
Discriminant Functions Generative Models Discriminative Models

Linear Models for Classification
Greg Mori - CMPT 419/726

Bishop PRML Ch. 4

Discriminant Functions Generative Models Discriminative Models

Classification: Hand-written Digit Recognition

xi =

!"#$%&'"()#*$#+ !,-)(!.,$#/+ +%((/#/01/! 233456 334

7/#()#-! 8/#9 */::)0 "'%! /$!9 +$"$;$!/ +,/ ") "'/ :$1<)(

8$#%$"%)0 %0 :%&'"%0& =>?@ 2ABC D,!" -$</! %" ($!"/#56
E'/ 7#)")"97/ !/:/1"%)0 $:&)#%"'- %! %::,!"#$"/+ %0 F%&6 GH6

C! !//0I 8%/*! $#/ $::)1$"/+ -$%0:9 ()# -)#/ 1)-7:/J
1$"/&)#%/! *%"' '%&' *%"'%0 1:$!! 8$#%$;%:%"96 E'/ 1,#8/
-$#</+ 3BK7#)") %0 F%&6 L !')*! "'/ %-7#)8/+ 1:$!!%(%1$"%)0
7/#()#-$01/ ,!%0& "'%! 7#)")"97/ !/:/1"%)0 !"#$"/&9 %0!"/$+
)(/.,$::9K!7$1/+ 8%/*!6 M)"/ "'$" */);"$%0 $ >6? 7/#1/0"

/##)# #$"/ *%"' $0 $8/#$&/)()0:9 (),# "*)K+%-/0!%)0$:

8%/*! ()# /$1' "'#//K+%-/0!%)0$:);D/1"I "'$0<! ") "'/

(:/J%;%:%"9 7#)8%+/+ ;9 "'/ -$"1'%0& $:&)#%"'-6

!"# $%&'() *+,-. */0+12.33. 4,3,5,6.

N,# 0/J" /J7/#%-/0" %08):8/! "'/ OAPQKR !'$7/ !%:'),/""/

+$"$;$!/I !7/1%(%1$::9 B)#/ PJ7/#%-/0" BPK3'$7/KG 7$#" SI

*'%1' -/$!,#/! 7/#()#-$01/)(!%-%:$#%"9K;$!/+ #/"#%/8$:

=>T@6 E'/ +$"$;$!/ 1)0!%!"!)(GI?HH %-$&/!U RH !'$7/

1$"/&)#%/!I >H %-$&/! 7/# 1$"/&)#96 E'/ 7/#()#-$01/ %!

-/$!,#/+ ,!%0& "'/ !)K1$::/+ V;,::!/9/ "/!"IW %0 *'%1' /$1'

!"# $%%% &'()*(+&$,)* ,) -(&&%') ()(./*$* ()0 1(+2$)% $)&%..$3%)+%4 5,.6 784),6 784 (-'$. 7997

:;<6 #6 (== >? @AB C;DE=FDD;?;BG 1)$*& @BD@ G;<;@D HD;I< >HJ CB@A>G KLM >H@ >? "94999N6 &AB @BO@ FP>QB BFEA G;<;@ ;IG;EF@BD @AB BOFCR=B IHCPBJ

?>==>SBG PT @AB @JHB =FPB= FIG @AB FDD;<IBG =FPB=6

:;<6 U6 M0 >PVBE@ JBE><I;@;>I HD;I< @AB +,$.W79 GF@F DB@6 +>CRFJ;D>I >?
@BD@ DB@ BJJ>J ?>J **04 *AFRB 0;D@FIEB K*0N4 FIG *AFRB 0;D@FIEB S;@A
!!"#$%&$' RJ>@>@TRBD K*0WRJ>@>N QBJDHD IHCPBJ >? RJ>@>@TRB Q;BSD6 :>J
**0 FIG *04 SB QFJ;BG @AB IHCPBJ >? RJ>@>@TRBD HI;?>JC=T ?>J F==
>PVBE@D6 :>J *0WRJ>@>4 @AB IHCPBJ >? RJ>@>@TRBD RBJ >PVBE@ GBRBIGBG >I
@AB S;@A;IW>PVBE@ QFJ;F@;>I FD SB== FD @AB PB@SBBIW>PVBE@ D;C;=FJ;@T6

:;<6 "96 -J>@>@TRB Q;BSD DB=BE@BG ?>J @S> G;??BJBI@ M0 >PVBE@D ?J>C @AB
+,$. GF@F DB@ HD;I< @AB F=<>J;@AC GBDEJ;PBG ;I *BE@;>I !676 X;@A @A;D
FRRJ>FEA4 Q;BSD FJB F==>EF@BG FGFR@;QB=T GBRBIG;I< >I @AB Q;DHF=
E>CR=BO;@T >? FI >PVBE@ S;@A JBDRBE@ @> Q;BS;I< FI<=B6

ti = (0, 0, 0, 1, 0, 0, 0, 0, 0, 0)

