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Classification: Hand-written Digit Recognition
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ti = (0, 0, 0, 1, 0, 0, 0, 0, 0, 0)

• Each input vector classified into one of K discrete classes
• Denote classes by Ck

• Represent input image as a vector xi ∈ R784.
• We have target vector ti ∈ {0, 1}10

• Given a training set {(x1, t1), . . . , (xN , tN)}, learning problem
is to construct a “good” function y(x) from these.
• y : R784 → R10
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Generalized Linear Models

• Similar to previous chapter on linear models for regression,
we will use a “linear” model for classification:

y(x) = f (wTx + w0)

• This is called a generalized linear model
• f (·) is a fixed non-linear function

• e.g.

f (u) =
{

1 if u ≥ 0
0 otherwise

• Decision boundary between classes will be linear function
of x

• Can also apply non-linearity to x, as in φi(x) for regression
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Discriminant Functions with Two Classes
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• Start with 2 class problem,
ti ∈ {0, 1}

• Simple linear discriminant

y(x) = wTx + w0

apply threshold function to get
classification

• Projection of x in w dir. is wT x
||w||
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Multiple Classes
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• A linear discriminant between two classes separates with a
hyperplane

• How to use this for multiple classes?
• One-versus-the-rest method: build K − 1 classifiers,

between Ck and all others
• One-versus-one method: build K(K − 1)/2 classifiers,

between all pairs
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Multiple Classes
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• A solution is to build K linear functions:

yk(x) = wT
k x + wk0

assign x to class arg maxk yk(x)
• Gives connected, convex decision regions

x̂ = λxA + (1− λ)xB

yk(x̂) = λyk(xA) + (1− λ)yk(xB)

⇒ yk(x̂) > yj(x̂),∀j 6= k
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Least Squares for Classification

• How do we learn the decision boundaries (wk,wk0)?
• One approach is to use least squares, similar to regression
• Find W to minimize squared error over all examples and all

components of the label vector:

E(W) =
1
2

N∑
n=1

K∑
k=1

(yk(xn)− tnk)
2

• Some algebra, we get a solution using the pseudo-inverse
as in regression
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Problems with Least Squares
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• Looks okay... least squares
decision boundary
• Similar to logistic regression

decision boundary (more later)

• Gets worse by adding easy
points?!

• Why?
• If target value is 1, points far

from boundary will have high
value, say 10; this is a large
error so the boundary is
moved
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More Least Squares Problems
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• Easily separated by hyperplanes, but not found using least
squares!

• We’ll address these problems later with better models
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Perceptrons

• Perceptrons is used to refer to many neural network
structures (more next week)

• The classic type is a fixed non-linear transformation of
input, one layer of adaptive weights, and a threshold:

y(x) = f (wTφ(x))

• Developed by Rosenblatt in the 50s

• The main difference compared to the methods we’ve seen
so far is the learning algorithm
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Perceptron Learning

• Two class problem
• For ease of notation, we will use t = 1 for class C1 and

t = −1 for class C2

• We saw that squared error was problematic
• Instead, we’d like to minimize the number of misclassified

examples
• An example is mis-classified if wTφ(xn)tn < 0
• Perceptron criterion:

EP(w) = −
∑

n∈M
wTφ(xn)tn

sum over mis-classified examples only
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Perceptron Learning Algorithm

• Minimize the error function using stochastic gradient
descent (gradient descent per example):

w(τ+1) = w(τ) − η∇EP(w)

= w(τ) + ηφ(xn)tn︸ ︷︷ ︸
if incorrect

• Iterate over all training examples, only change w if the
example is mis-classified

• Guaranteed to converge if data are linearly separable
• Will not converge if not
• May take many iterations
• Sensitive to initialization
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Perceptron Learning Illustration
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• Note there are many hyperplanes with 0 error
• Support vector machines have a nice way of choosing one
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Limitations of Perceptrons

• Perceptrons can only solve linearly separable problems in
feature space
• Same as the other models in this chapter

• Canonical example of non-separable problem is X-OR
• Real datasets can look like this too

Expressiveness of perceptrons

Consider a perceptron with g = step function (Rosenblatt, 1957, 1960)

Can represent AND, OR, NOT, majority, etc.

Represents a linear separator in input space:

ΣjWjxj > 0 or W · x > 0

I 1

I 2

I 1

I 2

I 1

I 2

?

