Kernel Methods
 Greg Mori - CMPT 419/726

Bishop PRML Ch. 6

Non-linear Mappings

- In the lectures on linear models for regression and classification, we looked at models with $\boldsymbol{w}^{T} \phi(\boldsymbol{x})$
- The feature space $\phi(\boldsymbol{x})$ could be high-dimensional
- This was good because if data aren't separable in original input space (x), they may be in feature space $\phi(x)$
- We'd like to avoid computing high-dimensional $\phi(x)$
- We'd like to work with x which doesn't have a natural vector-space representation

Non-linear Mappings

- In the lectures on linear models for regression and classification, we looked at models with $\boldsymbol{w}^{T} \phi(\boldsymbol{x})$
- The feature space $\phi(\boldsymbol{x})$ could be high-dimensional
- This was good because if data aren't separable in original input space (x), they may be in feature space $\phi(x)$
- We'd like to avoid computing high-dimensional $\phi(\boldsymbol{x})$
- We'd like to work with x which doesn't have a natural vector-space representation
- e.g. graphs, sets, strings

Kernel Trick

- In previous lectures on linear models, we would explicitly compute $\phi\left(\boldsymbol{x}_{i}\right)$ for each datapoint
- Run algorithm in feature space
- For some feature spaces, can compute dot product $\phi\left(x_{i}\right)^{T} \phi\left(x_{j}\right)$ efficiently
- Efficient method is computation of a kernel function $k\left(x_{i}, x_{j}\right)=\phi\left(x_{i}\right)^{T} \phi\left(x_{j}\right)$
- The kernel trick is to rewrite an algorithm to only have x enter in the form of dot products
- The menu:
- Kernel trick examples
- Kernel functions

Kernel Trick

- In previous lectures on linear models, we would explicitly compute $\phi\left(\boldsymbol{x}_{i}\right)$ for each datapoint
- Run algorithm in feature space
- For some feature spaces, can compute dot product $\phi\left(x_{i}\right)^{T} \phi\left(x_{j}\right)$ efficiently
- Efficient method is computation of a kernel function $k\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)=\phi\left(\boldsymbol{x}_{i}\right)^{T} \phi\left(\boldsymbol{x}_{j}\right)$
- The kernel trick is to rewrite an algorithm to only have x enter in the form of dot products
- The menu:
- Kernel trick examples
- Kernel functions

Kernel Trick

- In previous lectures on linear models, we would explicitly compute $\phi\left(\boldsymbol{x}_{i}\right)$ for each datapoint
- Run algorithm in feature space
- For some feature spaces, can compute dot product $\phi\left(\boldsymbol{x}_{i}\right)^{T} \phi\left(\boldsymbol{x}_{j}\right)$ efficiently
- Efficient method is computation of a kernel function $k\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)=\phi\left(\boldsymbol{x}_{i}\right)^{T} \phi\left(\boldsymbol{x}_{j}\right)$
- The kernel trick is to rewrite an algorithm to only have \boldsymbol{x} enter in the form of dot products
- Kernel trick examples
- Kernel functions

Kernel Trick

- In previous lectures on linear models, we would explicitly compute $\phi\left(\boldsymbol{x}_{i}\right)$ for each datapoint
- Run algorithm in feature space
- For some feature spaces, can compute dot product $\phi\left(\boldsymbol{x}_{i}\right)^{T} \phi\left(\boldsymbol{x}_{j}\right)$ efficiently
- Efficient method is computation of a kernel function $k\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)=\phi\left(\boldsymbol{x}_{i}\right)^{T} \phi\left(\boldsymbol{x}_{j}\right)$
- The kernel trick is to rewrite an algorithm to only have \boldsymbol{x} enter in the form of dot products
- The menu:
- Kernel trick examples
- Kernel functions

