Feed-forward Networks Network Training Error Backpropagation Deep Learning

Neural Networks
Greg Mori - CMPT 419/726

Bishop PRML Ch. 5

Feed-forward Networks Network Training Error Backpropagation

Neural Networks

¢ Neural networks arise from attempts to model
human/animal brains

e Many models, many claims of biological plausibility
o We will focus on multi-layer perceptrons
o Mathematical properties rather than plausibility

Deep Learning

Feed-forward Networks Network Training Error Backpropagation Deep Learning

Applications of Neural Networks

e Many success stories for neural networks, old and new

o Credit card fraud detection
Hand-written digit recognition

Face detection

Autonomous driving (CMU ALVINN)
Object recognition

Speech recognition

Feed-forward Networks Network Training Error Backpropagation Deep Learning

Outline

Feed-forward Networks

Network Training

Error Backpropagation

Deep Learning

Feed-forward Networks Network Training Error Backpropagation Deep Learning

Outline

Feed-forward Networks

Feed-forward Networks

Feed-forward Networks

e We have looked at generalized linear models of the form:
M
yw) =1 Y wigi(x)
j=1

for fixed non-linear basis functions ¢(-)

¢ We now extend this model by allowing adaptive basis
functions, and learning their parameters

Feed-forward Networks

Feed-forward Networks

e We have looked at generalized linear models of the form:
M
yw) =1 Y wigi(x)
j=1

for fixed non-linear basis functions ¢(-)
¢ We now extend this model by allowing adaptive basis
functions, and learning their parameters
e In feed-forward networks (a.k.a. multi-layer perceptrons)
we let each basis function be another non-linear function of
linear combination of the inputs:

Feed-forward Networks Network Training Error Backpropagation Deep Learning

Feed-forward Networks

e Starting with input x = (x1,...,xp), construct linear

combinations:
Y

These a; are known as activations

from Russell and Norvig, AIMA2e

Feed-forward Networks Network Training Error Backpropagation Deep Learning

Feed-forward Networks

e Starting with input x = (x1,...,xp), construct linear

combinations:
Z w x, + w

These a; are known as activations
e Pass through an activation function i(-) to get output
zj = h(aj)
e Model of an individual neuron

from Russell and Norvig, AIMA2e

Feed-forward Networks

Feed-forward Networks

e Starting with input x = (x1,...,xp), construct linear
combinations:

D

1 1

aj= 3wy xi iy’
i=1

These a; are known as activations
e Pass through an activation function i(-) to get output
zj = h(aj)
e Model of an individual neuron

x_0=-1 DBias Weight

w_j0o
x_1 w_j1
\] h
a_j I
—A\x
D /
Input Input Activation Qutput
Links Function Function Output Links

from Russell and Norvig, AIMA2e

Feed-forward Networks

Activation Functions

e Can use a variety of activation functions
e Sigmoidal (S-shaped)
e Logistic sigmoid 1/(1 + exp(—a)) (useful for binary
classification)
e Hyperbolic tangent tanh

Radial basis function z; = >°,(x; — w;)?

Softmax
e Useful for multi-class classification

Identity
e Useful for regression

Threshold

Max, ReLU, Leaky RelLU, ...

¢ Needs to be differentiable* for gradient-based learning
(later)

e Can use different activation functions in each unit

Feed-forward Networks

Feed-forward Networks

hidden units

e Connect together a number of these units into a
feed-forward network (DAG)

e Above shows a network with one layer of hidden units

e Implements function:

w(x,w) h(Zw,?h(Zw x,-i—w)—i—w%))

Outline

Feed-forward Networks

Network Training

Error Backpropagation

Deep Learning

«O>» «F»r « =)

<

DA

Network Training

Network Training

e Given a specified network structure, how do we set its
parameters (weights)?
e As usual, we define a criterion to measure how well our
network performs, optimize against it

Network Training

Network Training
e Given a specified network structure, how do we set its
parameters (weights)?

e As usual, we define a criterion to measure how well our
network performs, optimize against it

e For regression, training data are (x,,1), t, € R
e Squared error naturally arises:

Z{y X, W) = 1,}

Network Training

Network Training

e Given a specified network structure, how do we set its
parameters (weights)?
e As usual, we define a criterion to measure how well our
network performs, optimize against it

e For regression, training data are (x,,1), t, € R
e Squared error naturally arises:

Z{y X, W) = 1,}

e For binary classification, this is another discriminative
model, ML:

N
pew) = J[ot{t =y}

n=1

E(w)

