
Feed-forward Networks Network Training Error Backpropagation Deep Learning

Neural Networks
Greg Mori - CMPT 419/726

Bishop PRML Ch. 5



Feed-forward Networks Network Training Error Backpropagation Deep Learning

Neural Networks

• Neural networks arise from attempts to model
human/animal brains

• Many models, many claims of biological plausibility
• We will focus on multi-layer perceptrons

• Mathematical properties rather than plausibility



Feed-forward Networks Network Training Error Backpropagation Deep Learning

Applications of Neural Networks

• Many success stories for neural networks, old and new
• Credit card fraud detection
• Hand-written digit recognition
• Face detection
• Autonomous driving (CMU ALVINN)
• Object recognition
• Speech recognition



Feed-forward Networks Network Training Error Backpropagation Deep Learning

Outline

Feed-forward Networks

Network Training

Error Backpropagation

Deep Learning



Feed-forward Networks Network Training Error Backpropagation Deep Learning

Outline

Feed-forward Networks

Network Training

Error Backpropagation

Deep Learning



Feed-forward Networks Network Training Error Backpropagation Deep Learning

Feed-forward Networks

• We have looked at generalized linear models of the form:

y(x,w) = f

 M∑
j=1

wjφj(x)


for fixed non-linear basis functions φ(·)

• We now extend this model by allowing adaptive basis
functions, and learning their parameters

• In feed-forward networks (a.k.a. multi-layer perceptrons)
we let each basis function be another non-linear function of
linear combination of the inputs:

φj(x) = f

 M∑
j=1

. . .





Feed-forward Networks Network Training Error Backpropagation Deep Learning

Feed-forward Networks

• We have looked at generalized linear models of the form:

y(x,w) = f

 M∑
j=1

wjφj(x)


for fixed non-linear basis functions φ(·)

• We now extend this model by allowing adaptive basis
functions, and learning their parameters

• In feed-forward networks (a.k.a. multi-layer perceptrons)
we let each basis function be another non-linear function of
linear combination of the inputs:

φj(x) = f

 M∑
j=1

. . .





Feed-forward Networks Network Training Error Backpropagation Deep Learning

Feed-forward Networks
• Starting with input x = (x1, . . . , xD), construct linear

combinations:

aj =

D∑
i=1

w(1)
ji xi + w(1)

j0

These aj are known as activations
• Pass through an activation function h(·) to get output

zj = h(aj)
• Model of an individual neuron

from Russell and Norvig, AIMA2e



Feed-forward Networks Network Training Error Backpropagation Deep Learning

Feed-forward Networks
• Starting with input x = (x1, . . . , xD), construct linear

combinations:

aj =

D∑
i=1

w(1)
ji xi + w(1)

j0

These aj are known as activations
• Pass through an activation function h(·) to get output

zj = h(aj)
• Model of an individual neuron

from Russell and Norvig, AIMA2e



Feed-forward Networks Network Training Error Backpropagation Deep Learning

Feed-forward Networks
• Starting with input x = (x1, . . . , xD), construct linear

combinations:

aj =

D∑
i=1

w(1)
ji xi + w(1)

j0

These aj are known as activations
• Pass through an activation function h(·) to get output

zj = h(aj)
• Model of an individual neuron

from Russell and Norvig, AIMA2e



Feed-forward Networks Network Training Error Backpropagation Deep Learning

Activation Functions

• Can use a variety of activation functions
• Sigmoidal (S-shaped)

• Logistic sigmoid 1/(1 + exp(−a)) (useful for binary
classification)

• Hyperbolic tangent tanh
• Radial basis function zj =

∑
i(xi − wji)

2

• Softmax
• Useful for multi-class classification

• Identity
• Useful for regression

• Threshold
• Max, ReLU, Leaky ReLU, . . .