A Kernel Trick

- Let's look at the nearest-neighbour classification algorithm
- For input point x_{i}, find point x_{j} with smallest distance:

$$
\begin{aligned}
\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|^{2} & =\left(\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right)^{T}\left(\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right) \\
& =\boldsymbol{x}_{i}^{T} \boldsymbol{x}_{i}-2 \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{j}+\boldsymbol{x}_{j}^{T} \boldsymbol{x}_{j}
\end{aligned}
$$

- If we used a non-linear feature space $\phi(\cdot)$:
- So nearest-neighbour can be done in a high-dimensional feature space without actually moving to it

A Kernel Trick

- Let's look at the nearest-neighbour classification algorithm
- For input point x_{i}, find point x_{j} with smallest distance:

$$
\begin{aligned}
\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|^{2} & =\left(\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right)^{T}\left(\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right) \\
& =\boldsymbol{x}_{i}^{T} \boldsymbol{x}_{i}-2 \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{j}+\boldsymbol{x}_{j}^{T} \boldsymbol{x}_{j}
\end{aligned}
$$

- If we used a non-linear feature space $\phi(\cdot)$:

$$
\begin{aligned}
\left\|\phi\left(\boldsymbol{x}_{i}\right)-\phi\left(\boldsymbol{x}_{j}\right)\right\|^{2} & =\phi\left(\boldsymbol{x}_{i}\right)^{T} \phi\left(\boldsymbol{x}_{i}\right)-2 \phi\left(\boldsymbol{x}_{i}\right)^{T} \phi\left(\boldsymbol{x}_{j}\right)+\phi\left(\boldsymbol{x}_{j}\right)^{T} \phi\left(\boldsymbol{x}_{j}\right) \\
& =k\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{i}\right)-2 k\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)+k\left(\boldsymbol{x}_{j}, \boldsymbol{x}_{j}\right)
\end{aligned}
$$

- So nearest-neighbour can be done in a high-dimensional feature space without actually moving to it

A Kernel Trick

- Let's look at the nearest-neighbour classification algorithm
- For input point x_{i}, find point x_{j} with smallest distance:

$$
\begin{aligned}
\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|^{2} & =\left(\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right)^{T}\left(\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right) \\
& =\boldsymbol{x}_{i}^{T} \boldsymbol{x}_{i}-2 \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{j}+\boldsymbol{x}_{j}^{T} \boldsymbol{x}_{j}
\end{aligned}
$$

- If we used a non-linear feature space $\phi(\cdot)$:

$$
\begin{aligned}
\left\|\phi\left(\boldsymbol{x}_{i}\right)-\phi\left(\boldsymbol{x}_{j}\right)\right\|^{2} & =\phi\left(\boldsymbol{x}_{i}\right)^{T} \phi\left(\boldsymbol{x}_{i}\right)-2 \phi\left(\boldsymbol{x}_{i}\right)^{T} \phi\left(\boldsymbol{x}_{j}\right)+\phi\left(\boldsymbol{x}_{j}\right)^{T} \phi\left(\boldsymbol{x}_{j}\right) \\
& =k\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{i}\right)-2 k\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)+k\left(\boldsymbol{x}_{j}, \boldsymbol{x}_{j}\right)
\end{aligned}
$$

- So nearest-neighbour can be done in a high-dimensional feature space without actually moving to it

A Kernel Function

- Consider the kernel function $k(\boldsymbol{x}, \boldsymbol{z})=\left(1+\boldsymbol{x}^{T} z\right)^{2}$
- With $x, z \in \mathbb{R}^{2}$,

- So this particular kernel function does correspond to a dot product in a feature space (is valid)
- Computing $k(x, z)$ is faster than explicitly computing $\phi(x)^{T} \phi(z)$
- In higher dimensions, larger exponent, much faster

