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Linear Classification

• Consider a two class classification problem
• Use a linear model

y(x) = wTφ(x) + b

followed by a threshold function
• For now, let’s assume training data are linearly separable

• Recall that the perceptron would converge to a perfect
classifier for such data

• But there are many such perfect classifiers



Maximum Margin Criterion Math Maximizing the Margin Non-Separable Data

Max Margin

y = 1
y = 0

y = −1

margin

• We can define the margin of a classifier as the minimum
distance to any example

• In support vector machines the decision boundary which
maximizes the margin is chosen
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Marginal Geometry
x2

x1

w
x

y(x)
‖w‖

x⊥

−w0
‖w‖

y = 0
y < 0

y > 0

R2

R1

• Recall from Ch. 4
• Projection of x in w dir. is wT x

||w||

• y(x) = 0 when wTx = −b, or wT x
||w|| =

−b
||w||

• So wT x
||w|| −

−b
||w|| =

y(x)
||w|| is signed distance to decision

boundary
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Support Vectors

y = 1

y = 0

y = −1

• Assuming data are separated by the hyperplane, distance
to decision boundary is tny(xn)

||w||
• The maximum margin criterion chooses w, b by:

arg max
w,b

{
1
||w||

min
n
[tn(wTφ(xn) + b)]

}
• Points with this min value are known as support vectors
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Canonical Representation
• This optimization problem is complex:

arg max
w,b

{
1
||w||

min
n
[tn(wTφ(xn) + b)]

}
• Note that rescaling w→ κw and b→ κb does not change

distance tny(xn)
||w|| (many equiv. answers)

• So for x∗ closest to surface, can set:

t∗(wTφ(x∗) + b) = 1

• All other points are at least this far away:

∀n , tn(wTφ(xn) + b) ≥ 1

• Under these constraints, the optimization becomes:

arg max
w,b

1
||w||

= arg min
w,b

1
2
||w||2
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Canonical Representation

• So the optimization problem is now a constrained
optimization problem:

arg min
w,b

1
2
||w||2

s.t. ∀n , tn(wTφ(xn) + b) ≥ 1

• To solve this, we need to take a detour into Lagrange
multipliers
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Lagrange Multipliers
∇f(x)

∇g(x)

xA

g(x) = 0

Consider the problem:

max
x

f (x)

s.t. g(x) = 0

• Points on g(x) = 0 must have ∇g(x) normal to surface
• A stationary point must have no change in f in the direction

of the surface, so ∇f (x) must also be in this same direction
• So there must be some λ such that ∇f (x) + λ∇g(x) = 0

• Define Lagrangian:

L(x, λ) = f (x) + λg(x)

• Stationary points of L(x, λ) have
∇xL(x, λ) = ∇f (x) + λ∇g(x) = 0 and ∇λL(x, λ) = g(x) = 0

• So are stationary points of constrained problem!
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Lagrange Multipliers Example

g(x1, x2) = 0

x1

x2

(x?
1, x

?
2)

• Consider the problem

max
x

f (x1, x2) = 1− x2
1 − x2

2

s.t. g(x1, x2) = x1 + x2 − 1 = 0

• Lagrangian:

L(x, λ) = 1− x2
1 − x2

2 + λ(x1 + x2 − 1)

• Stationary points require:

∂L/∂x1 = −2x1 + λ = 0

∂L/∂x2 = −2x2 + λ = 0

∂L/∂λ = x1 + x2 − 1 = 0

• So stationary point is (x∗1, x
∗
2) = (1

2 ,
1
2), λ = 1
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Lagrange Multipliers - Inequality Constraints
∇f(x)

∇g(x)

xA

xB

g(x) = 0
g(x) > 0

Consider the problem:

max
x

f (x)

s.t. g(x) ≥ 0

• Optimization over a region – solutions either at stationary
points (gradients 0) in region or on boundary

L(x, λ) = f (x) + λg(x)