• Needs to be differentiable* for gradient-based learning
(later)

• Can use different activation functions in each unit



Feed-forward Networks Network Training Error Backpropagation Deep Learning

Feed-forward Networks

x0

x1

xD

z0

z1

zM

y1

yK

w
(1)
MD w

(2)
KM

w
(2)
10

hidden units

inputs outputs

• Connect together a number of these units into a
feed-forward network (DAG)

• Above shows a network with one layer of hidden units
• Implements function:

yk(x,w) = h

 M∑
j=1

w(2)
kj h

(
D∑

i=1

w(1)
ji xi + w(1)

j0

)
+ w(2)

k0





Feed-forward Networks Network Training Error Backpropagation Deep Learning

Outline

Feed-forward Networks

Network Training

Error Backpropagation

Deep Learning



Feed-forward Networks Network Training Error Backpropagation Deep Learning

Network Training
• Given a specified network structure, how do we set its

parameters (weights)?
• As usual, we define a criterion to measure how well our

network performs, optimize against it
• For regression, training data are (xn, t), tn ∈ R

• Squared error naturally arises:

E(w) =

N∑
n=1

{y(xn,w)− tn}2

• For binary classification, this is another discriminative
model, ML:

p(t|w) =

N∏
n=1

ytn
n {1− yn}1−tn

E(w) = −
N∑

n=1

{tn ln yn + (1− tn) ln(1− yn)}



Feed-forward Networks Network Training Error Backpropagation Deep Learning

Network Training
• Given a specified network structure, how do we set its

parameters (weights)?
• As usual, we define a criterion to measure how well our

network performs, optimize against it
• For regression, training data are (xn, t), tn ∈ R

• Squared error naturally arises:

E(w) =

N∑
n=1

{y(xn,w)− tn}2

• For binary classification, this is another discriminative
model, ML:

p(t|w) =

N∏
n=1

ytn
n {1− yn}1−tn

E(w) = −
N∑

n=1

{tn ln yn + (1− tn) ln(1− yn)}



Feed-forward Networks Network Training Error Backpropagation Deep Learning

Network Training
• Given a specified network structure, how do we set its

parameters (weights)?
• As usual, we define a criterion to measure how well our

network performs, optimize against it
• For regression, training data are (xn, t), tn ∈ R

• Squared error naturally arises:

E(w) =

N∑
n=1

{y(xn,w)− tn}2

• For binary classification, this is another discriminative
model, ML:

p(t|w) =

N∏
n=1

ytn
n {1− yn}1−tn

E(w) = −
N∑

n=1

{tn ln yn + (1− tn) ln(1− yn)}



Feed-forward Networks Network Training Error Backpropagation Deep Learning

Parameter Optimization

w1

w2

E(w)

wA wB wC

∇E

• For either of these problems, the error function E(w) is
nasty

• Nasty = non-convex
• Non-convex = has local minima



Feed-forward Networks Network Training Error Backpropagation Deep Learning

Descent Methods

• The typical strategy for optimization problems of this sort is
a descent method:

w(τ+1) = w(τ) + ∆w(τ)

• As we’ve seen before, these come in many flavours
• Gradient descent ∇E(w(τ))
• Stochastic gradient descent ∇En(w(τ))
• Newton-Raphson (second order) ∇2

• All of these can be used here, stochastic gradient descent
is particularly effective

• Redundancy in training data, escaping local minima



Feed-forward Networks Network Training Error Backpropagation Deep Learning

Descent Methods

• The typical strategy for optimization problems of this sort is
a descent method:

w(τ+1) = w(τ) + ∆w(τ)

• As we’ve seen before, these come in many flavours
• Gradient descent ∇E(w(τ))
• Stochastic gradient descent ∇En(w(τ))
• Newton-Raphson (second order) ∇2

• All of these can be used here, stochastic gradient descent
is particularly effective

• Redundancy in training data, escaping local minima



Feed-forward Networks Network Training Error Backpropagation Deep Learning

Descent Methods

• The typical strategy for optimization problems of this sort is
a descent method:

w(τ+1) = w(τ) + ∆w(τ)

• As we’ve seen before, these come in many flavours
• Gradient descent ∇E(w(τ))
• Stochastic gradient descent ∇En(w(τ))
• Newton-Raphson (second order) ∇2

• All of these can be used here, stochastic gradient descent
is particularly effective

• Redundancy in training data, escaping local minima



Feed-forward Networks Network Training Error Backpropagation Deep Learning

Computing Gradients

• The function y(xn,w) implemented by a network is
complicated

• It isn’t obvious how to compute error function derivatives
with respect to weights

• Numerical method for calculating error derivatives, use
finite differences:

∂En

∂wji
≈

En(wji + ε)− En(wji − ε)
2ε

• How much computation would this take with W weights in
the network?