A Kernel Function

- Consider the kernel function $k(\boldsymbol{x}, \boldsymbol{z})=\left(1+\boldsymbol{x}^{T} \boldsymbol{z}\right)^{2}$
- With $\boldsymbol{x}, \boldsymbol{z} \in \mathbb{R}^{2}$,

$$
\begin{aligned}
k(\boldsymbol{x}, \boldsymbol{z}) & =\left(1+x_{1} z_{1}+x_{2} z_{2}\right)^{2} \\
& =1+2 x_{1} z_{1}+2 x_{2} z_{2}+x_{1}^{2} z_{1}^{2}+2 x_{1} z_{1} x_{2} z_{2}+x_{2}^{2} z_{2}^{2} \\
& =\left(1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)\left(1, \sqrt{2} z_{1}, \sqrt{2} z_{2}, z_{1}^{2}, \sqrt{2} z_{1} z_{2}, z_{2}^{2}\right)^{T} \\
& =\phi(\boldsymbol{x})^{T} \phi(\boldsymbol{z})
\end{aligned}
$$

- So this particular kernel function does correspond to a dot product in a feature space (is valid)
- Computing $k(x, z)$ is faster than explicitly computing
- In higher dimensions, larger exponent, much faster

A Kernel Function

- Consider the kernel function $k(\boldsymbol{x}, \boldsymbol{z})=\left(1+\boldsymbol{x}^{T} \boldsymbol{z}\right)^{2}$
- With $x, z \in \mathbb{R}^{2}$,

$$
\begin{aligned}
k(\boldsymbol{x}, \boldsymbol{z}) & =\left(1+x_{1} z_{1}+x_{2} z_{2}\right)^{2} \\
& =1+2 x_{1} z_{1}+2 x_{2} z_{2}+x_{1}^{2} z_{1}^{2}+2 x_{1} z_{1} x_{2} z_{2}+x_{2}^{2} z_{2}^{2} \\
& =\left(1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)\left(1, \sqrt{2} z_{1}, \sqrt{2} z_{2}, z_{1}^{2}, \sqrt{2} z_{1} z_{2}, z_{2}^{2}\right)^{T} \\
& =\phi(\boldsymbol{x})^{T} \phi(z)
\end{aligned}
$$

- So this particular kernel function does correspond to a dot product in a feature space (is valid)
- Computing $k(x, z)$ is faster than explicitly computing

A Kernel Function

- Consider the kernel function $k(\boldsymbol{x}, \boldsymbol{z})=\left(1+\boldsymbol{x}^{T} \boldsymbol{z}\right)^{2}$
- With $\boldsymbol{x}, \boldsymbol{z} \in \mathbb{R}^{2}$,

$$
\begin{aligned}
k(\boldsymbol{x}, \boldsymbol{z}) & =\left(1+x_{1} z_{1}+x_{2} z_{2}\right)^{2} \\
& =1+2 x_{1} z_{1}+2 x_{2} z_{2}+x_{1}^{2} z_{1}^{2}+2 x_{1} z_{1} x_{2} z_{2}+x_{2}^{2} z_{2}^{2} \\
& =\left(1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)\left(1, \sqrt{2} z_{1}, \sqrt{2} z_{2}, z_{1}^{2}, \sqrt{2} z_{1} z_{2}, z_{2}^{2}\right)^{T} \\
& =\phi(\boldsymbol{x})^{T} \phi(z)
\end{aligned}
$$

- So this particular kernel function does correspond to a dot product in a feature space (is valid)
- Computing $k(\boldsymbol{x}, \boldsymbol{z})$ is faster than explicitly computing $\phi(\boldsymbol{x})^{T} \phi(z)$
- In higher dimensions, larger exponent, much faster

Why Kernels?

- Why bother with kernels?
- Often easier to specify how similar two things are (dot product) than to construct explicit feature space ϕ.
- There are high-dimensional (even infinite) spaces that have efficient-to-compute kernels
- Separability
- So you want to use kernels
- Need to know when kernel function is valid, so we can apply the kernel trick

Valid Kernels

- Given some arbitrary function $k\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)$, how do we know if it corresponds to a dot product in some space?
- Valid kernels: if $k(\cdot, \cdot)$ satisfies:
- Symmetric; $k\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)=k\left(\boldsymbol{x}_{j}, \boldsymbol{x}_{i}\right)$
- Positive definite; for any $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\mathrm{N}}$, the Gram matrix K must be positive semi-definite:

- Positive semi-definite means $\boldsymbol{x}^{T} \boldsymbol{K} \boldsymbol{x} \geq 0$ for all \boldsymbol{x} then $k(\cdot, \cdot)$ corresponds to a dot product in some space ϕ
- a.k.a. Mercer kernel, admissible kernel, reproducing kernel

Valid Kernels

- Given some arbitrary function $k\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)$, how do we know if it corresponds to a dot product in some space?
- Valid kernels: if $k(\cdot, \cdot)$ satisfies:
- Symmetric; $k\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)=k\left(\boldsymbol{x}_{j}, \boldsymbol{x}_{i}\right)$
- Positive definite; for any $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}$, the Gram matrix \boldsymbol{K} must be positive semi-definite:

$$
\boldsymbol{K}=\left(\begin{array}{cccc}
k\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{1}\right) & k\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right) & \ldots & k\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{N}\right) \\
\vdots & \vdots & \ddots & \vdots \\
k\left(\boldsymbol{x}_{N}, \boldsymbol{x}_{1}\right) & k\left(\boldsymbol{x}_{N}, \boldsymbol{x}_{2}\right) & \ldots & k\left(\boldsymbol{x}_{N}, \boldsymbol{x}_{N}\right)
\end{array}\right)
$$

- Positive semi-definite means $\boldsymbol{x}^{T} \boldsymbol{K} \boldsymbol{x} \geq 0$ for all \boldsymbol{x} then $k(\cdot, \cdot)$ corresponds to a dot product in some space ϕ
- a.k.a. Mercer kernel, admissible kernel, reproducing kernel

Examples of Kernels

- Some kernels:
- Linear kernel $k\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)=\boldsymbol{x}_{1}^{T} \boldsymbol{x}_{2}$
- $\phi(x)=\boldsymbol{x}$
- Polynomial kernel $k\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)=\left(1+\boldsymbol{x}_{1}^{T} \boldsymbol{x}_{2}\right)^{d}$
- Contains all polynomial terms up to degree d
- Gaussian kernel $k\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)=\exp \left(-\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right\|^{2} / 2 \sigma^{2}\right)$
- Infinite dimension feature space

Constructing Kernels

- Can build new valid kernels from existing valid ones:
- $k\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)=c k_{1}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right), c>0$
- $k\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)=k_{1}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)+k_{2}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)$
- $k\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)=k_{1}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right) k_{2}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)$
- $k\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)=\exp \left(k_{1}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)\right)$
- Table on p. 296 gives many such rules

More Kernels

- Stationary kernels are only a function of the difference between arguments: $k\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)=k\left(\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right)$
- Translation invariant in input space:

$$
k\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)=k\left(\boldsymbol{x}_{1}+\boldsymbol{c}, \boldsymbol{x}_{2}+\boldsymbol{c}\right)
$$

- Homogeneous kernels, a. k. a. radial basis functions only a function of magnitude of difference: $k\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)=k\left(| | \boldsymbol{x}_{1}-\boldsymbol{x}_{2}| |\right)$
- Set subsets $k\left(A_{1}, A_{2}\right)=2^{\left|A_{1} \cap A_{2}\right|}$, where $|A|$ denotes number of elements in A
- Domain-specific: think hard about your problem, figure out what it means to be similar, define as $k(\cdot, \cdot)$, prove positive definite (Feynman algorithm)

Perceptron Classifier - Kernelized

- Recall the perceptron $y(\boldsymbol{x})=f\left(\boldsymbol{w}^{T} \phi(\boldsymbol{x})\right)$
- The update rule for the perceptron is

$$
\boldsymbol{w}^{(\tau+1)}=\boldsymbol{w}^{(\tau)}+\underbrace{\eta \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right) t_{n}}_{\text {if incorrect }}
$$

- Hence,
- The classifier is then
- Kernelized! (init $\boldsymbol{w}^{(0)}=\mathbf{0}$)
- Similar trick can be done for the update rule