• Each input vector classified into one of K discrete classes
• Denote classes by Ck

• Represent input image as a vector xi ∈ R784.
• We have target vector ti ∈ {0, 1}10

• Given a training set {(x1, t1), . . . , (xN , tN)}, learning problem
is to construct a “good” function y(x) from these.
• y : R784 → R10

Discriminant Functions Generative Models Discriminative Models

Generalized Linear Models

• Similar to previous chapter on linear models for regression,
we will use a “linear” model for classification:

y(x) = f (wTx + w0)

• This is called a generalized linear model
• f (·) is a fixed non-linear function

• e.g.

f (u) =
{

1 if u ≥ 0
0 otherwise

• Decision boundary between classes will be linear function
of x

• Can also apply non-linearity to x, as in φi(x) for regression

Discriminant Functions Generative Models Discriminative Models

Generalized Linear Models

• Similar to previous chapter on linear models for regression,
we will use a “linear” model for classification:

y(x) = f (wTx + w0)

• This is called a generalized linear model
• f (·) is a fixed non-linear function

• e.g.

f (u) =
{

1 if u ≥ 0
0 otherwise

• Decision boundary between classes will be linear function
of x

• Can also apply non-linearity to x, as in φi(x) for regression

Discriminant Functions Generative Models Discriminative Models

Generalized Linear Models

• Similar to previous chapter on linear models for regression,
we will use a “linear” model for classification:

y(x) = f (wTx + w0)

• This is called a generalized linear model
• f (·) is a fixed non-linear function

• e.g.

f (u) =
{

1 if u ≥ 0
0 otherwise

• Decision boundary between classes will be linear function
of x

• Can also apply non-linearity to x, as in φi(x) for regression

Discriminant Functions Generative Models Discriminative Models

Outline

Discriminant Functions

Generative Models

Discriminative Models

Discriminant Functions Generative Models Discriminative Models

Outline

Discriminant Functions

Generative Models

Discriminative Models

Discriminant Functions Generative Models Discriminative Models

Discriminant Functions with Two Classes

x2

x1

w
x

y(x)
‖w‖

x⊥

−w0
‖w‖

y = 0
y < 0

y > 0

R2

R1

• Start with 2 class problem,
ti ∈ {0, 1}

• Simple linear discriminant

y(x) = wTx + w0

apply threshold function to get
classification

• Projection of x in w dir. is wT x
||w||

Discriminant Functions Generative Models Discriminative Models

Multiple Classes

R1

R2

R3

?

C1

not C1

C2

not C2

R1

R2

R3

?C1

C2

C1

C3

C2

C3

• A linear discriminant between two classes separates with a
hyperplane

• How to use this for multiple classes?
• One-versus-the-rest method: build K − 1 classifiers,

between Ck and all others
• One-versus-one method: build K(K − 1)/2 classifiers,

between all pairs

Discriminant Functions Generative Models Discriminative Models

Multiple Classes

R1

R2

R3

?

C1

not C1

C2

not C2

R1

R2

R3

?C1

C2

C1

C3

C2

C3

• A linear discriminant between two classes separates with a
hyperplane

• How to use this for multiple classes?
• One-versus-the-rest method: build K − 1 classifiers,

between Ck and all others
• One-versus-one method: build K(K − 1)/2 classifiers,

between all pairs

Discriminant Functions Generative Models Discriminative Models

Multiple Classes

R1

R2

R3

?

C1

not C1

C2

not C2

R1

R2

R3

?C1

C2

C1

C3

C2

C3

• A linear discriminant between two classes separates with a
hyperplane

• How to use this for multiple classes?
• One-versus-the-rest method: build K − 1 classifiers,

between Ck and all others
• One-versus-one method: build K(K − 1)/2 classifiers,

between all pairs

Discriminant Functions Generative Models Discriminative Models

Multiple Classes

R1

R2

R3

?

C1

not C1

C2

not C2

R1

R2

R3

?C1

C2

C1

C3

C2

C3

• A linear discriminant between two classes separates with a
hyperplane

• How to use this for multiple classes?
• One-versus-the-rest method: build K − 1 classifiers,

between Ck and all others
• One-versus-one method: build K(K − 1)/2 classifiers,

between all pairs

Discriminant Functions Generative Models Discriminative Models

Multiple Classes

R1

R2

R3

?

C1

not C1

C2

not C2

R1

R2

R3

?C1

C2

C1

C3

C2

C3

• A linear discriminant between two classes separates with a
hyperplane

• How to use this for multiple classes?
• One-versus-the-rest method: build K − 1 classifiers,

between Ck and all others
• One-versus-one method: build K(K − 1)/2 classifiers,

between all pairs

Discriminant Functions Generative Models Discriminative Models

Multiple Classes

R1

R2

R3

?

