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Probabilistic Models Reminder - Three Tricks
_ e Bayes’ rule:
o We now turn our focus to probabilistic models for pattern
recognition _ pXIV)p(Y) _
» Probabilities express beliefs about uncertain events, useful pYIX) = p(X) = ap(X|¥)p(Y)

for decision making, combining sources of information

o Key quantity in probabilistic reasoning is the joint
distribution

¢ Marginalization:

p(X) = 3" p(X,¥ =) orp(x) = [ p(x.¥ =y

Pt ) )

where x| to xx are all variables in model
152K Product rule:

Address two problems
P ) o o p(X,Y) = p(X)p(Y|X)
o Inference: answering queries given the joint distribution

L]
L]

e Learning: deciding what the joint distribution is (involves » All 3 work with extra conditioning, e.g.:
inference)
o All inference and learning problems involve manipulations p(X|Z) = ZP(X’ Y =512)
y

of the joint distribution
p(Y|X,Z) = ap(X|Y, Z)p(Y|Z)
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Joint Distribution

toothache - toothache

catch| - catch| catch| - catch
cavity | .108 | .012 .072| .008
- cavity | .016| .064 .144| 576

o Consider model with 3 boolean random variables: cavity,
catch, toothache

o Can answer query such as

p(—cavity|toothache)
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Joint Distribution

¢ In general, to answer a query on random variables

0=0,...,0yvgivenevidence E =e, E =E|,...,Ey,
e=2ej,...,epy.
P(Q.E=e)
P(QE=e e
@] ) p(E =e)

th(QvE:evH:h)
Zq,hp(Q:q7E:evH:h)
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Joint Distribution

toothache - toothache
catch| — catch| catch| - catch
cavity | .108 | .012 .072| .008

- cavity || .016| .064 || .144| 576

o Consider model with 3 boolean random variables: cavity,
catch, toothache

o Can answer query such as

p(—cavity, toothache)
p(toothache)

p(—cavity|toothache) =

3 0.016 + 0.064

—cavity|toothache) = =
p(meavityltoothache) = G5 00,016 7 0.064

0.4
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Problems

e The joint distribution is large
e e. g. with K boolean random variables, 2X entries
e Inference is slow, previous summations take 0(2X) time
o Learning is difficult, data for 2K parameters
* Analogous problems for continuous random variables
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Reminder - Independence

Cavity
Cavity decomposesinto \Toothache Catch
Toothache  Catch -

Weather

e A and B are independent iff
p(A[B) =p(A) or p(B|A)=p(B) or p(A,B)=p(A)p(B)
o p(Toothache, Catch, Cavity, Weather) =
p(Toothache, Catch, Cavity)p(Weather)
o 32 entries reduced to 12 (Weather takes one of 4 values)

¢ Absolute independence powerful but rare

o Dentistry is a large field with hundreds of variables, none of
which are independent. What to do?
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Conditional Independence contd.

o Write out full joint distribution using chain rule:
p(Toothache, Catch, Cavity)
= p(Toothache|Catch, Cavity)p(Catch, Cavity)
= p(Toothache|Catch, Cavity)p(Catch|Cavity)p(Cavity)
= p(Toothache|Cavity)p(Catch|Cavity)p(Cavity)
2 + 2 + 1 = 5 independent numbers
¢ In many cases, the use of conditional independence
greatly reduces the size of the representation of the joint
distribution

Probabilistic Models

Probabilistic Models

Reminder - Conditional Independence

e p(Toothache, Cavity, Catch) has 23 — 1 = 7 independent
entries

o If | have a cavity, the probability that the probe catches in it
doesn’t depend on whether | have a toothache:
(1) P(catch|toothache, cavity) = P(catch|cavity)

e The same independence holds if | haven’t got a cavity:
(2) P(catch|toothache, —cavity) = P(catch|—cavity)

e Catch is conditionally independent of Toothache given
Cavity: p(Catch|Toothache, Cavity) = p(Catch|Cavity)

o Equivalent statements:

o p(Toothache|Catch, Cavity) = p(Toothache|Cavity)

o p(Toothache, Catch|Cavity) =
p(Toothache|Cavity)p(Catch|Cavity)

o Toothache 1L Catch|Cavity

Graphical Models

o Graphical Models provide a visual depiction of probabilistic
model
« Conditional indepence assumptions can be seen in graph
o Inference and learning algorithms can be expressed in
terms of graph operations
o We will look at 2 types of graph (can be combined)
¢ Directed graphs: Bayesian networks

o Undirected graphs: Markov Random Fields
o Factor graphs (won'’t cover)

