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Maximum Margin Criterion

Linear Classification

e Consider a two class classification problem
e Use a linear model

y(x) =wlo(x) +b

followed by a threshold function

e For now, let’s assume training data are linearly separable
¢ Recall that the perceptron would converge to a perfect
classifier for such data
o But there are many such perfect classifiers
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Max Margin

y=1

margin

¢ We can define the margin of a classifier as the minimum
distance to any example

¢ In support vector machines the decision boundary which
maximizes the margin is chosen



Maximum Margin Criterion Math

Maximizing the Margin

Marginal Geometry

y>0 T2
y=0
y<0 R1
R2

Recall from Ch. 4

y(x) = 0 when wix =

e SO —b ) g signed distance to decision

IIWII Twll = Tiwl]

boundary

Projection of x in w dir. is

wix
(1wl

bor‘ = Wil

il = Iw

Non-Separable Data
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Support Vectors

e Assuming data are separated by the hyperplane, distance
to decision boundary is fn‘y‘(xﬂ)

e The maximum margin criterion chooses w, b by:

argmaX{H Hmln[tn( ¢(xn)+b)]}

¢ Points with this min value are known as support vectors
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Canonical Representation
e This optimization problem is complex:

g { L minl, 07 9(3,) + )]
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Canonical Representation
e This optimization problem is complex:

g { L minl, 07 9(3,) + )]

¢ Note that rescaling w — xkw and b — b does not change
distance % (many equiv. answers)
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Canonical Representation
This optimization problem is complex:

g { L minl, 07 9(3,) + )]

Note that rescaling w — xw and b — b does not change
distance % (many equiv. answers)
So for x, closest to surface, can set:
LW p(x.) +b) = 1
All other points are at least this far away:
Vi, t,(w p(x,) +b) > 1
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Canonical Representation
This optimization problem is complex:

g { L minl, 07 9(3,) + )]

Note that rescaling w — xw and b — b does not change
distance % (many equiv. answers)
So for x, closest to surface, can set:
LW p(x.) +b) = 1
All other points are at least this far away:
Vi, t,(w p(x,) +b) > 1

Under these constraints, the optimization becomes:

N U
argmax 1 = arg min EHWH

whb | |wl]
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Canonical Representation

e So the optimization problem is now a constrained
optimization problem:

N T
argmin - [|w/|
st. Y, ty(wle(x,) +b) > 1

¢ To solve this, we need to take a detour into Lagrange
multipliers
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Lagrange Multipliers

V() Consider the problem:
\ max f(x)
p
sk, glx)=0



Maximum Margin Criterion Math Maximizing the Margin Non-Separable Data

Lagrange Multipliers

V() Consider the problem:
g max f(x)
p
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g(x) =0

e Points on g(x) = 0 must have Vg(x) normal to surface
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Lagrange Multipliers

V() Consider the problem:
\ max f(x)
p
sk, glx)=0

9(x) =0

e Points on g(x) = 0 must have Vg(x) normal to surface
e A stationary point must have no change in f in the direction
of the surface, so Vf(x) must also be in this same direction
e So there must be some A such that Vf(x) + AVg(x) =0
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Lagrange Multipliers

V() Consider the problem:
: max f(x)
p
sk, glx)=0
g(x) =0

e Points on g(x) = 0 must have Vg(x) normal to surface
e A stationary point must have no change in f in the direction
of the surface, so Vf(x) must also be in this same direction
e So there must be some A such that Vf(x) + AVg(x) =0

e Define Lagrangian:
Lix, A) = f(x) + Ag(x)

e Stationary points of L(x, \) have
VieL(x,\) = Vf(x) + A\Vg(x) =0and V,L(x,\) = g(x) =0
e So are stationary points of constrained problem!
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Lagrange Multipliers Example
e Consider the problem

2

(a1,23) 2
\@% m;le(xl,xz)zl—xl—xz

%zl S.1. glxi,x)=x1+x—-1=0

g(x1,22) =0

e Lagrangian:
Lx, ) =1—x} =03+ Ax;+x— 1)
e Stationary points require:

OL/Ox; = —2x+A=0
OL/Oxs = 204+ A=0
8L/8/\ = x14+x—-1=0

« So stationary pointis (x},x3) = (3,3), A =1
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Lagrange Multipliers - Inequality Constraints
Vi) Consider the problem:

—~

x)

0

max f
X

v

st g(x)
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Lagrange Multipliers - Inequality Constraints

VI Consider the problem:
max f(x)
X
st. gx)>0

e Optimization over a region — solutions either at stationary
points (gradients 0) in region or on boundary

L(x,A) = f(x) + Ag(x)

 Solutions have either:
e Vf(x) =0and )\ = 0 (in region), or
e Vf(x) = —AVg(x) and A > 0 (on boundary, > for
maximizing f).
e For both, A\g(x) =0

e Solutions have g(x) > 0,A > 0,\g(x) =0
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Lagrange Multipliers - Inequality Constraints

Vi) Consider the problem:
max f(x)
X
st gx)>0

46> 0 9(x) =0

e Exactly how does the Lagrangian relate to the optimization
problem in this case?