• Solutions have either:
• ∇f (x) = 0 and λ = 0 (in region), or
• ∇f (x) = −λ∇g(x) and λ > 0 (on boundary, > for

maximizing f ).
• For both, λg(x) = 0

• Solutions have g(x) ≥ 0, λ ≥ 0, λg(x) = 0
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Lagrange Multipliers - Inequality Constraints

∇f(x)

∇g(x)

xA

xB

g(x) = 0
g(x) > 0

Consider the problem:

max
x

f (x)

s.t. g(x) ≥ 0

• Exactly how does the Lagrangian relate to the optimization
problem in this case?

L(x, λ) = f (x) + λg(x)

• It turns out that the solution to optimization problem is:

max
x

min
λ≥0

L(x, λ)
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Max-min

• Lagrangian
L(x, λ) = f (x) + λg(x)

• Consider the following:

min
λ≥0

L(x, λ)

• If the constraint g(x) ≥ 0 is not satisfied, g(x) < 0
• Hence, λ can be made∞, and minλ≥0 L(x, λ) = −∞

• Otherwise, minλ≥0 L(x, λ) = f (x), (with λ = 0)

• Hence,

min
λ≥0

L(x, λ) =
{
−∞ constraint not satisfied
f (x) otherwise
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Min-max (Dual form)
• So the solution to optimization problem is:

LP(x) = max
x

min
λ≥0

L(x, λ)

which is called the primal problem
• The dual problem is when one switches the order of the

max and min:

LD(λ) = min
λ≥0

max
x

L(x, λ)

• These are not the same, but it is always the case the dual
is a bound for the primal (in the SVM case with
minimization, LD(λ) ≤ LP(x))

• Slater’s theorem gives conditions for these two problems to
be equivalent, with LD(λ) = LP(x).

• Slater’s theorem apples for the SVM optimization problem,
and solving the dual leads to kernelization and can be
easier than solving the primal
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Now Where Were We
• So the optimization problem is now a constrained

optimization problem:

arg min
w,b

||w||2

2
s.t. ∀n , tn(wTφ(xn) + b) ≥ 1

• For this problem, the Lagrangian (with N multipliers an) is:

L(w, b, a) =
||w||2

2
−

N∑
n=1

an
{

tn(wTφ(xn) + b)− 1
}

• We can find the derivatives of L wrt w, b and set to 0:

w =

N∑
n=1

antnφ(xn)

0 =
N∑

n=1

antn
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Dual Formulation

• Plugging those equations into L removes w and b results in
a version of L where ∇w,bL = 0:

L̃(a) =
N∑

n=1

an −
1
2

N∑
n=1

N∑
m=1

anamtntmφ(xn)
Tφ(xm)

this new L̃ is the dual representation of the problem
(maximize with constraints)
• Note that it is kernelized
• It is quadratic, convex in a
• Bounded above since K positive semi-definite
• Optimal a can be found

• With large datasets, descent strategies employed
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From a to a Classifier

• We found a optimizing something else
• This is related to classifier by

w =

N∑
n=1

antnφ(xn)

y(x) = wTφ(x) + b =

N∑
n=1

antnk(x, xn) + b

• Recall an{tny(xn)− 1} = 0 condition from Lagrange
• Either an = 0 or xn is a support vector

• a will be sparse - many zeros
• Don’t need to store xn for which an = 0

• Another formula for finding b
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Examples

• SVM trained using Gaussian kernel
• Support vectors circled
• Note non-linear decision boundary in x space
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Examples

21

4.3. Some Examples of Nonlinear SVMs

The first kernels investigated for the pattern recognition problem were the following:

K(x,y) = (x · y + 1)p (74)

K(x,y) = e−‖x−y‖2/2σ2
(75)

K(x,y) = tanh(κx · y − δ) (76)