Bayesian Networks

Bayesian Networks
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Bayesian Networks Example

* A simple, graphical notation for conditional independence
assertions and hence for compact specification of full joint @
distributions

e Syntax:

« aset of nodes, one per variable @
» adirected, acyclic graph (link =~ “directly influences”)

¢ a conditional distribution for each node given its parents: « Topology of network encodes conditional independence

p(Xilpa(X:)) assertions:
o Weather is independent of the other variables
e In the simplest case, conditional distribution represented e Toothache and Catch are conditionally independent given
as a conditional probability table (CPT) giving the Cavity
distribution over X; for each combination of parent values
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Example Example contd.

P(B) P(E)

001 Earthquake 002

Burglary

o I'm at work, neighbor John calls to say my alarm is ringing,
but neighbor Mary doesn’t call. Sometimes it’s set off by
minor earthquakes. Is there a burglar?

o Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls
o Network topology reflects “causal” knowledge:

e A burglar can set the alarm off
e An earthquake can set the alarm off
e The alarm can cause Mary to call P(J|A) A [P(M]A)

e The alarm can cause John to call @ T 9 TT 70
F .05 F| .01

P(A|B,E)

.95
.94
.29
.001

mTMH44|w
mam-|m
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Compactness Global Semantics
o A CPT for Boolean X; with k Boolean parents /@) o Global semantics defines the full joint @
has 2 rows for the combinations of parent distribution as the product of the local
values ;& conditional distributions: };AI
o Each row requires one number p for X; = true @ @ n @ @
(the number for X; = false is just 1 — p) P(xi,....x,) = [ [ P(xilpa(X:)
e If each variable has no more than & parents, =1
the complete network requires O(n - 2%) 6.9, P(jAmAaA—bA—e)=
numbers ’
e i.e., grows linearly with n, vs. O(2") for the full P(jla)P(m|a)P(a|—b, —e)P(—b)P(—e)
joint distribution = 0.9 x0.7 x 0.001 x 0.999 x 0.998
e For burglary net, ?? numbers ~ 0.00063
e 1+1+4+2+2=10numbers
(vs. 2 — 1 =31)
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Constructing Bayesian Networks Example

o Need a method such that a series of locally testable
assertions of conditional independence guarantees the Suppose we choose the ordering M, J, A, B, E

required global semantics
1. Choose an ordering of variables X, ..., X,
2. Fori=1ton

add X; to the network
select parents from X, ..., X;_; such that
p(Xilpa(X;)) = p(XilXy, ... . Xi21)

e This choice of parents guarantees the global semantics:

n
[[rxilxi,....X: 1) (chain rule)

i=1

p(Xy,...,X,)

PJIM) = P(J)?

[[»(Xilpa(x:))  (by construction)
i=1
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Example Example

Suppose we choose the ordering M, J, A, B, E
Suppose we choose the ordering M, J, A, B, E @

PUJIM) = P(J)? No
P(J|M) = P(J)? No P(A|J,M) = P(A|])? P(AlJ,M) = P(A)? No
P(AlJ,M) = P(A|J)? P(A|J,M) = P(A)? P(B|A,J,M) = P(B|A)?