L(x,A) = f(x) + Ag(x)
e |t turns out that the solution to optimization problem is:

max min L(x, \)
X A>0
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Max-min

e Lagrangian
Lix, A) = f(x) + Ag(x)

e Consider the following:

min L(x, \)
A>0

e If the constraint g(x) > 0 is not satisfied, g(x) < 0
e Hence, A\ can be made oo, and minx>o L(x, \) = —c0
o Otherwise, miny>o L(x, A) = f(x), (with A = 0)

e Hence,

minL(x, \) = —oo  constraint not satisfied
A>0 77| f(x) otherwise
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Min-max (Dual form)
So the solution to optimization problem is:

- inL
Lp(x) max min (x, )

which is called the primal problem
The dual problem is when one switches the order of the
max and min:

Lp(\) = 1)\11218 max L(x,\)
These are not the same, but it is always the case the dual
is a bound for the primal (in the SVM case with
minimization, Lp(\) < Lp(x))
Slater’s theorem gives conditions for these two problems to
be equivalent, with Lp(\) = Lp(x).
Slater’s theorem apples for the SVM optimization problem,
and solving the dual leads to kernelization and can be
easier than solving the primal
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Maximizing the Margin

Now Where Were We

e So the optimization problem is now a constrained
optimization problem:

I
g min
w,b

st. Y, ty(whé(x,) +b) > 1
e For this problem the Lagrangian (with N multipliers a,) is:

Z {taw p(xn) +b) — 1}

e We can find the derlvatlves of L wrtw,b and set to O:

N
w = Zantn¢(xn)
n=1
N
0 = Zantn
n=1

L(w,b,a
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Dual Formulation

¢ Plugging those equations into L removes w and b results in
a version of L where V,, ,L = 0:

N N

Z ap — = Z Z Anmtatm®(xn)" D)

nlml

this new L is the dual representation of the problem
(maximize with constraints)
Note that it is kernelized
It is quadratic, convex in a
Bounded above since K positive semi-definite
Optimal a can be found

o With large datasets, descent strategies employed
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From a to a Classifier

We found a optimizing something else
This is related to classifier by

N
w = Z antnd)(xn)
n=1

N
yix) = wle@)+b= Z antnk(x,%x,) + b

n=1

Recall a,,{1,y(x,) — 1} = 0 condition from Lagrange
e Either a, = 0 or x, is a support vector

a will be sparse - many zeros
e Don’t need to store x, for which a, =0

Another formula for finding b
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Examples

Mk
C—

e SVM trained using Gaussian kernel
e Support vectors circled
¢ Note non-linear decision boundary in x space
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Examples
(O]

From Burges, A Tutorial on Support Vector Machines for
Pattern Recognition (1998)

SVM trained using cubic polynomial kernel

k(x1,x2) = (xTxp +1)3

Left is linearly separable

¢ Note decision boundary is almost linear, even using cubic
polynomial kernel

Right is not linearly separable
o But is separable using polynomial kernel

= =
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Non-Separable Data

Non-Separable Data

y=-1

y=0

e For most problems, data will not be linearly separable
(even in feature space ¢)
e Can relax the constraints from

tny(xn) 2 1 to tny(xn) Z 1 - En

e The &, > 0 are called slack variables
o &, =0, satisfy original problem, so x, is on margin or correct
side of margin
e 0 <&, < 1,inside margin, but still correctly classifed
e &, > 1, mis-classified
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Loss Function For Non-separable Data

y=-1

¢ Non-zero slack variables are bad, penalize while
maximizing the margin:

N
. 1
mmCZlfn + EHWHZ
n—

e Constant C > 0 controls importance of large margin versus
incorrect (non-zero slack)
e Set using cross-validation
e Optimization is same quadratic, different constraints,
convex
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SVM Loss Function

e The SVM for the separable case solved the problem:
arg min ||

s.t. Vi, ty, > 1
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SVM Loss Function

e The SVM for the separable case solved the problem:
arg min ||

s.t. Vi, ty, > 1

e Can write this as:
N

al'gn'}gnZEoo(tnyn - 1) + AHWHZ

n=1

where Eo(z) = 0 if z > 0, co otherwise



Non-Separable Data

SVM Loss Function

e The SVM for the separable case solved the problem:
arg min ||

s.t. Vi, ty, > 1

e Can write this as:
N
argmin ) Ecc (tayn — 1) + AlJw||?
n=1
where Eo(z) = 0 if z > 0, co otherwise
e Non-separable case relaxes this to be:
N
argrr}vinZEsv(tnyn — 1)+ \|w|]?
n=1
where Egy (t,yn — 1) = [1 — yatn)+ hinge loss
o [u]+ =uifu> 0,0 otherwise
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Loss Functions

N\l

-2 -1 0 1 2

z

e Linear classifiers, compare loss function used for learning
Black is misclassification error

Simple linear classifier, squared error: (y, — t,)?

Logistic regression, cross-entropy error: t,Iny,

SVM, hinge loss: &, = [1 — yut]+



Conclusion

Readings: Ch. 7 up to and including Ch. 7.1.2

Maximum margin criterion for deciding on decision
boundary

e Linearly separable data
Relax with slack variables for non-separable case
Global optimization is possible in both cases

e Convex problem (no local optima)
o Descent methods converge to global optimum

Kernelized

Non-Separable Data
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