N
= {talny, + (1= 1,)In(1 = y,)}
n=1

Feed-forward Networks Network Training Error Backpropagation Deep Learning

Parameter Optimization
E(w)

L] "
W7 WpR

\i4e]
w2 VE

o For either of these problems, the error function E(w) is
nasty
¢ Nasty = non-convex
¢ Non-convex = has local minima

Feed-forward Networks Network Training Error Backpropagation Deep Learning

Descent Methods

e The typical strategy for optimization problems of this sort is
a descent method:

Network Training

Descent Methods

e The typical strategy for optimization problems of this sort is
a descent method:

e As we've seen before, these come in many flavours
o Gradient descent VE(w(™))
« Stochastic gradient descent VE,(w(™))
» Newton-Raphson (second order) V>

Network Training

Descent Methods

e The typical strategy for optimization problems of this sort is
a descent method:

e As we've seen before, these come in many flavours
o Gradient descent VE(w(™))
« Stochastic gradient descent VE,(w(™))
» Newton-Raphson (second order) V>
¢ All of these can be used here, stochastic gradient descent
is particularly effective
e Redundancy in training data, escaping local minima

Feed-forward Networks Network Training Error Backpropagation Deep Learning

Computing Gradients

e The function y(x,,w) implemented by a network is
complicated
e Itisn’'t obvious how to compute error function derivatives
with respect to weights

Network Training

Computing Gradients

e The function y(x,,w) implemented by a network is
complicated
e Itisn’'t obvious how to compute error function derivatives
with respect to weights

¢ Numerical method for calculating error derivatives, use
finite differences:
OE, N En(W/'i + 6) - En(le' — 6)
8le‘ 2e

Network Training

Computing Gradients

e The function y(x,,w) implemented by a network is
complicated

e Itisn’'t obvious how to compute error function derivatives
with respect to weights

¢ Numerical method for calculating error derivatives, use
finite differences:
OE, N En(W/'i + 6) - En(le' — 6)
8le‘ 2e

e How much computation would this take with W weights in
the network?

Network Training

Computing Gradients

e The function y(x,,w) implemented by a network is
complicated

e Itisn’'t obvious how to compute error function derivatives
with respect to weights

¢ Numerical method for calculating error derivatives, use
finite differences:
OE, N En(W/'i + 6) - En(le' — 6)
8le‘ 2e

e How much computation would this take with W weights in
the network?

e O(W) per derivative, O(W?) total per gradient descent step

Feed-forward Networks Network Training Error Backpropagation Deep Learning

Outline

Error Backpropagation

Error Backpropagation

Error Backpropagation

e Backprop is an efficient method for computing error

derivatives 2£x
ow;i

e O(W) to compute derivatives wrt all weights
o First, feed training example x,, forward through the network,
storing all activations a;

Error Backpropagation

Error Backpropagation

e Backprop is an efficient method for computing error

derivatives gE"

e O(W) to compute derivatives wrt all weights
e First, feed training example x, forward through the network,
storing all activations a;
e Calculating derivatives for weights connected to output
nodes is easy
e e.g. For linear output nodes y; = >, wiz;:

OE, 0 1

2
— n n = Wk — t . i
Owg; 3wkl (Yn) ke =)7k) ()’(),k ()J{)Z()

Error Backpropagation

Error Backpropagation

Backprop is an efficient method for computing error

derivatives gE"

e O(W) to compute derivatives wrt all weights
First, feed training example x,, forward through the network,
storing all activations a;

Calculating derivatives for weights connected to output
nodes is easy

e e.g. For linear output nodes y; = >, wiz;:

OE, 0 1

2
— n n = Wk — t . i
Owg; 3wkl (Yn) ke =)7k) ()’(),k ()J{)Z()

For hidden layers, propagate error backwards from the
output nodes

Feed-forward Networks Network Training Error Backpropagation Deep Learning

Chain Rule for Partial Derivatives

e A “reminder”
e Forf(x,y), with f differentiable wrt x and y, and x and y
differentiable wrt u:
o _ oox ooy
ou OxOu 0Oyou

Feed-forward Networks Network Training Error Backpropagation Deep Learning

Error Backpropagation

e We can write
O, _ 9.
8Wji N 8Wji

En(ajlvajz) e 7ajm)

where {j;} are the indices of the nodes in the same layer
as node j

Error Backpropagation

Error Backpropagation
e We can write
OE, 0
Dwi — Ow

En(ajlvajz’ e 7ajm)

where {j;} are the indices of the nodes in the same layer
as node j
¢ Using the chain rule:
8En . 8En 0aj 8En 8ak
8Wji (961]' 8Wﬁ X 8ak 8Wj,’

where), runs over all other nodes k in the same layer as
node ;.