(a) (b) (c)

0 1

0

1

0

1 1

0

0 1 0 1

xor I 2I 1orI 1 I 2and I 1 I 2

Chapter 20 11
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Probabilistic Generative Models
• Up to now we’ve looked at learning classification by

choosing parameters to minimize an error function
• We’ll now develop a probabilistic approach
• With 2 classes, C1 and C2:

p(C1|x) =
p(x|C1)p(C1)

p(x)
Bayes’ Rule

p(C1|x) =
p(x|C1)p(C1)

p(x, C1) + p(x, C2)
Sum rule

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)
Product rule

• In generative models we specify the distribution p(x|Ck)
which generates the data for each class
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Probabilistic Generative Models - Example

• Let’s say we observe x which is the current temperature
• Determine if we are in Vancouver (C1) or Honolulu (C2)
• Generative model:

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)

• p(x|C1) is distribution over typical temperatures in
Vancouver
• e.g. p(x|C1) = N (x; 10, 5)

• p(x|C2) is distribution over typical temperatures in Honolulu
• e.g. p(x|C2) = N (x; 25, 5)

• Class priors p(C1) = 0.1, p(C2) = 0.9

• p(C1|x = 15) = 0.0484·0.1
0.0484·0.1+0.0108·0.9 ≈ 0.33



Discriminant Functions Generative Models Discriminative Models

Probabilistic Generative Models - Example

• Let’s say we observe x which is the current temperature
• Determine if we are in Vancouver (C1) or Honolulu (C2)
• Generative model:

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)

• p(x|C1) is distribution over typical temperatures in
Vancouver
• e.g. p(x|C1) = N (x; 10, 5)

• p(x|C2) is distribution over typical temperatures in Honolulu
• e.g. p(x|C2) = N (x; 25, 5)

• Class priors p(C1) = 0.1, p(C2) = 0.9

• p(C1|x = 15) = 0.0484·0.1
0.0484·0.1+0.0108·0.9 ≈ 0.33



Discriminant Functions Generative Models Discriminative Models

Generalized Linear Models

• We can write the classifier in another form

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)

=
1

1 + exp(−a)
≡ σ(a)

where a = ln
p(x|C1)p(C1)

p(x|C2)p(C2)

• This looks like gratuitous math, but if a takes a simple form
this is another generalized linear model which we have
been studying
• Of course, we will see how such a simple form a = wTx+w0

arises naturally
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Logistic Sigmoid

−5 0 5
0

0.5

1

• The function σ(a) = 1
1+exp(−a) is known as the logistic

sigmoid
• It squashes the real axis down to [0, 1]
• It is continuous and differentiable
• It avoids the problems encountered with the too correct

least-squares error fitting (later)
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Multi-class Extension

• There is a generalization of the logistic sigmoid to K > 2
classes:

p(Ck|x) =
p(x|Ck)p(Ck)∑

j p(x|Cj)p(Cj)

=
exp(ak)∑

j exp(aj)

where ak = ln p(x|Ck)p(Ck)

• a. k. a. softmax function
• If some ak � aj, p(Ck|x) goes to 1
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Gaussian Class-Conditional Densities

• Back to that a in the logistic sigmoid for 2 classes
• Let’s assume the class-conditional densities p(x|Ck) are

Gaussians, and have the same covariance matrix Σ:

p(x|Ck) =
1

(2π)D/2|Σ|1/2 exp
{
−1

2
(x− µk)

TΣ−1(x− µk)

}
• a takes a simple form:

a = ln
p(x|C1)p(C1)

p(x|C2)p(C2)
= wTx + w0

• Note that quadratic terms xTΣ−1x cancel
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Maximum Likelihood Learning

• We can fit the parameters to this model using maximum
likelihood
• Parameters are µ1, µ2, Σ−1, p(C1) ≡ π, p(C2) ≡ 1− π
• Refer to as θ

• For a datapoint xn from class C1 (tn = 1):

p(xn, C1) = p(C1)p(xn|C1) = πN (xn|µ1,Σ)

• For a datapoint xn from class C2 (tn = 0):

p(xn, C2) = p(C2)p(xn|C2) = (1− π)N (xn|µ2,Σ)
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Maximum Likelihood Learning

• The likelihood of the training data is:

p(t|π,µ1,µ2,Σ) =

N∏
n=1

[πN (xn|µ1,Σ)]tn [(1−π)N (xn|µ2,Σ)]1−tn

• As usual, ln is our friend:

`(t; θ) =
N∑

n=1

tn lnπ + (1− tn) ln(1− π)︸ ︷︷ ︸
π

+ tn lnN1 + (1− tn) lnN2︸ ︷︷ ︸
µ1,µ2,Σ

• Maximize for each separately
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Maximum Likelihood Learning - Class Priors

• Maximization with respect to the class priors parameter π
is straightforward:

∂

∂π
`(t; θ) =

N∑
n=1

tn
π
− 1− tn

1− π

⇒ π =
N1

N1 + N2

• N1 and N2 are the number of training points in each class
• Prior is simply the fraction of points in each class
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Maximum Likelihood Learning - Gaussian Parameters
• The other parameters can also be found in the same

fashion
• Class means:

µ1 =
1

N1

N∑
n=1

tnxn

µ2 =
1

N2

N∑
n=1

(1− tn)xn

• Means of training examples from each class
• Shared covariance matrix:

Σ =
N1

N
1

N1

∑
n∈C1

(xn−µ1)(xn−µ1)
T+

N2

N
1

N2

∑
n∈C2

(xn−µ2)(xn−µ2)
T

• Weighted average of class covariances
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Probabilistic Generative Models Summary

