Kernel Methods
Greg Mori - CMPT 419/726

Bishop PRML Ch. 6

Kernel Trick

In previous lectures on linear models, we would explicitly
compute ¢(x;) for each datapoint

¢ Run algorithm in feature space
For some feature spaces, can compute dot product
o(xi)T o (x;) efficiently
Efficient method is computation of a kernel function
k(xi, x;) = ¢(x;)" p(x;)
The kernel trick is to rewrite an algorithm to only have x
enter in the form of dot products
The menu:

o Kernel trick examples
o Kernel functions

Non-linear Mappings

In the lectures on linear models for regression and
classification, we looked at models with w7 ¢(x)

The feature space ¢(x) could be high-dimensional

This was good because if data aren’t separable in original
input space (x), they may be in feature space ¢(x)

We'd like to avoid computing high-dimensional ¢(x)

We'd like to work with x which doesn’t have a natural
vector-space representation

e e.g. graphs, sets, strings

A Kernel Trick

Let’s look at the nearest-neighbour classification algorithm
For input point x;, find point x; with smallest distance:

2
i =l = (i —x)" (xi —x))

T T T
Xi x; — 2x; x,-+xj X

If we used a non-linear feature space ¢(-):

llp(xi) — p(x))[” d(x)) pxi) — 20(x)" d(x;) + D(x;)" P(x))
k(xi,x,v) — 2k(xi,xj) + k(xj,xj)

So nearest-neighbour can be done in a high-dimensional
feature space without actually moving to it

A Kernel Function
¢
« Consider the kernel function k(x,z) = (1 + x"z)?
o Withx,z € R2,

k(x,z) = (14x121 4 x2)?
1+ 2x121 + 2502 + X323 + 201210022 + X323

= (1,V2x1, V252,53, V2x122, 53) (1, V221, V222, 23, V22120, 23) "

o(x) ()

e So this particular kernel function does correspond to a dot
product in a feature space (is valid)

o Computing k(x,z) is faster than explicitly computing
d(x) (2)

¢ In higher dimensions, larger exponent, much faster

Valid Kernels

¢ Given some arbitrary function k(x;, x;), how do we know if it
corresponds to a dot product in some space?
o Valid kernels: if (-, -) satisfies:
o Symmetric; k(x;,x;) = k(xj,x;)
o Positive definite; for any x1, ..., xy, the Gram matrix K must
be positive semi-definite:

k(xi,x1) k(e x) ... k(xp,xy)

k- : S

k(xn,x1) k(xn,x2) ... k(xn,xn)
 Positive semi-definite means x”Kx > 0 for all x

then (-, -) corresponds to a dot product in some space ¢
* a.k.a. Mercer kernel, admissible kernel, reproducing kernel

Why Kernels?

o Why bother with kernels?
« Often easier to specify how similar two things are (dot
product) than to construct explicit feature space ¢.
« There are high-dimensional (even infinite) spaces that have
efficient-to-compute kernels
e Separability
e So you want to use kernels
* Need to know when kernel function is valid, so we can
apply the kernel trick

Examples of Kernels

e Some kernels:
o Linear kernel k(x;,x;) = x1x,
o o) =x
o Polynomial kernel k(x,x2) = (1 +xTx,)¢
o Contains all polynomial terms up to degree d
o Gaussian kernel k(x;,x,) = exp(—|Jx; — x2||?/25?)
o Infinite dimension feature space

Constructing Kernels More Kernels

o Stationary kernels are only a function of the difference
between arguments: k(x;,x2) = k(x; — x2)
o Translation invariant in input space:

o Can build new valid kernels from existing valid ones:
k(x1,x2) = k(x) +¢,x2 +¢)

o k(xy,x2) = cki(x1,x2),¢>0

o k(x1,X2) = ki (x1,%2) + ko (31, %) Homogeneous kernels, a. k. a. radial basis functions only a

o k(x1,%x2) = ki (x1,%2)ka(x1,%2) function of magnitude of difference: k(x;,x;) = k(||x1 —x2]|)

o k(xi,x) = exp(ki (x1,%2)) o Set subsets k(A,4,) = 2™l where |A| denotes number
o Table on p. 296 gives many such rules of elements in A

o Domain-specific: think hard about your problem, figure out
what it means to be similar, define as (-, -), prove positive
definite (Feynman algorithm)

Perceptron Classifier - Kernelized Regression - Kernelized

« Recall the perceptron y(x) = f(w? ¢(x))
The update rule for the perceptron is

Regularized least squares regression can also be
WD = w4 ()i, e a 9
N’

kernelized
Y incorrect o Kernelized solution is
* Hence, y(x) = k(x) (K + My) "'t vs. ¢(x)(®T® + My) '@t
W = w® - a1p(x1) + aag(wa) + ... anlan) for original version
e N is number of datapoints (size of Gram matrix K)
o The classifier is then e M is number of basis functions (size of matrix &7 ®)

T (0),7 T r e Badif N > M, but good otherwise
fw ox)) = fW" d(x)+ar19(x1)” d(x)+ar0(x2)" d(x)+...)

o Kernelized! (init w(® = 0)
o Similar trick can be done for the update rule

Conclusion

Readings: Ch. 6.1-6.2 (pp. 291-297)
Many algorithms can be re-written with only dot products of
features

o We've seen NN, perceptron, regression; also PCA, SVMs

(later)

Non-linear features, or domain-specific similarity
measurements are useful
Dot products of non-linear features, or similarity
measurements, can be written as kernel functions

« Validity by positive semi-definiteness of kernel function
Can have algorithm work in non-linear feature space
without actually mapping inputs to feature space

o Advantageous when feature space is high-dimensional

