Support Vector Machines
Greg Mori - CMPT 419/726

Bishop PRML Ch. 7
Maximum Margin Criterion

Math

Maximizing the Margin

Non-Separable Data

- Consider a two class classification problem
- Use a linear model

$$
y(\boldsymbol{x})=\boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{x})+b
$$

followed by a threshold function

- For now, let's assume training data are linearly separable
- Recall that the perceptron would converge to a perfect classifier for such data
- But there are many such perfect classifiers

- We can define the margin of a classifier as the minimum distance to any example
- In support vector machines the decision boundary which maximizes the margin is chosen

- Assuming data are separated by the hyperplane, distance to decision boundary is $\frac{t_{n} y\left(x_{n}\right)}{\|w\|^{\prime}}$
- The maximum margin criterion chooses \boldsymbol{w}, b by:

$$
\arg \max _{\boldsymbol{w}, b}\left\{\frac{1}{\|\boldsymbol{w}\|} \min _{n}\left[t_{n}\left(\boldsymbol{w}^{T} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)+b\right)\right]\right\}
$$

- Points with this min value are known as support vectors
- This optimization problem is complex:

$$
\arg \max _{\boldsymbol{w}, b}\left\{\frac{1}{\|\boldsymbol{w}\|} \min _{n}\left[t_{n}\left(\boldsymbol{w}^{T} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)+b\right)\right]\right\}
$$

- Note that rescaling $\boldsymbol{w} \rightarrow \kappa \boldsymbol{w}$ and $b \rightarrow \kappa b$ does not change distance $\frac{t_{n} y\left(x_{n}\right)}{\|w\|}$ (many equiv. answers)
- So for \boldsymbol{x}_{*} closest to surface, can set:

$$
t_{*}\left(\boldsymbol{w}^{T} \phi\left(\boldsymbol{x}_{*}\right)+b\right)=1
$$

- All other points are at least this far away:

$$
\forall n, t_{n}\left(\boldsymbol{w}^{T} \phi\left(\boldsymbol{x}_{n}\right)+b\right) \geq 1
$$

- Under these constraints, the optimization becomes:

$$
\arg \max _{\boldsymbol{w}, b} \frac{1}{\|\boldsymbol{w}\|}=\arg \min _{\boldsymbol{w}, b} \frac{1}{2}\|\boldsymbol{w}\|^{2}
$$

Canonical Representation

- So the optimization problem is now a constrained optimization problem:

$$
\begin{array}{ll}
& \arg \min _{\boldsymbol{w}, b} \frac{1}{2}\|\boldsymbol{w}\|^{2} \\
\text { s.t. } & \forall n, t_{n}\left(\boldsymbol{w}^{T} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)+b\right) \geq 1
\end{array}
$$

- To solve this, we need to take a detour into Lagrange multipliers

Consider the problem

$$
\begin{array}{ll}
& \max _{\boldsymbol{x}} f(\boldsymbol{x}) \\
\text { s.t. } & g(\boldsymbol{x})=0
\end{array}
$$

- Points on $g(\boldsymbol{x})=0$ must have $\nabla g(\boldsymbol{x})$ normal to surface
- A stationary point must have no change in f in the direction of the surface, so $\nabla f(x)$ must also be in this same direction - So there must be some λ such that $\nabla f(\boldsymbol{x})+\lambda \nabla g(\boldsymbol{x})=0$
- Define Lagrangian:

$$
L(\boldsymbol{x}, \lambda)=f(\boldsymbol{x})+\lambda g(\boldsymbol{x})
$$

- Stationary points of $L(x, \lambda)$ have
$\nabla_{x} L(\boldsymbol{x}, \lambda)=\nabla f(\boldsymbol{x})+\lambda \nabla g(\boldsymbol{x})=0$ and $\nabla_{\lambda} L(\boldsymbol{x}, \lambda)=g(\boldsymbol{x})=0$
- So are stationary points of constrained problem!

Lagrange Multipliers - Inequality Constraints
 Consider the problem:

$$
\begin{array}{ll}
& \max _{\boldsymbol{x}} f(\boldsymbol{x}) \\
\text { s.t. } & g(\boldsymbol{x}) \geq 0
\end{array}
$$

- Optimization over a region - solutions either at stationary points (gradients 0) in region or on boundary

$$
L(\boldsymbol{x}, \lambda)=f(\boldsymbol{x})+\lambda g(\boldsymbol{x})
$$

- Solutions have either:
- $\nabla f(\boldsymbol{x})=0$ and $\lambda=0$ (in region), or
- $\nabla f(\boldsymbol{x})=-\lambda \nabla g(\boldsymbol{x})$ and $\lambda>0$ (on boundary, $>$ for maximizing f).
- For both, $\lambda g(\boldsymbol{x})=0$
- Solutions have $g(\boldsymbol{x}) \geq 0, \lambda \geq 0, \lambda g(\boldsymbol{x})=0$