• Fitting Gaussian using ML criterion is sensitive to outliers
• Simple linear form for a in logistic sigmoid occurs for more

than just Gaussian distributions
• Arises for any distribution in the exponential family, a large

class of distributions
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Outline

Discriminant Functions

Generative Models

Discriminative Models
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Probabilistic Discriminative Models

• Generative model made assumptions about form of
class-conditional distributions (e.g. Gaussian)
• Resulted in logistic sigmoid of linear function of x

• Discriminative model - explicitly use functional form

p(C1|x) =
1

1 + exp(−wTx + w0)

and find w directly
• For the generative model we had 2M + M(M + 1)/2 + 1

parameters
• M is dimensionality of x

• Discriminative model will have M + 1 parameters
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Generative vs. Discriminative

• Generative models
• Can generate synthetic

example data
• Perhaps accurate

classification is equivalent to
accurate synthesis
• e.g. vision and graphics

• Tend to have more parameters
• Require good model of class

distributions

• Discriminative models
• Only usable for classification
• Don’t solve a harder problem

than you need to
• Tend to have fewer parameters
• Require good model of

decision boundary



Discriminant Functions Generative Models Discriminative Models

Maximum Likelihood Learning - Discriminative Model

• As usual we can use the maximum likelihood criterion for
learning

p(t|w) =
N∏

n=1

ytn
n {1− yn}1−tn ; where yn = p(C1|xn)

• Taking ln and derivative gives:

∇`(w) =
N∑

n=1

(tn − yn)xn

• This time no closed-form solution since yn = σ(wTx)
• Could use (stochastic) gradient descent

• But there’s a better iterative technique
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Iterative Reweighted Least Squares
• Iterative reweighted least squares (IRLS) is a descent

method
• As in gradient descent, start with an initial guess, improve it
• Gradient descent - take a step (how large?) in the gradient

direction
• IRLS is a special case of a Newton-Raphson method

• Approximate function using second-order Taylor expansion:

f̂ (w + v) = f (w) +∇f (w)T(v− w) +
1
2
(v− w)T∇2f (w)(v− w)

• Closed-form solution to minimize this is straight-forward:
quadratic, derivatives linear

• In IRLS this second-order Taylor expansion ends up being
a weighted least-squares problem, as in the regression
case from last week
• Hence the name IRLS
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Newton-Raphson
484 9 Unconstrained minimization

PSfrag replacements

f

f̂

(x, f(x))

(x + ∆xnt, f(x + ∆xnt))

Figure 9.16 The function f (shown solid) and its second-order approximation

f̂ at x (dashed). The Newton step ∆xnt is what must be added to x to give

the minimizer of f̂ .

9.5 Newton’s method

9.5.1 The Newton step

For x ∈ dom f , the vector

∆xnt = −∇2f(x)−1∇f(x)

is called the Newton step (for f , at x). Positive definiteness of ∇2f(x) implies that

∇f(x)T ∆xnt = −∇f(x)T∇2f(x)−1∇f(x) < 0

unless ∇f(x) = 0, so the Newton step is a descent direction (unless x is optimal).
The Newton step can be interpreted and motivated in several ways.

Minimizer of second-order approximation

The second-order Taylor approximation (or model) f̂ of f at x is

f̂(x + v) = f(x) + ∇f(x)T v +
1

2
vT∇2f(x)v, (9.28)

which is a convex quadratic function of v, and is minimized when v = ∆xnt. Thus,
the Newton step ∆xnt is what should be added to the point x to minimize the
second-order approximation of f at x. This is illustrated in figure 9.16.

This interpretation gives us some insight into the Newton step. If the function
f is quadratic, then x + ∆xnt is the exact minimizer of f . If the function f is
nearly quadratic, intuition suggests that x + ∆xnt should be a very good estimate
of the minimizer of f , i.e., x!. Since f is twice differentiable, the quadratic model
of f will be very accurate when x is near x!. It follows that when x is near x!,
the point x + ∆xnt should be a very good estimate of x!. We will see that this
intuition is correct.

• Figure from Boyd and Vandenberghe, Convex Optimization

• Excellent reference, free for download online
http://www.stanford.edu/~boyd/cvxbook/

http://www.stanford.edu/~boyd/cvxbook/
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Conclusion

• Readings: Ch. 4.1.1-4.1.4, 4.1.7, 4.2.1-4.2.2, 4.3.1-4.3.3
• Generalized linear models y(x) = f (wTx + w0)

• Threshold/max function for f (·)
• Minimize with least squares
• Fisher criterion - class separation
• Perceptron criterion - mis-classified examples

• Probabilistic models: logistic sigmoid / softmax for f (·)
• Generative model - assume class conditional densities in

exponential family; obtain sigmoid
• Discriminative model - directly model posterior using

sigmoid (a. k. a. logistic regression, though classification)
• Can learn either using maximum likelihood

• All of these models are limited to linear decision
boundaries in feature space
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