Error Backpropagation

Error Backpropagation
e We can write
OE, 0
Dwi — Ow

Eﬂ(ajl yAjpy e e 7ajm)

where {j;} are the indices of the nodes in the same layer
as node j
¢ Using the chain rule:
8En . 8En 0aj 8En 8ak
8Wji 661]' 8Wﬁ X 8ak 8Wj,’

where), runs over all other nodes k in the same layer as
node ;.

e Since g, does not depend on wj;, all terms in the
summation go to 0

aEn . 8En 8aj
aWji - 8aj awﬁ

Feed-forward Networks Network Training Error Backpropagation

Error Backpropagation cont.

_ 0E,
- Baj

« Introduce error ¢;

8En -5 8aj
8wj,- fﬁwﬁ

e Other factor is:

aaj i Z
= WikZk = Zi
J
8wj,- 8Wji X

Deep Learning

Feed-forward Networks Network Training Error Backpropagation Deep Learning

Error Backpropagation cont.

e Error ¢; can also be computed using chain rule:

_OE, 8En%
o = Oaj _zk:%&zj

Ok

where), runs over all nodes k in the layer after node ;.

Feed-forward Networks Network Training Error Backpropagation Deep Learning

Error Backpropagation cont.

e Error ¢; can also be computed using chain rule:

_OE, 8En%
o = Da; _zk:%&zj

Ok

where), runs over all nodes k in the layer after node ;.
e Eventually:

(5j = h’(aj) Z ij(sk
k

o A weighted sum of the later error “caused” by this weight

Outline

Feed-forward Networks

Network Training

Error Backpropagation

Deep Learning

«O>» «F»r « =)

<

DA

Deep Learning

Deep Learning

¢ Collection of important techniques to improve
performance:

o Multi-layer networks

e Convolutional networks, parameter tying

¢ Hinge activation functions (ReLU) for steeper gradients

e Momentum

e Drop-out regularization

e Sparsity

o Auto-encoders for unsupervised feature learning

° ...

e Scalability is key, can use lots of data since stochastic

gradient descent is memory-efficient, can be parallelized

Deep Learning

Hand-written Digit Recognition

FJ e/ 979066 a\
6757 863458
2790/ a3 6
Wyl 90| ¢ 8% 9d
T 6l ¥4 415 E0
1759265 %\ 97
AZ22I2dd4Y §O
a3 073657
Ol «bq bo2y¢3

77 28n6cq 8 b/

e MNIST - standard dataset for hand-written digit recognition
e 60000 training, 10000 test images

Feed-forward Networks Network Training Error Backpropagation Deep Learning

LeNet-5, circa 1998

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5
6@28x28
S2: f. maps

6@14x14

INPUT
32x32

‘ Full conAection ‘ Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Full connection

e LeNet developed by Yann LeCun et al.

e Convolutional neural network
Local receptive fields (5x5 connectivity)
Subsampling (2x2)
Shared weights (reuse same 5x5 “filter”)
Breaking symmetry

Feed-forward Networks Network Training Error Backpropagation Deep Learning

ImageNet

Strawberry

Traffic light

Backpack

Bathing cap

e ImageNet - standard dataset for object recognition in
images (Russakovsky et al.)
« 1000 image categories, ~1.2 million training images
(ILSVRC 2013)

Feed-forward Networks Network Training Error Backpropagation Deep Learning

GoogLeNet, circa 2014

e GooglLeNet developed by Szegedy et
al., CVPR 2015

e Modern deep network

e ImageNet top-5 error rate of 6.67%
(later versions even better)

e Comparable to human performance
(especially for fine-grained categories)

Feed-forward Networks Network Training Error Backpropagation Deep Learning

ResNet, circa 2015

o ResNet developed by He et al., ICCV
2015

e 152 layers
e ImageNet top-5 error rate of 3.57%

e Better than human performance
(especially for fine-grained categories)

Feed-forward Networks Network Training Error Backpropagation Deep Learning

Key Component 1: Convolutional Filters

e Share parameters across
network

.H‘IIJ e Reduce total number of
Hﬂﬂi parameters
HIFF I- e Provide translation

invariance, useful for visual
recognition

Feed-forward Networks Network Training Error Backpropagation Deep Learning

Key Component 2: Rectified Linear Units (ReLUs)

¢ Vanishing gradient problem
o If derivatives very small, no/little
progress via stochastic gradient
descent
e Occurs with sigmoid function
when activation is large in
absolute value

Feed-forward Networks Network Training Error Backpropagation Deep Learning

Key Component 2: Rectified Linear Units (ReLUs)

