$$
p(\boldsymbol{x} \mid \boldsymbol{\mu})=\prod_{k=1}^{K} \mu_{k}^{x_{k}}
$$

- e.g. $p(B)=0.001^{B_{1}} 0.999^{B_{2}}$, 1-of- K representation

Probabilistic Models Bayesian Networks
Specifying Distributions - Discrete Variables cont.

- With two variables $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}$ can have two cases

- Dependent

$$
\begin{array}{r}
p\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2} \mid \boldsymbol{\mu}\right)=p\left(\boldsymbol{x}_{1} \mid \boldsymbol{\mu}\right) p\left(\boldsymbol{x}_{2} \mid \boldsymbol{x}_{1}, \boldsymbol{\mu}\right) \\
=\left(\prod_{k=1}^{K} \boldsymbol{\mu}_{k 1}^{x_{1 k}}\right)\left(\prod_{k=1}^{K} \prod_{j=1}^{K} \boldsymbol{\mu}_{k j 2}^{x_{1 k} x_{2 j}}\right)
\end{array}
$$

- $K^{2}-1$ free parameters in μ

- Independent

$$
\begin{array}{r}
p\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2} \mid \boldsymbol{\mu}\right)=p\left(\boldsymbol{x}_{1} \mid \boldsymbol{\mu}\right) p\left(\boldsymbol{x}_{2} \mid \boldsymbol{\mu}\right) \\
=\left(\prod_{k=1}^{K} \boldsymbol{\mu}_{k 1}^{x_{1 k}}\right)\left(\prod_{k=1}^{K} \boldsymbol{\mu}_{k 2}^{x_{2 k}}\right)
\end{array}
$$

- 2($K-1$) free parameters in

Chains of Nodes

- With M nodes, could form a chain as shown above
- Number of parameters is:

$$
\underbrace{(K-1)}_{x_{1}}+(M-1) \underbrace{K(K-1)}_{\text {others }}
$$

- Compare to:
- $K^{M}-1$ for fully connected graph
- $M(K-1)$ for graph with no edges (all independent)

Sharing Parameters

- Another way to reduce number of parameters is sharing parameters (a. k. a. tying of parameters)
- Lower graph reuses same μ for nodes 2-M
- μ is a random variable in this network, could also be deterministic
- $(K-1)+K(K-1)$ parameters
- One common type of conditional distribution for continuous variables is the linear-Gaussian

$$
p\left(x_{i} \mid p a_{i}\right)=\mathcal{N}\left(x_{i} ; \sum_{j \in p a_{i}} w_{i j} x_{j}+b_{i}, v_{i}\right)
$$

- e.g. With one parent Harvest:

$$
p(c \mid h)=\mathcal{N}(c ;-0.5 h+5,1)
$$

- For harvest h, mean cost is $-0.5 h+5$, variance is 1

Probabisisic Modeles
 Linear Gaussian

- Interesting fact: if all nodes in a Bayesian Network are linear Gaussian, joint distribution is a multivariate Gaussian

$$
\begin{array}{r}
p\left(x_{i} \mid p a_{i}\right)=\mathcal{N}\left(x_{i} ; \sum_{j \in p a_{i}} w_{i j} x_{j}+b_{i}, v_{i}\right) \\
p\left(x_{1}, \ldots, x_{N}\right)=\prod_{i=1}^{N} \mathcal{N}\left(x_{i} ; \sum_{j \in p a_{i}} w_{i j} x_{j}+b_{i}, v_{i}\right)
\end{array}
$$

- Each factor looks like $\exp \left(\left(x_{i}-\left(\boldsymbol{w}_{i}^{T} \boldsymbol{x}_{p a_{i}}\right)^{2}\right)\right.$, this product will be another quadratic form
- With no links in graph, end up with diagonal covariance matrix
- With fully connected graph, end up with full covariance matrix

Probabilistic Models

Conditional Independence in Bayesian Networks

- Recall again that a and b are conditionally independent given $c(a \Perp b \mid c)$ if
- $p(a \mid b, c)=p(a \mid c)$ or equivalently
- $p(a, b \mid c)=p(a \mid c) p(b \mid c)$
- Before we stated that links in a graph are \approx "directly influences"
- We now develop a correct notion of links, in terms of the conditional independences they represent
- This will be useful for general-purpose inference methods

A Tale of Three Graphs - Part 1

- The graph above means

$$
\begin{aligned}
p(a, b, c) & =p(a \mid c) p(b \mid c) p(c) \\
p(a, b) & =\sum_{c} p(a \mid c) p(b \mid c) p(c) \\
& \neq p(a) p(b) \text { in general }
\end{aligned}
$$