Lagrange Multipliers Example

- Consider the problem

$$
\begin{array}{ll}
& \max _{x} f\left(x_{1}, x_{2}\right)=1-x_{1}^{2}-x_{2}^{2} \\
\text { s.t. } & g\left(x_{1}, x_{2}\right)=x_{1}+x_{2}-1=0
\end{array}
$$

- Lagrangian:

$$
L(\boldsymbol{x}, \lambda)=1-x_{1}^{2}-x_{2}^{2}+\lambda\left(x_{1}+x_{2}-1\right)
$$

- Stationary points require:

$$
\begin{aligned}
\partial L / \partial x_{1} & =-2 x_{1}+\lambda=0 \\
\partial L / \partial x_{2} & =-2 x_{2}+\lambda=0 \\
\partial L / \partial \lambda & =x_{1}+x_{2}-1=0
\end{aligned}
$$

- So stationary point is $\left(x_{1}^{*}, x_{2}^{*}\right)=\left(\frac{1}{2}, \frac{1}{2}\right), \lambda=1$

Consider the problem:

$$
\begin{array}{ll}
& \max _{\boldsymbol{x}} f(\boldsymbol{x}) \\
\text { s.t. } & g(\boldsymbol{x}) \geq 0
\end{array}
$$

- Exactly how does the Lagrangian relate to the optimization problem in this case?

$$
L(\boldsymbol{x}, \lambda)=f(\boldsymbol{x})+\lambda g(\boldsymbol{x})
$$

- It turns out that the solution to optimization problem is:

$$
\max _{\boldsymbol{x}} \min _{\lambda \geq 0} L(\boldsymbol{x}, \lambda)
$$

Maximum Margin Criterion Maxin \quad Maximizing the Margin
Max-min

- Lagrangian

$$
L(\boldsymbol{x}, \lambda)=f(\boldsymbol{x})+\lambda g(\boldsymbol{x})
$$

- Consider the following:

$$
\min _{\lambda \geq 0} L(\boldsymbol{x}, \lambda)
$$

- If the constraint $g(\boldsymbol{x}) \geq 0$ is not satisfied, $g(\boldsymbol{x})<0$
- Hence, λ can be made ∞, and $\min _{\lambda \geq 0} L(\boldsymbol{x}, \lambda)=-\infty$
- Otherwise, $\min _{\lambda \geq 0} L(\boldsymbol{x}, \lambda)=f(\boldsymbol{x})$, (with $\lambda=0$)
- Hence,

$$
\min _{\lambda \geq 0} L(\boldsymbol{x}, \lambda)= \begin{cases}-\infty & \text { constraint not satisfied } \\ f(\boldsymbol{x}) & \text { otherwise }\end{cases}
$$

Maximum Margin Criterion Math
 Min-max (Dual form)

- So the solution to optimization problem is:

$$
L_{P}(\boldsymbol{x})=\max _{\boldsymbol{x}} \min _{\lambda \geq 0} L(\boldsymbol{x}, \lambda)
$$

which is called the primal problem

- The dual problem is when one switches the order of the max and min:

$$
L_{D}(\lambda)=\min _{\lambda \geq 0} \max _{\boldsymbol{x}} L(\boldsymbol{x}, \lambda)
$$

- These are not the same, but it is always the case the dual is a bound for the primal (in the SVM case with minimization, $L_{D}(\lambda) \leq L_{P}(\boldsymbol{x})$)
- Slater's theorem gives conditions for these two problems to be equivalent, with $L_{D}(\lambda)=L_{P}(\boldsymbol{x})$.
- Slater's theorem apples for the SVM optimization problem, and solving the dual leads to kernelization and can be easier than solving the primal

Maximum Margin Criterion Math Maximizing the Margi

Now Where Were We

- So the optimization problem is now a constrained optimization problem:

$$
\begin{array}{ll}
& \arg \min _{\boldsymbol{w}, b} \frac{\|\boldsymbol{w}\|^{2}}{2} \\
\text { s.t. } & \forall n, t_{n}\left(\boldsymbol{w}^{T} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)+b\right) \geq 1
\end{array}
$$

- For this problem, the Lagrangian (with N multipliers a_{n}) is:

$$
L(\boldsymbol{w}, b, \boldsymbol{a})=\frac{\|\boldsymbol{w}\|^{2}}{2}-\sum_{n=1}^{N} a_{n}\left\{t_{n}\left(\boldsymbol{w}^{T} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)+b\right)-1\right\}
$$

- We can find the derivatives of L wrt \boldsymbol{w}, b and set to 0 :

$$
\begin{aligned}
\boldsymbol{w} & =\sum_{n=1}^{N} a_{n} t_{n} \phi\left(\boldsymbol{x}_{n}\right) \\
0 & =\sum_{n=1}^{N} a_{n} t_{n}
\end{aligned}
$$

