
Kernel Methods
Greg Mori - CMPT 419/726

Bishop PRML Ch. 6

Non-linear Mappings

• In the lectures on linear models for regression and
classification, we looked at models with wTφ(x)

• The feature space φ(x) could be high-dimensional
• This was good because if data aren’t separable in original

input space (x), they may be in feature space φ(x)
• We’d like to avoid computing high-dimensional φ(x)
• We’d like to work with x which doesn’t have a natural

vector-space representation
• e.g. graphs, sets, strings

Kernel Trick

• In previous lectures on linear models, we would explicitly
compute φ(xi) for each datapoint

• Run algorithm in feature space

• For some feature spaces, can compute dot product
φ(xi)

Tφ(xj) efficiently
• Efficient method is computation of a kernel function

k(xi, xj) = φ(xi)
Tφ(xj)

• The kernel trick is to rewrite an algorithm to only have x
enter in the form of dot products

• The menu:
• Kernel trick examples
• Kernel functions

A Kernel Trick

• Let’s look at the nearest-neighbour classification algorithm
• For input point xi, find point xj with smallest distance:

||xi − xj||2 = (xi − xj)
T(xi − xj)

= xi
Txi − 2xi

Txj + xj
Txj

• If we used a non-linear feature space φ(·):

||φ(xi)− φ(xj)||2 = φ(xi)
Tφ(xi)− 2φ(xi)

Tφ(xj) + φ(xj)
Tφ(xj)

= k(xi, xi)− 2k(xi, xj) + k(xj, xj)

• So nearest-neighbour can be done in a high-dimensional
feature space without actually moving to it

A Kernel Function

• Consider the kernel function k(x, z) = (1 + xTz)2

• With x, z ∈ R2,

k(x, z) = (1 + x1z1 + x2z2)
2

= 1 + 2x1z1 + 2x2z2 + x2
1z2

1 + 2x1z1x2z2 + x2
2z2

2

= (1,
√

2x1,
√

2x2, x2
1,
√

2x1x2, x2
2)(1,

√
2z1,
√

2z2, z2
1,
√

2z1z2, z2
2)

T

= φ(x)Tφ(z)

• So this particular kernel function does correspond to a dot
product in a feature space (is valid)

• Computing k(x, z) is faster than explicitly computing
φ(x)Tφ(z)

• In higher dimensions, larger exponent, much faster

Why Kernels?

• Why bother with kernels?
• Often easier to specify how similar two things are (dot

product) than to construct explicit feature space φ.
• There are high-dimensional (even infinite) spaces that have

efficient-to-compute kernels
• Separability

• So you want to use kernels
• Need to know when kernel function is valid, so we can

apply the kernel trick

Valid Kernels

• Given some arbitrary function k(xi, xj), how do we know if it
corresponds to a dot product in some space?

• Valid kernels: if k(·, ·) satisfies:
• Symmetric; k(xi, xj) = k(xj, xi)
• Positive definite; for any x1, . . . , xN , the Gram matrix K must

be positive semi-definite:

K =

 k(x1, x1) k(x1, x2) . . . k(x1, xN)
...

...
. . .

...
k(xN , x1) k(xN , x2) . . . k(xN , xN)


• Positive semi-definite means xTKx ≥ 0 for all x

then k(·, ·) corresponds to a dot product in some space φ
• a.k.a. Mercer kernel, admissible kernel, reproducing kernel

Examples of Kernels

• Some kernels:
• Linear kernel k(x1, x2) = xT

1 x2

• φ(x) = x
• Polynomial kernel k(x1, x2) = (1 + xT

1 x2)
d

• Contains all polynomial terms up to degree d
• Gaussian kernel k(x1, x2) = exp(−||x1 − x2||2/2σ2)

• Infinite dimension feature space

Constructing Kernels

• Can build new valid kernels from existing valid ones:
• k(x1, x2) = ck1(x1, x2), c > 0
• k(x1, x2) = k1(x1, x2) + k2(x1, x2)
• k(x1, x2) = k1(x1, x2)k2(x1, x2)
• k(x1, x2) = exp(k1(x1, x2))

• Table on p. 296 gives many such rules

More Kernels

• Stationary kernels are only a function of the difference
between arguments: k(x1, x2) = k(x1 − x2)

• Translation invariant in input space:
k(x1, x2) = k(x1 + c, x2 + c)

• Homogeneous kernels, a. k. a. radial basis functions only a
function of magnitude of difference: k(x1, x2) = k(||x1 − x2||)

• Set subsets k(A1,A2) = 2|A1∩A2|, where |A| denotes number
of elements in A

• Domain-specific: think hard about your problem, figure out
what it means to be similar, define as k(·, ·), prove positive
definite (Feynman algorithm)

Perceptron Classifier - Kernelized
• Recall the perceptron y(x) = f (wTφ(x))
• The update rule for the perceptron is

w(τ+1) = w(τ) + ηφ(xn)tn︸ ︷︷ ︸
if incorrect

• Hence,

w(τ+1) = w(0) + α1φ(x1) + α2φ(x2) + . . . αNφ(xN)

• The classifier is then

f (wTφ(x)) = f (w(0),Tφ(x)+α1φ(x1)
Tφ(x)+α2φ(x2)

Tφ(x)+. . .)

• Kernelized! (init w(0) = 0)
• Similar trick can be done for the update rule

Regression - Kernelized

• Regularized least squares regression can also be
kernelized

• Kernelized solution is

y(x) = k(x)T(K + λIN)
−1t vs. φ(x)(ΦTΦ+ λIM)−1ΦT t

for original version
• N is number of datapoints (size of Gram matrix K)
• M is number of basis functions (size of matrix ΦTΦ)
• Bad if N > M, but good otherwise

Conclusion

• Readings: Ch. 6.1-6.2 (pp. 291-297)
• Many algorithms can be re-written with only dot products of

features
• We’ve seen NN, perceptron, regression; also PCA, SVMs

(later)

• Non-linear features, or domain-specific similarity
measurements are useful

• Dot products of non-linear features, or similarity
measurements, can be written as kernel functions

• Validity by positive semi-definiteness of kernel function
• Can have algorithm work in non-linear feature space

without actually mapping inputs to feature space
• Advantageous when feature space is high-dimensional