• O(W) per derivative, O(W2) total per gradient descent step



Feed-forward Networks Network Training Error Backpropagation Deep Learning

Computing Gradients

• The function y(xn,w) implemented by a network is
complicated

• It isn’t obvious how to compute error function derivatives
with respect to weights

• Numerical method for calculating error derivatives, use
finite differences:

∂En

∂wji
≈

En(wji + ε)− En(wji − ε)
2ε

• How much computation would this take with W weights in
the network?

• O(W) per derivative, O(W2) total per gradient descent step



Feed-forward Networks Network Training Error Backpropagation Deep Learning

Computing Gradients

• The function y(xn,w) implemented by a network is
complicated

• It isn’t obvious how to compute error function derivatives
with respect to weights

• Numerical method for calculating error derivatives, use
finite differences:

∂En

∂wji
≈

En(wji + ε)− En(wji − ε)
2ε

• How much computation would this take with W weights in
the network?

• O(W) per derivative, O(W2) total per gradient descent step



Feed-forward Networks Network Training Error Backpropagation Deep Learning

Computing Gradients

• The function y(xn,w) implemented by a network is
complicated

• It isn’t obvious how to compute error function derivatives
with respect to weights

• Numerical method for calculating error derivatives, use
finite differences:

∂En

∂wji
≈

En(wji + ε)− En(wji − ε)
2ε

• How much computation would this take with W weights in
the network?

• O(W) per derivative, O(W2) total per gradient descent step



Feed-forward Networks Network Training Error Backpropagation Deep Learning

Outline

Feed-forward Networks

Network Training

Error Backpropagation

Deep Learning



Feed-forward Networks Network Training Error Backpropagation Deep Learning

Error Backpropagation

• Backprop is an efficient method for computing error
derivatives ∂En

∂wji

• O(W) to compute derivatives wrt all weights

• First, feed training example xn forward through the network,
storing all activations aj

• Calculating derivatives for weights connected to output
nodes is easy

• e.g. For linear output nodes yk =
∑

i wkizi:

∂En

∂wki
=

∂

∂wki

1
2

(y(n),k − t(n),k)
2 = (y(n),k − t(n),k)z(n)i

• For hidden layers, propagate error backwards from the
output nodes



Feed-forward Networks Network Training Error Backpropagation Deep Learning

Error Backpropagation

• Backprop is an efficient method for computing error
derivatives ∂En

∂wji

• O(W) to compute derivatives wrt all weights

• First, feed training example xn forward through the network,
storing all activations aj

• Calculating derivatives for weights connected to output
nodes is easy

• e.g. For linear output nodes yk =
∑

i wkizi:

∂En

∂wki
=

∂

∂wki

1
2

(y(n),k − t(n),k)
2 = (y(n),k − t(n),k)z(n)i

• For hidden layers, propagate error backwards from the
output nodes



Feed-forward Networks Network Training Error Backpropagation Deep Learning

Error Backpropagation

• Backprop is an efficient method for computing error
derivatives ∂En

∂wji

• O(W) to compute derivatives wrt all weights

• First, feed training example xn forward through the network,
storing all activations aj

• Calculating derivatives for weights connected to output
nodes is easy

• e.g. For linear output nodes yk =
∑

i wkizi:

∂En

∂wki
=

∂

∂wki

1
2

(y(n),k − t(n),k)
2 = (y(n),k − t(n),k)z(n)i

• For hidden layers, propagate error backwards from the
output nodes



Feed-forward Networks Network Training Error Backpropagation Deep Learning

Chain Rule for Partial Derivatives

• A “reminder”
• For f (x, y), with f differentiable wrt x and y, and x and y

differentiable wrt u:

∂f
∂u

=
∂f
∂x
∂x
∂u

+
∂f
∂y
∂y
∂u



Feed-forward Networks Network Training Error Backpropagation Deep Learning

Error Backpropagation
• We can write

∂En

∂wji
=

∂

∂wji
En(aj1 , aj2 , . . . , ajm)

where {ji} are the indices of the nodes in the same layer
as node j

• Using the chain rule:

∂En

∂wji
=
∂En

∂aj

∂aj

∂wji
+
∑

k

∂En

∂ak

∂ak

∂wji

where
∑

k runs over all other nodes k in the same layer as
node j.

• Since ak does not depend on wji, all terms in the
summation go to 0

∂En

∂wji
=
∂En

∂aj

∂aj

∂wji



Feed-forward Networks Network Training Error Backpropagation Deep Learning

Error Backpropagation
• We can write

∂En

∂wji
=

∂

∂wji
En(aj1 , aj2 , . . . , ajm)

where {ji} are the indices of the nodes in the same layer
as node j

• Using the chain rule:

∂En

∂wji
=
∂En

∂aj

∂aj

∂wji
+
∑

k

∂En

∂ak

∂ak

∂wji

where
∑

k runs over all other nodes k in the same layer as
node j.

• Since ak does not depend on wji, all terms in the
summation go to 0

∂En

∂wji
=
∂En

∂aj

∂aj

∂wji



Feed-forward Networks Network Training Error Backpropagation Deep Learning

Error Backpropagation
• We can write

∂En

∂wji
=

∂

∂wji
En(aj1 , aj2 , . . . , ajm)

where {ji} are the indices of the nodes in the same layer
as node j

• Using the chain rule:

∂En

∂wji
=
∂En

∂aj

∂aj

∂wji
+
∑

k

∂En

∂ak

∂ak

∂wji

where
∑

k runs over all other nodes k in the same layer as
node j.

• Since ak does not depend on wji, all terms in the
summation go to 0

∂En

∂wji
=
∂En

∂aj

∂aj

∂wji



Feed-forward Networks Network Training Error Backpropagation Deep Learning

Error Backpropagation cont.

• Introduce error δj ≡ ∂En
∂aj

∂En

∂wji
= δj

∂aj

∂wji

• Other factor is:

∂aj

∂wji
=

∂

∂wji

∑
k

wjkzk = zi



Feed-forward Networks Network Training Error Backpropagation Deep Learning

Error Backpropagation cont.

• Error δj can also be computed using chain rule:

δj ≡
∂En

∂aj
=
∑

k

∂En

∂ak︸︷︷︸
δk

∂ak

∂aj

where
∑

k runs over all nodes k in the layer after node j.
• Eventually:

δj = h′(aj)
∑

k

wkjδk

• A weighted sum of the later error “caused” by this weight



Feed-forward Networks Network Training Error Backpropagation Deep Learning

Error Backpropagation cont.

• Error δj can also be computed using chain rule:

δj ≡
∂En

∂aj
=
∑

k

∂En

∂ak︸︷︷︸
δk

∂ak

∂aj

where
∑

k runs over all nodes k in the layer after node j.
• Eventually:

δj = h′(aj)
∑

k

wkjδk

• A weighted sum of the later error “caused” by this weight



Feed-forward Networks Network Training Error Backpropagation Deep Learning

Outline

Feed-forward Networks

Network Training

Error Backpropagation

Deep Learning



Feed-forward Networks Network Training Error Backpropagation Deep Learning

Deep Learning

• Collection of important techniques to improve
performance:

• Multi-layer networks
• Convolutional networks, parameter tying
• Hinge activation functions (ReLU) for steeper gradients
• Momentum
• Drop-out regularization
• Sparsity
• Auto-encoders for unsupervised feature learning
• ...