Maximum Margin Criterion Math Maximizing the Margin

Dual Formulation

- Plugging those equations into L removes \boldsymbol{w} and b results in a version of L where $\nabla_{w, b} L=0$:

$$
\tilde{L}(\boldsymbol{a})=\sum_{n=1}^{N} a_{n}-\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_{n} a_{m} t_{n} t_{m} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)^{T} \boldsymbol{\phi}\left(\boldsymbol{x}_{m}\right)
$$

this new \tilde{L} is the dual representation of the problem (maximize with constraints)

- Note that it is kernelized
- It is quadratic, convex in \boldsymbol{a}
- Bounded above since K positive semi-definite
- Optimal \boldsymbol{a} can be found
- With large datasets, descent strategies employed

Maximum Margin Criterion Math Maximizing the Margin
 From \boldsymbol{a} to a Classifier

- We found a optimizing something else
- This is related to classifier by

$$
\begin{aligned}
\boldsymbol{w} & =\sum_{n=1}^{N} a_{n} t_{n} \phi\left(\boldsymbol{x}_{n}\right) \\
y(\boldsymbol{x}) & =\boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{x})+b=\sum_{n=1}^{N} a_{n} t_{n} k\left(\boldsymbol{x}, \boldsymbol{x}_{n}\right)+b
\end{aligned}
$$

- Recall $a_{n}\left\{t_{n} y\left(\boldsymbol{x}_{n}\right)-1\right\}=0$ condition from Lagrange - Either $a_{n}=0$ or \boldsymbol{x}_{n} is a support vector
- a will be sparse - many zeros
- Don't need to store \boldsymbol{x}_{n} for which $a_{n}=0$
- Another formula for finding b

Examples

- SVM trained using Gaussian kernel
- Support vectors circled
- Note non-linear decision boundary in \boldsymbol{x} space

- From Burges, A Tutorial on Support Vector Machines for Pattern Recognition (1998)
- SVM trained using cubic polynomial kernel $k\left(x_{1}, \boldsymbol{x}_{2}\right)=\left(\boldsymbol{x}_{1}^{T} \boldsymbol{x}_{2}+1\right)^{3}$
- Left is linearly separable
- Note decision boundary is almost linear, even using cubic polynomial kernel
- Right is not linearly separable
- But is separable using polynomial kernel

Non-Separable Data

- For most problems, data will not be linearly separable (even in feature space ϕ)
- Can relax the constraints from

$$
t_{n} y\left(\boldsymbol{x}_{n}\right) \geq 1 \text { to } t_{n} y\left(\boldsymbol{x}_{n}\right) \geq 1-\xi_{n}
$$

- The $\xi_{n} \geq 0$ are called slack variables
- $\xi_{n}=0$, satisfy original problem, so x_{n} is on margin or correct side of margin
- $0<\xi_{n}<1$, inside margin, but still correctly classifed
- $\xi_{n}>1$, mis-classified

Maximum Margin Criterion Math Maximizing the Margin Separable Data

Loss Function For Non-separable Data

- Non-zero slack variables are bad, penalize while maximizing the margin:

$$
\min C \sum_{n=1}^{N} \xi_{n}+\frac{1}{2}\|\boldsymbol{w}\|^{2}
$$

- Constant $C>0$ controls importance of large margin versus incorrect (non-zero slack)
- Set using cross-validation
- Optimization is same quadratic, different constraints, convex

Maximum Margin Criterion Math Naximizing the Margin Non-Separable Data

SVM Loss Function

- The SVM for the separable case solved the problem:

$$
\begin{array}{ll}
& \arg \min _{\boldsymbol{w}} \frac{1}{2}\|\boldsymbol{w}\|^{2} \\
\text { s.t. } & \forall n, t_{n} y_{n} \geq 1
\end{array}
$$

- Can write this as:

$$
\arg \min _{\boldsymbol{w}} \sum_{n=1}^{N} E_{\infty}\left(t_{n} y_{n}-1\right)+\lambda\|\boldsymbol{w}\|^{2}
$$

where $E_{\infty}(z)=0$ if $z \geq 0, \infty$ otherwise

- Non-separable case relaxes this to be:

$$
\arg \min _{w} \sum_{n=1}^{N} E_{S V}\left(t_{n} y_{n}-1\right)+\lambda\|\boldsymbol{w}\|^{2}
$$

where $E_{S V}\left(t_{n} y_{n}-1\right)=\left[1-y_{n} t_{n}\right]_{+}$hinge loss

- $[u]_{+}=u$ if $u \geq 0,0$ otherwise

Loss Functions

- Linear classifiers, compare loss function used for learning
- Black is misclassification error
- Simple linear classifier, squared error: $\left(y_{n}-t_{n}\right)^{2}$
- Logistic regression, cross-entropy error: $t_{n} \ln y_{n}$
- SVM, hinge loss: $\xi_{n}=\left[1-y_{n} t_{n}\right]_{+}$

Conclusion

- Readings: Ch. 7 up to and including Ch. 7.1.2
- Maximum margin criterion for deciding on decision boundary
- Linearly separable data
- Relax with slack variables for non-separable case
- Global optimization is possible in both cases
- Convex problem (no local optima)
- Descent methods converge to global optimum
- Kernelized