Vanishing gradient problem

o If derivatives very small, no/little
progress via stochastic gradient
descent

e Occurs with sigmoid function
when activation is large in
absolute value

RelLU: A(a;) = max(0, a;)
Non-saturating, linear gradients

(as long as non-negative
activation on some training data)

Sparsity inducing

Feed-forward Networks Network Training Error Backpropagation Deep Learning

Key Component 3: Many, Many Layers

e ResNet: ~152 layers (“shortcut
connections”)

e GooglLeNet: ~27 layers
(“Inception” modules)

e VGG Net: 16-19 layers
(Simonyan and Zisserman, 2014)

e Supervision: 8 layers (Krizhevsky
et al., 2012)

EXPERIENCE ITJULY 16 IN THEATERS AND IMAX

Feed-forward Networks Network Training Error Backpropagation Deep Learning

Key Component 4: Momentum

¢ Trick to escape plateaus / local minima
e Take exponential average of previous gradients

9E, OE,” OE,
= «
aWj,’ aWﬁ 8Wji

e Maintains progress in previous direction

Feed-forward Networks Network Training Error Backpropagation Deep Learning

Key Component 5: Asynchronous Stochastic Gradient
Descent

e Big models won't fit in memory

e Want to use compute clusters
(e.g. 1000s of machines) to run
stochastic gradient descent
Parameter Server W =W - JAW

COoDDODT| e How to parallelize computation?

w ¢ Ignore synchronization across
//Aw \\ machines
Raptas %g %g %g e Just let each machine compute
bata @ Eﬁ ﬁj its own gradients and pass to a
Shards server storing current
parameters

o Ignore the fact that these
updates are inconsistent

e Seems to just work (e.g. Dean
et al. NIPS 2012)

Feed-forward Networks Network Training Error Backpropagation Deep Learning

Key Component 6: Learning Rate Schedule

e How to set learning rate n?:

wh =wT !l +VUw

e Option 1: Run until validation
error plateaus. Drop learning rate
by x%

e Option 2: Adagrad, adaptive

T e gradient. Per-element learning

rate set based on local geometry

(Duchi et al. 2010)

N
S
8

Feed-forward Networks Network Training Error Backpropagation Deep Learning

Key Component 7: Batch Norm

e Normalize data at each layer by whitening
e loffe and Szegedy 2015

Feed-forward Networks Network Training Error Backpropagation Deep Learning

Key Component 8: Data Augmentation

¢ Augment data with additional
synthetic variants (10x amount of
data)

e Or just use synthetic data, e.g.
Sintel animated movie (Butler et
al. 2012)

Feed-forward Networks Network Training Error Backpropagation Deep Learning

Key Component 9: Data and Compute

e Get lots of data (e.g. ImageNet)

¢ Get lots of compute (e.g. CPU
cluster, GPUs)

o Cross-validate like crazy, train
models for 2-3 weeks on a GPU

¢ Researcher gradient descent
(RGD) or Graduate student
descent (GSD): get 100s of
researchers to each do this,
trying different network structures

Deep Learning

More information

https://sites.google.com/site/
deeplearningsummerschool

http://tutorial.caffe.berkeleyvision.org/
ufldl.stanford.edu/eccvl0O-tutorial

http://www.image-net.org/challenges/LSVRC/

2012 /supervision.pdf

Project ideas

Long short-term memory (LSTM) models for temporal data

Learning embeddings (word2vec, FaceNet)

Structured output (multiple outputs from a network)

Zero-shot learning (learning to recognize new concepts

without training data)

o Transfer learning (use data from one domain/task, adapt to
another)

¢ Network compression / run-time / power optimization

¢ Distillation

https://sites.google.com/site/deeplearningsummerschool
https://sites.google.com/site/deeplearningsummerschool
http://tutorial.caffe.berkeleyvision.org/
ufldl.stanford.edu/eccv10-tutorial
http://www.image-net.org/challenges/LSVRC/2012/supervision.pdf
http://www.image-net.org/challenges/LSVRC/2012/supervision.pdf

Deep Learning

Conclusion

Readings: Ch. 5.1,5.2,5.3
Feed-forward networks can be used for regression or
classification
e Similar to linear models, except with adaptive non-linear
basis functions
e These allow us to do more than e.g. linear decision
boundaries
Different error functions
Learning is more difficult, error function not convex
o Use stochastic gradient descent, obtain (good?) local
minimum
Backpropagation for efficient gradient computation

	Feed-forward Networks
	Network Training
	Error Backpropagation
	Deep Learning

