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Linear Classification Max Margin

« Consider a two class classification problem

=-1
e Use a linear model
L]
y(x) =wlop(x) +b
followed by a threshold function margin
e For now, let's assume training data are linearly separable
o Recall that the perceptron would converge to a perfect . . . -
classifier for such data o We can define the margin of a classifier as the minimum

« But there are many such perfect classifiers distance to any example

o In support vector machines the decision boundary which
maximizes the margin is chosen
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Marginal Geometry Support Vectors
y=—
y=0
=1
e Recall from Ch. 4 e Assuming data are separated by the hyperplane, distance

to decision boundary is ’”ﬁ’(""l’)

o Projection of x in w dir. is
H H
e The maximum margin criterion chooses w, b by:

e y(x) =0whenwix = —b, or ¥

HWH Twll
* So \TTIJ\CI = ﬁ(T is signed distance to decision arg max { o min[t, (w” (x,) +b)}}
boundary
o Points with this min value are known as support vectors
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Canonical Representation Canonical Representation

o This optimization problem is complex:

arg max { ] ™ mm[t,,(w d(x,) + b)]}

e So the optimization problem is now a constrained

* Note that rescaling w — xw and b — xb does not change optimization problem:
distance ’”‘y‘wx"“) (many equiv. answers) ]
e So for x, closest to surface, can set: arg I’Eibn 5Hw||2
t(w'p(x.) +b) =1 st Vn, t,(wlé(x,) +b) > 1

All other points are at least this far away:
: P Y » To solve this, we need to take a detour into Lagrange

Vi, t,(wl (x,) +b) > 1 multipliers

e Under these constraints, the optimization becomes:

argmax —— = drgmm HwH

1
whb [[wl|
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Lagrange Multipliers

Vi) Consider the problem:
y max f(x)
X
st glx)=0
9(x) =0

e Points on g(x) = 0 must have Vg(x) normal to surface
o A stationary point must have no change in f in the direction
of the surface, so Vf(x) must also be in this same direction
e So there must be some A such that Vf(x) + AVg(x) =0
o Define Lagrangian:

L(x,\) = f(x) + Ag(x)

o Stationary points of L(x, \) have
ViL(x,\) = Vf(x) + AVg(x) =0and V,L(x,\) = g(x) =0
e So are stationary points of constrained problem!
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Lagrange Multipliers - Inequality Constraints
ML Consider the problem:

m;le(x)
st glx)>0

9(x) >0

o Optimization over a region — solutions either at stationary
points (gradients 0) in region or on boundary

Lix, A) = f(x) + Ag(x)

e Solutions have either:
e Vf(x) =0and X\ =0 (in region), or
e Vf(x) = —AVg(x) and A > 0 (on boundary, > for
maximizing f).
e For both, Ag(x) =0

e Solutions have g(x) > 0, A > 0, g(x) =0
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Lagrange Multipliers Example
o Consider the problem

max f(x1, %) = 1 —x —x3
X

s.t. glx,x)=x14+x—-1=0
glar,az) =0

e Lagrangian:
Lix,\) =1 7)(% *X% +Ax1+x—1)
o Stationary points require:

OL/Ox; = —-2x1+A=0
OL/0x, —2x+A=0
6L/8)\ = x1+x—1=0

o So stationary point is (x},x3) = (3,3), A =1
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Lagrange Multipliers - Inequality Constraints
Consider the problem:

max flx)

sit. gx)>0

o Exactly how does the Lagrangian relate to the optimization
problem in this case?

L(x,A) = f(x) + Ag(x)
o |t turns out that the solution to optimization problem is:

max min L(x, \)
X A>0
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Max-min Min-max (Dual form)

So the solution to optimization problem is:
Lp(x) = max rAnZlgL(x., A)

e Lagrangian
L(x,\) = f(x) + Ag(x)

¢ Consider the f0||owing: which is called the primal problem
e The dual problem is when one switches the order of the
&n>“3 L(x, ) max and min:

Lp(\) = I;1>11(’)1 max L(x, \)
X
e If the constraint g(x) > 0 is not satisfied, g(x) < 0 -