P(B|A,J,M) = P(B)?
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Example Example
Suppose we choose the ordering M, J, A, B, E Suppose we choose the ordering M, J, A, B, E

Earthquake Earthquake

P(JIM) = P(J)? No P(JIM) = P()? No
P(A|J,M) = P(A|J)? P(AlJ,M) = P(A)? No P(A|J,M) = P(A|J)? P(AlJ,M) = P(A)? No
P(B|A,J,M) = P(B|A)? Yes P(B|A,J,M) = P(B|A)? Yes

( (
P(BJA,J,M) = P(B)? No P(BJA,J,M) = P(B)? No
P(E|B,A,J,M) = P(E|A)? P(E|B,A,J,M) = P(E|A)? No
P(E|B,A,J,M) = P(E|A, B)? P(E|B,A,J,M) = P(E|A,B)? Yes
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Example contd. Example - Car Insurance

Burglary
Earthquake

» Deciding conditional independence is hard in noncausal
directions
o (Causal models and conditional independence seem
hardwired for humans!)

e Assessing conditional probabilities is hard in noncausal

directions
o Network is less compact: 1 +2 +4 + 2 + 4 = 13 numbers
needed
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Example - Polynomial Regression Plates

e Bayesian polynomial regression model
e Observationst = (11,...,y)
o Vector of coefficients w

e Inputs x and noise variance o2 were assumed fixed, not
stochastic and hence not in model

e Joint distribution:

¢ A shorthand for writing repeated nodes such as the #, uses
plates
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Deterministic Model Parameters

e Can also include deterministic parameters (not stochastic)
as small nodes

o Bayesian polynomial regression model:

N
pt,wlx,a,0%) = p(wla) [ ] pltalw, 21, 0%)

n=1

Probabilistic Models Bayesian Networks

Predictions

¢ Suppose we wished to predict the value 7 for a new input %
e The Bayesian network used for this inference task would
be this one

Probabilistic Models Bayesian Networks

Observations

¢ In polynomial regression, we assumed we had a training
set of N pairs (x,, t,)

o Convention is to use shaded nodes for observed random
variables
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Specifying Distributions - Discrete Variables

e Earlier we saw the use of
conditional probability tables
(CPT) for specifying a distribution
over discrete random variables
with discrete-valued parents

o For a variable with no parents,
with K possible states:

= |

P(MIA)

K
pxlp) = ]
k=1

e e.g. p(B) = 0.001%10.999%,
1-of-K representation
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Specifying Distributions - Discrete Variables cont.
o With two variables x,x, can have two cases

o0

¢ Independent

X1 X2

e Dependent

plx1,x2|p) = pxi|p)p(xalxr, p)  plxr,x2|p) = p(xi|p)p(xa|p)

K K K K K
(T (M) = (1) (1102
k=1 k=1j=1 k=1 k=1

e 2(K — 1) free parameters in
73

e K2 — 1 free parameters in u
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Sharing Parameters

¢ Another way to reduce number of parameters is sharing
parameters (a. k. a. tying of parameters)

o Lower graph reuses same p for nodes 2-M

e u is a random variable in this network, could also be
deterministic

e (K—1)+K(K — 1) parameters
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Chains of Nodes

o With M nodes, could form a chain as shown above
o Number of parameters is:

(K—1)+M—1)K(K — 1)
~—— ———
X others

e Compare to:

e KM — 1 for fully connected graph
e M(K — 1) for graph with no edges (all independent)
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Specifying Distributions - Continuous Variables

e One common type of conditional
distribution for continuous

P(c | h, subsidy) R . K .

2 variables is the linear-Gaussian
03

0.25

ods

0.1 pxilpa;) = N | xi; E wiiXj + bi, vi

0.05 g2 :
00 JEPa;

e e.g. With one parent Harvest:

p(clh) = N (¢; —0.5h+5,1)

e For harvest 4, mean cost is
—0.5h + 5, variance is 1
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Linear Gaussian

o Interesting fact: if all nodes in a Bayesian Network are
linear Gaussian, joint distribution is a multivariate Gaussian

p(xilpa;)) = N (xi; Z wixj + bi, v,-)

JEpai
N
p(xu-wxzv):HN XHE wiiXj + bi, vi
i=1 JEpai

o Each factor looks like exp((x; — (wlx,q,)?), this product will
be another quadratic form

o With no links in graph, end up with diagonal covariance

matrix
o With fully connected graph, end up with full covariance
matrix
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A Tale of Three Graphs - Part 1

5
<>

e The graph above means

pla,b,c) = p(alc)p(blc)p(c)
pla,b) = > plale)p(ble)p(c)

c

# p(a)p(b) in general

e So a and b not independent
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Conditional Independence in Bayesian Networks