Perceptron Classifier - Kernelized

- Recall the perceptron $y(\boldsymbol{x})=f\left(\boldsymbol{w}^{T} \phi(\boldsymbol{x})\right)$
- The update rule for the perceptron is

$$
\boldsymbol{w}^{(\tau+1)}=\boldsymbol{w}^{(\tau)}+\underbrace{\eta \phi\left(\boldsymbol{x}_{n}\right) t_{n}}_{\text {if incorrect }}
$$

- Hence,

$$
\boldsymbol{w}^{(\tau+1)}=\boldsymbol{w}^{(0)}+\alpha_{1} \boldsymbol{\phi}\left(\boldsymbol{x}_{1}\right)+\alpha_{2} \boldsymbol{\phi}\left(\boldsymbol{x}_{2}\right)+\ldots \alpha_{N} \boldsymbol{\phi}\left(\boldsymbol{x}_{N}\right)
$$

- The classifier is then
- Kernelized! (init $\boldsymbol{w}^{(0)}=\mathbf{0}$)
- Similar trick can be done for the update rule

Perceptron Classifier - Kernelized

- Recall the perceptron $y(\boldsymbol{x})=f\left(\boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{x})\right)$
- The update rule for the perceptron is

$$
\boldsymbol{w}^{(\tau+1)}=\boldsymbol{w}^{(\tau)}+\underbrace{\eta \phi\left(\boldsymbol{x}_{n}\right) t_{n}}_{\text {if incorrect }}
$$

- Hence,

$$
\boldsymbol{w}^{(\tau+1)}=\boldsymbol{w}^{(0)}+\alpha_{1} \boldsymbol{\phi}\left(\boldsymbol{x}_{1}\right)+\alpha_{2} \boldsymbol{\phi}\left(\boldsymbol{x}_{2}\right)+\ldots \alpha_{N} \phi\left(\boldsymbol{x}_{N}\right)
$$

- The classifier is then

$$
f\left(\boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{x})\right)=f\left(\boldsymbol{w}^{(0), T} \boldsymbol{\phi}(\boldsymbol{x})+\alpha_{1} \boldsymbol{\phi}\left(\boldsymbol{x}_{1}\right)^{T} \boldsymbol{\phi}(\boldsymbol{x})+\alpha_{2} \boldsymbol{\phi}\left(\boldsymbol{x}_{2}\right)^{T} \boldsymbol{\phi}(\boldsymbol{x})+\ldots\right)
$$

- Kernelized! (init $\boldsymbol{w}^{(0)}=\mathbf{0}$)
- Similar trick can be done for the update rule

Regression - Kernelized

- Regularized least squares regression can also be kernelized
- Kernelized solution is

$$
y(\boldsymbol{x})=\boldsymbol{k}(\boldsymbol{x})^{T}\left(\boldsymbol{K}+\lambda \boldsymbol{I}_{N}\right)^{-1} \boldsymbol{t} \quad \text { vs. } \quad \boldsymbol{\phi}(\boldsymbol{x})\left(\boldsymbol{\Phi}^{T} \boldsymbol{\Phi}+\lambda \boldsymbol{I}_{M}\right)^{-1} \boldsymbol{\Phi}^{T} \boldsymbol{t}
$$

for original version

- N is number of datapoints (size of Gram matrix \boldsymbol{K})
- M is number of basis functions (size of matrix $\boldsymbol{\Phi}^{T} \boldsymbol{\Phi}$)
- Bad if $N>M$, but good otherwise

Conclusion

- Readings: Ch. 6.1-6.2 (pp. 291-297)
- Many algorithms can be re-written with only dot products of features
- We've seen NN, perceptron, regression; also PCA, SVMs (later)
- Non-linear features, or domain-specific similarity measurements are useful
- Dot products of non-linear features, or similarity measurements, can be written as kernel functions
- Validity by positive semi-definiteness of kernel function
- Can have algorithm work in non-linear feature space without actually mapping inputs to feature space
- Advantageous when feature space is high-dimensional