Eq. (74) results in a classifier that is a polynomial of degree p in the data; Eq. (75) gives
a Gaussian radial basis function classifier, and Eq. (76) gives a particular kind of two-layer
sigmoidal neural network. For the RBF case, the number of centers (NS in Eq. (61)),
the centers themselves (the si), the weights (αi), and the threshold (b) are all produced
automatically by the SVM training and give excellent results compared to classical RBFs,
for the case of Gaussian RBFs (Schölkopf et al, 1997). For the neural network case, the
first layer consists of NS sets of weights, each set consisting of dL (the dimension of the
data) weights, and the second layer consists of NS weights (the αi), so that an evaluation
simply requires taking a weighted sum of sigmoids, themselves evaluated on dot products of
the test data with the support vectors. Thus for the neural network case, the architecture
(number of weights) is determined by SVM training.

Note, however, that the hyperbolic tangent kernel only satisfies Mercer’s condition for
certain values of the parameters κ and δ (and of the data ‖x‖2). This was first noticed
experimentally (Vapnik, 1995); however some necessary conditions on these parameters for
positivity are now known14.

Figure 9 shows results for the same pattern recognition problem as that shown in Figure
7, but where the kernel was chosen to be a cubic polynomial. Notice that, even though
the number of degrees of freedom is higher, for the linearly separable case (left panel), the
solution is roughly linear, indicating that the capacity is being controlled; and that the
linearly non-separable case (right panel) has become separable.

Figure 9. Degree 3 polynomial kernel. The background colour shows the shape of the decision surface.

Finally, note that although the SVM classifiers described above are binary classifiers, they
are easily combined to handle the multiclass case. A simple, effective combination trains
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• From Burges, A Tutorial on Support Vector Machines for
Pattern Recognition (1998)

• SVM trained using cubic polynomial kernel
k(x1, x2) = (xT

1 x2 + 1)3

• Left is linearly separable
• Note decision boundary is almost linear, even using cubic

polynomial kernel
• Right is not linearly separable

• But is separable using polynomial kernel
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Non-Separable Data

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

• For most problems, data will not be linearly separable
(even in feature space φ)

• Can relax the constraints from

tny(xn) ≥ 1 to tny(xn) ≥ 1− ξn

• The ξn ≥ 0 are called slack variables
• ξn = 0, satisfy original problem, so xn is on margin or correct

side of margin
• 0 < ξn < 1, inside margin, but still correctly classifed
• ξn > 1, mis-classified
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Loss Function For Non-separable Data

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

• Non-zero slack variables are bad, penalize while
maximizing the margin:

min C
N∑

n=1

ξn +
1
2
||w||2

• Constant C > 0 controls importance of large margin versus
incorrect (non-zero slack)
• Set using cross-validation

• Optimization is same quadratic, different constraints,
convex
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SVM Loss Function
• The SVM for the separable case solved the problem:

arg min
w

1
2
||w||2

s.t. ∀n , tnyn ≥ 1

• Can write this as:

arg min
w

N∑
n=1

E∞(tnyn − 1) + λ||w||2

where E∞(z) = 0 if z ≥ 0,∞ otherwise
• Non-separable case relaxes this to be:

arg min
w

N∑
n=1

ESV(tnyn − 1) + λ||w||2

where ESV(tnyn − 1) = [1− yntn]+ hinge loss
• [u]+ = u if u ≥ 0, 0 otherwise
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Loss Functions

−2 −1 0 1 2
z

E(z)

• Linear classifiers, compare loss function used for learning
• Black is misclassification error
• Simple linear classifier, squared error: (yn − tn)2

• Logistic regression, cross-entropy error: tn ln yn
• SVM, hinge loss: ξn = [1− yntn]+
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Conclusion

• Readings: Ch. 7 up to and including Ch. 7.1.2
• Maximum margin criterion for deciding on decision

boundary
• Linearly separable data

• Relax with slack variables for non-separable case
• Global optimization is possible in both cases

• Convex problem (no local optima)
• Descent methods converge to global optimum

• Kernelized
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