¢ Recall again that a and b are conditionally independent
given ¢ (a 1L blc) if
e p(alb,c) = p(alc) or equivalently
* pla,blc) = p(alc)p(blc)
o Before we stated that links in a graph are = “directly
influences”

o We now develop a correct notion of links, in terms of the
conditional independences they represent

o This will be useful for general-purpose inference methods
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A Tale of Three Graphs - Part 1

e However, conditioned on ¢

_pla,b,c) _ plalc)p(ble)p(c)
p(c) p(c)

p(a;ble)

e Soa 1l blc
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A Tale of Three Graphs - Part 1

¢ Note the path from a to b in the graph
o When ¢ is not observed, path is open, a and b not
independent
e When c is observed, path is blocked, a and b independent

o In this case c is tail-to-tail with respect to this path
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A Tale of Three Graphs - Part 2

a ¢ b

O—@—O

e However, conditioned on ¢

pla,b,c) _ plapble) .\
D - e P
p(a)p(blc) p(alc)p(c)
p(c) p(a)
———

Bayes’ Rule

= plale)p(ble)

p(a;blc)

e Soa 1l blc
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A Tale of Three Graphs - Part 2

a c b

O—0—>0

e The graph above means

pla,b,c) = p(a)p(blc)p(cla)

e Again a and b not independent
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A Tale of Three Graphs - Part 2

o As before, the path from a to b in the graph
o When c is not observed, path is open, a and b not
independent
o When ¢ is observed, path is blocked, a and b independent

¢ In this case c is head-to-tail with respect to this path
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A Tale of Three Graphs - Part 3

a b

e The graph above means

pla,b,c) = p(a)p(b)p(cla,b)
pla,b) = > pla)p(b)p(cla,b)

= pla)p(b)

e This time a and b are independent
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A Tale of Three Graphs - Part 3

« Frustratingly, the behaviour here is different
o When ¢ is not observed, path is blocked, « and b
independent
e When c is observed, path is unblocked, a and b not
independent
¢ In this case ¢ is head-to-head with respect to this path

« Situation is in fact more complex, path is unblocked if any
descendent of ¢ is observed
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A Tale of Three Graphs - Part 3

e However, conditioned on ¢

_pla,b,c) _ p(a)p(b)p(cla,b)
e )

# plale)p(b|c) in general

e SoaTlblc
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Part 3 - Intuition

G G G

e Binary random variables B (battery charged), F (fuel tank
full), G (fuel gauge reads full)
e B and F independent
o But if we observe G = 0 (false) things change
e e.g. p(F =0|G =0,B=0) could be less than
p(F =0|G = 0), as B = 0 explains away the fact that the
gauge reads empty
o Recall that p(F|G, B) = p(F|G) is another F 1. B|G
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D-separation

¢ A general statement of conditional independence

» For sets of nodes A, B, C, check all paths from A to B in
graph

o If all paths are blocked, then A L B|C

o Path is blocked if:

e Arrows meet head-to-tail or tail-to-tail at a node in C

o Arrows meet head-to-head at a node, and neither node nor
any descendent is in C
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Markov Blanket

e What is the minimal set of nodes which makes a node x;
conditionally independent from the rest of the graph?

e x;’s parents, children, and children’s parents (co-parents)
o Define this set MB, and consider:

p(xi,- .. xp)

[ p(xi, ... xp)dx;
Hkp(xk\l?ak)

S TL pOselpar)dx;

P(Xi\x{f;éi}) =

o All factors other than those for which x; is x; or in pa; cancel
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Naive Bayes

e Commonly used naive Bayes classification model
e Class label z, features xi, ..., xp

* Model assumes features independent given class label
 Tail-to-tail at z, blocks path between features
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Learning Parameters

e When all random variables are observed in training data,
relatively straight-forward
« Distribution factors, all factors observed
e e.g9. Maximum likelihood used to set parameters of each
distribution p(x;|pa;) separately
e When some random variables not observed, it’s tricky
e This is a common case
o Expectation-maximization is a method for this
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