• Scalability is key, can use lots of data since stochastic
gradient descent is memory-efficient, can be parallelized



Feed-forward Networks Network Training Error Backpropagation Deep Learning

Hand-written Digit Recognition

• MNIST - standard dataset for hand-written digit recognition
• 60000 training, 10000 test images



Feed-forward Networks Network Training Error Backpropagation Deep Learning

LeNet-5, circa 1998

INPUT 

32x32

Convolutions SubsamplingConvolutions

C1: feature maps 
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5

C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection

Full connection

Gaussian connections

OUTPUT

 10

• LeNet developed by Yann LeCun et al.
• Convolutional neural network

• Local receptive fields (5x5 connectivity)
• Subsampling (2x2)
• Shared weights (reuse same 5x5 “filter”)
• Breaking symmetry



Feed-forward Networks Network Training Error Backpropagation Deep Learning

ImageNet

• ImageNet - standard dataset for object recognition in
images (Russakovsky et al.)

• 1000 image categories, ≈1.2 million training images
(ILSVRC 2013)



Feed-forward Networks Network Training Error Backpropagation Deep Learning

GoogLeNet, circa 2014

• GoogLeNet developed by Szegedy et
al., CVPR 2015

• Modern deep network
• ImageNet top-5 error rate of 6.67%

(later versions even better)
• Comparable to human performance

(especially for fine-grained categories)



Feed-forward Networks Network Training Error Backpropagation Deep Learning

ResNet, circa 2015

AlexNet, 8 layers
(ILSVRC 2012)

Revolution of Depth
ResNet, 152 layers

(ILSVRC 2015)

3x3 conv, 64

3x3 conv, 64, pool/2

3x3 conv, 128

3x3 conv, 128, pool/2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256, pool/2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512, pool/2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512, pool/2

fc, 4096

fc, 4096

fc, 1000

11x11 conv, 96, /4, pool/2

5x5 conv, 256, pool/2

3x3 conv, 384

3x3 conv, 384

3x3 conv, 256, pool/2

fc, 4096

fc, 4096

fc, 1000

1x1 conv, 64

3x3 conv, 64

1x1 conv, 256

1x1 conv, 64

3x3 conv, 64

1x1 conv, 256

1x1 conv, 64

3x3 conv, 64

1x1 conv, 256

1x2 conv, 128, /2

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 256, /2

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 512, /2

3x3 conv, 512

1x1 conv, 2048

1x1 conv, 512

3x3 conv, 512

1x1 conv, 2048

1x1 conv, 512

3x3 conv, 512

1x1 conv, 2048

ave pool, fc 1000

7x7 conv, 64, /2, pool/2

VGG, 19 layers
(ILSVRC 2014)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. arXiv 2015.

• ResNet developed by He et al., ICCV
2015

• 152 layers
• ImageNet top-5 error rate of 3.57%
• Better than human performance

(especially for fine-grained categories)



Feed-forward Networks Network Training Error Backpropagation Deep Learning

Key Component 1: Convolutional Filters

• Share parameters across
network

• Reduce total number of
parameters

• Provide translation
invariance, useful for visual
recognition



Feed-forward Networks Network Training Error Backpropagation Deep Learning

Key Component 2: Rectified Linear Units (ReLUs)

• Vanishing gradient problem
• If derivatives very small, no/little

progress via stochastic gradient
descent

• Occurs with sigmoid function
when activation is large in
absolute value

• ReLU: h(aj) = max(0, aj)

• Non-saturating, linear gradients
(as long as non-negative
activation on some training data)

• Sparsity inducing



Feed-forward Networks Network Training Error Backpropagation Deep Learning

Key Component 2: Rectified Linear Units (ReLUs)

• Vanishing gradient problem
• If derivatives very small, no/little

progress via stochastic gradient
descent

• Occurs with sigmoid function
when activation is large in
absolute value

• ReLU: h(aj) = max(0, aj)

• Non-saturating, linear gradients
(as long as non-negative
activation on some training data)

• Sparsity inducing



Feed-forward Networks Network Training Error Backpropagation Deep Learning

Key Component 3: Many, Many Layers

• ResNet: ≈152 layers (“shortcut
connections”)