These are not the same, but it is always the case the dual

e Hence, )\ can be made oo, and miny>o L(x, \) = —co ) ’ - -
« Otherwise, minyso L(x, \) = f(x), (with A = 0) is a bound for the primal (in the SVM case with
Hence = minimization, Lp(\) < Lp(x))
L]
’ o Slater’s theorem gives conditions for these two problems to
L(r.\ | —oo constraint not satisfied be equivalent, with Lp()) = Lp(x).
e (¥, A) = f(x) otherwise « Slater's theorem apples for the SVM optimization problem,
and solving the dual leads to kernelization and can be
easier than solving the primal
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Now Where Were We Dual Formulation

So the optimization problem is now a constrained
optimization problem:

IWEE ¢ Plugging those equations into L removes w and b results in
w

arg min —— 2 a version of L where V,, ,L = 0:
w.,b

st Vn, t,(wlé(x,)+b) > 1
For this problem, the Lagrangian (with N multipliers a,,) is:

Z ap — Z anamtntmd)(xn) d’(xm)

nlml

2 -
L(w,b,a) Hw” Zan {tu(WT p(x,) +b) — 1} this new L is the dual representation of the problem
(maximize with constraints)
o Note that it is kernelized
e |t is quadratic, convex in a
e Bounded above since K positive semi-definite
Z Aty P (xn) « Optimal a can be found
o With large datasets, descent strategies employed
N
0 = Zantn
n=1

We can find the derlvatlves of Lwrtw,b and set to 0:

3
Il
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Maximizing the Margin

From a to a Classifier

We found a optimizing something else
This is related to classifier by

N
w = Z antn¢(xn)

n=1
N
wlg(x) +b= Z antnk(x,x,) + b

n=1

y(x)

Recall a,{,y(x,) — 1} = 0 condition from Lagrange
e Either a, = 0 or x, is a support vector

a will be sparse - many zeros
e Don’t need to store x,, for which @, =0

Another formula for finding »
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Examples

]

From Burges, A Tutorial on Support Vector Machines for
Pattern Recognition (1998)

SVM trained using cubic polynomial kernel

k(x1,x2) = (xlrxz +1)3

Left is linearly separable

« Note decision boundary is almost linear, even using cubic
polynomial kernel

Right is not linearly separable
» But is separable using polynomial kernel

Non-Separable Data

Maximum Margin Criterion Math Maximizing the Margin Non-Separable Data

Examples

;@}

-

e SVM trained using Gaussian kernel
e Support vectors circled
o Note non-linear decision boundary in x space

6
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Non-Separable Data

y=-1

o For most problems, data will not be linearly separable
(even in feature space ¢)

e Can relax the constraints from

tny(xn) 2 1 tO tny(xn) 2 1 - gn

e The &, > 0 are called slack variables
e ¢, =0, satisfy original problem, so x, is on margin or correct
side of margin
e 0 <&, < 1,inside margin, but still correctly classifed
o &, > 1, mis-classified
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Loss Function For Non-separable Data SVM Loss Function
e The SVM for the separable case solved the problem:

S T
arg min = ||w||

s.t. Vn, tyy, > 1

e Can write this as:

* Non-zero slack variables are bad, penalize while i 5
maximizing the margin: arg min D Eoo(tayn = 1) + Al|w]]
n=1
N
minCZ&n + leHz where Eo(z) = 0if z > 0, oo otherwise
ot 2 * Non-separable case relaxes this to be:
e Constant C > 0 controls importance of large margin versus - )
incorrect (non-zero slack) arg nl;nZESV(tnYn = 1)+ Allwl|
e Set using cross-validation n=1
o Optimization is same quadratic, different constraints, where Esy (tyyn — 1) = [1 — yuts]+ hinge loss
convex o [u]ly =uif u> 0,0 otherwise
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Loss Functions Conclusion
B(:)
e Readings: Ch. 7 up to and including Ch. 7.1.2
e Maximum margin criterion for deciding on decision
boundary
\ o Linearly separable data
. 1 . .- ¢ Relax with slack variables for non-separable case
) . ) ) « Global optimization is possible in both cases
e Linear cIa§S|f|§rs, compare loss function used for learning « Convex problem (no local optima)
e Black is misclassification error ,  Descent methods converge to global optimum
o Simple linear classifier, squared error: (y, — ) « Kernelized

o Logistic regression, cross-entropy error: ¢, Iny,
e SVM, hinge loss: &, = [1 — yta)+
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