A Tale of Three Graphs - Part 1

- However, conditioned on c

$$
p(a, b \mid c)=\frac{p(a, b, c)}{p(c)}=\frac{p(a \mid c) p(b \mid c) p(c)}{p(c)}=p(a \mid c) p(b \mid c)
$$

- So $a \Perp b \mid c$
- So a and b not independent

A Tale of Three Graphs - Part 1

- Note the path from a to b in the graph
- When c is not observed, path is open, a and b not independent
- When c is observed, path is blocked, a and b independent
- In this case c is tail-to-tail with respect to this path

Probabilistic Models

A Tale of Three Graphs - Part 2

- The graph above means

$$
p(a, b, c)=p(a) p(b \mid c) p(c \mid a)
$$

- Again a and b not independent

A Tale of Three Graphs - Part 2

- However, conditioned on c

$$
\begin{aligned}
p(a, b \mid c) & =\frac{p(a, b, c)}{p(c)}=\frac{p(a) p(b \mid c)}{p(c)} p(c \mid a) \\
& =\frac{p(a) p(b \mid c)}{p(c)} \underbrace{\frac{p(a \mid c) p(c)}{p(a)}}_{\text {Bayes' Rule }} \\
& =p(a \mid c) p(b \mid c)
\end{aligned}
$$

- So $a \Perp b \mid c$

A Tale of Three Graphs - Part 3

- The graph above means

$$
\begin{aligned}
p(a, b, c) & =p(a) p(b) p(c \mid a, b) \\
p(a, b) & =\sum_{c} p(a) p(b) p(c \mid a, b) \\
& =p(a) p(b)
\end{aligned}
$$

- This time a and b are independent

Probabilistic Models Bayesian Networks

A Tale of Three Graphs - Part 3

- Frustratingly, the behaviour here is different
- When c is not observed, path is blocked, a and b independent
- When c is observed, path is unblocked, a and b not independent
- In this case c is head-to-head with respect to this path
- Situation is in fact more complex, path is unblocked if any descendent of c is observed

A Tale of Three Graphs - Part 3

- However, conditioned on c

$$
\begin{aligned}
p(a, b \mid c) & =\frac{p(a, b, c)}{p(c)}=\frac{p(a) p(b) p(c \mid a, b)}{p(c)} \\
& \neq p(a \mid c) p(b \mid c) \text { in general }
\end{aligned}
$$

- So $a \pi b \mid c$

Probabilistic Models Bayesian Networks

Part 3 - Intuition

- Binary random variables B (battery charged), F (fuel tank full), G (fuel gauge reads full)
- B and F independent
- But if we observe $G=0$ (false) things change
- e.g. $p(F=0 \mid G=0, B=0)$ could be less than $p(F=0 \mid G=0)$, as $B=0$ explains away the fact that the gauge reads empty
- Recall that $p(F \mid G, B)=p(F \mid G)$ is another $F \Perp B \mid G$
Proabilisic Modeds \quad D-separation Bayesian Nelworks
- A general statement of conditional independence
- For sets of nodes A, B, C, check all paths from A to B in graph
- If all paths are blocked, then $A \Perp B \mid C$
- Path is blocked if:
- Arrows meet head-to-tail or tail-to-tail at a node in C
- Arrows meet head-to-head at a node, and neither node nor any descendent is in C
Prooabilisic Modeds \quad Baive Bayes

- Commonly used naive Bayes classification model
- Class label z, features x_{1}, \ldots, x_{D}
- Model assumes features independent given class label
- Tail-to-tail at z, blocks path between features

- What is the minimal set of nodes which makes a node x_{i} conditionally independent from the rest of the graph?
- x_{i} 's parents, children, and children's parents (co-parents)
- Define this set $M B$, and consider:

$$
\begin{aligned}
p\left(x_{i} \mid x_{\{j \neq i\}}\right) & =\frac{p\left(x_{1}, \ldots, x_{D}\right)}{\int p\left(x_{1}, \ldots, x_{D}\right) d x_{i}} \\
& =\frac{\prod_{k} p\left(x_{k} \mid p a_{k}\right)}{\int \prod_{k} p\left(x_{k} \mid p a_{k}\right) d x_{i}}
\end{aligned}
$$

- All factors other than those for which x_{i} is x_{k} or in $p a_{k}$ cancel
- When all random variables are observed in training data, relatively straight-forward
- Distribution factors, all factors observed
- e.g. Maximum likelihood used to set parameters of each distribution $p\left(x_{i} \mid p a_{i}\right)$ separately
- When some random variables not observed, it's tricky
- This is a common case
- Expectation-maximization is a method for this