• GoogLeNet: ≈27 layers
(“Inception” modules)

• VGG Net: 16-19 layers
(Simonyan and Zisserman, 2014)

• Supervision: 8 layers (Krizhevsky
et al., 2012)



Feed-forward Networks Network Training Error Backpropagation Deep Learning

Key Component 4: Momentum

• Trick to escape plateaus / local minima
• Take exponential average of previous gradients

∂En

∂wji

τ

=
∂En

∂wji

τ

+ α
∂En

∂wji

τ−1

• Maintains progress in previous direction



Feed-forward Networks Network Training Error Backpropagation Deep Learning

Key Component 5: Asynchronous Stochastic Gradient
Descent

• Big models won’t fit in memory
• Want to use compute clusters

(e.g. 1000s of machines) to run
stochastic gradient descent

• How to parallelize computation?
• Ignore synchronization across

machines
• Just let each machine compute

its own gradients and pass to a
server storing current
parameters

• Ignore the fact that these
updates are inconsistent

• Seems to just work (e.g. Dean
et al. NIPS 2012)



Feed-forward Networks Network Training Error Backpropagation Deep Learning

Key Component 6: Learning Rate Schedule

• How to set learning rate η?:

wτ = wτ−1 + η∇w

• Option 1: Run until validation
error plateaus. Drop learning rate
by x%

• Option 2: Adagrad, adaptive
gradient. Per-element learning
rate set based on local geometry
(Duchi et al. 2010)



Feed-forward Networks Network Training Error Backpropagation Deep Learning

Key Component 7: Batch Norm

• Normalize data at each layer by whitening
• Ioffe and Szegedy 2015



Feed-forward Networks Network Training Error Backpropagation Deep Learning

Key Component 8: Data Augmentation

• Augment data with additional
synthetic variants (10x amount of
data)

• Or just use synthetic data, e.g.
Sintel animated movie (Butler et
al. 2012)



Feed-forward Networks Network Training Error Backpropagation Deep Learning

Key Component 9: Data and Compute

• Get lots of data (e.g. ImageNet)
• Get lots of compute (e.g. CPU

cluster, GPUs)
• Cross-validate like crazy, train

models for 2-3 weeks on a GPU
• Researcher gradient descent

(RGD) or Graduate student
descent (GSD): get 100s of
researchers to each do this,
trying different network structures



Feed-forward Networks Network Training Error Backpropagation Deep Learning

More information

• https://sites.google.com/site/
deeplearningsummerschool

• http://tutorial.caffe.berkeleyvision.org/
• ufldl.stanford.edu/eccv10-tutorial
• http://www.image-net.org/challenges/LSVRC/
2012/supervision.pdf

• Project ideas
• Long short-term memory (LSTM) models for temporal data
• Learning embeddings (word2vec, FaceNet)
• Structured output (multiple outputs from a network)
• Zero-shot learning (learning to recognize new concepts

without training data)
• Transfer learning (use data from one domain/task, adapt to

another)
• Network compression / run-time / power optimization
• Distillation

https://sites.google.com/site/deeplearningsummerschool
https://sites.google.com/site/deeplearningsummerschool
http://tutorial.caffe.berkeleyvision.org/
ufldl.stanford.edu/eccv10-tutorial
http://www.image-net.org/challenges/LSVRC/2012/supervision.pdf
http://www.image-net.org/challenges/LSVRC/2012/supervision.pdf


Feed-forward Networks Network Training Error Backpropagation Deep Learning

Conclusion

• Readings: Ch. 5.1, 5.2, 5.3
• Feed-forward networks can be used for regression or

classification
• Similar to linear models, except with adaptive non-linear

basis functions
• These allow us to do more than e.g. linear decision

boundaries

• Different error functions
• Learning is more difficult, error function not convex

• Use stochastic gradient descent, obtain (good?) local
minimum

• Backpropagation for efficient gradient computation


	Feed-forward Networks
	Network Training
	Error Backpropagation
	Deep Learning