C1

not C1

C2

not C2

R1

R2

R3

?C1

C2

C1

C3

C2

C3

• A linear discriminant between two classes separates with a
hyperplane

• How to use this for multiple classes?
• One-versus-the-rest method: build K − 1 classifiers,

between Ck and all others
• One-versus-one method: build K(K − 1)/2 classifiers,

between all pairs

Discriminant Functions Generative Models Discriminative Models

Multiple Classes

Ri

Rj

Rk

xA

xB

x̂

• A solution is to build K linear functions:

yk(x) = wT
k x + wk0

assign x to class arg maxk yk(x)
• Gives connected, convex decision regions

x̂ = λxA + (1− λ)xB

yk(x̂) = λyk(xA) + (1− λ)yk(xB)

⇒ yk(x̂) > yj(x̂),∀j 6= k

Discriminant Functions Generative Models Discriminative Models

Multiple Classes

Ri

Rj

Rk

xA

xB

x̂

• A solution is to build K linear functions:

yk(x) = wT
k x + wk0

assign x to class arg maxk yk(x)
• Gives connected, convex decision regions

x̂ = λxA + (1− λ)xB

yk(x̂) = λyk(xA) + (1− λ)yk(xB)

⇒ yk(x̂) > yj(x̂),∀j 6= k

Discriminant Functions Generative Models Discriminative Models

Least Squares for Classification

• How do we learn the decision boundaries (wk,wk0)?
• One approach is to use least squares, similar to regression
• Find W to minimize squared error over all examples and all

components of the label vector:

E(W) =
1
2

N∑
n=1

K∑
k=1

(yk(xn)− tnk)
2

• Some algebra, we get a solution using the pseudo-inverse
as in regression

Discriminant Functions Generative Models Discriminative Models

Least Squares for Classification

• How do we learn the decision boundaries (wk,wk0)?
• One approach is to use least squares, similar to regression
• Find W to minimize squared error over all examples and all

components of the label vector:

E(W) =
1
2

N∑
n=1

K∑
k=1

(yk(xn)− tnk)
2

• Some algebra, we get a solution using the pseudo-inverse
as in regression

Discriminant Functions Generative Models Discriminative Models

Least Squares for Classification

• How do we learn the decision boundaries (wk,wk0)?
• One approach is to use least squares, similar to regression
• Find W to minimize squared error over all examples and all

components of the label vector:

E(W) =
1
2

N∑
n=1

K∑
k=1

(yk(xn)− tnk)
2

• Some algebra, we get a solution using the pseudo-inverse
as in regression

Discriminant Functions Generative Models Discriminative Models

Problems with Least Squares

−4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

−4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

• Looks okay... least squares
decision boundary
• Similar to logistic regression

decision boundary (more later)

• Gets worse by adding easy
points?!

• Why?
• If target value is 1, points far

from boundary will have high
value, say 10; this is a large
error so the boundary is
moved

Discriminant Functions Generative Models Discriminative Models

Problems with Least Squares

−4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

−4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

• Looks okay... least squares
decision boundary
• Similar to logistic regression

decision boundary (more later)

• Gets worse by adding easy
points?!

• Why?
• If target value is 1, points far

from boundary will have high
value, say 10; this is a large
error so the boundary is
moved

Discriminant Functions Generative Models Discriminative Models

Problems with Least Squares

−4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

−4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

• Looks okay... least squares
decision boundary
• Similar to logistic regression

decision boundary (more later)

• Gets worse by adding easy
points?!

• Why?

• If target value is 1, points far
from boundary will have high
value, say 10; this is a large
error so the boundary is
moved

Discriminant Functions Generative Models Discriminative Models

Problems with Least Squares

−4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

−4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

• Looks okay... least squares
decision boundary
• Similar to logistic regression

decision boundary (more later)

• Gets worse by adding easy
points?!

• Why?
• If target value is 1, points far

from boundary will have high
value, say 10; this is a large
error so the boundary is
moved

Discriminant Functions Generative Models Discriminative Models

More Least Squares Problems

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

• Easily separated by hyperplanes, but not found using least
squares!

• We’ll address these problems later with better models

Discriminant Functions Generative Models Discriminative Models

Perceptrons

• Perceptrons is used to refer to many neural network
structures (more next week)

• The classic type is a fixed non-linear transformation of
input, one layer of adaptive weights, and a threshold:

y(x) = f (wTφ(x))

• Developed by Rosenblatt in the 50s

• The main difference compared to the methods we’ve seen
so far is the learning algorithm

Discriminant Functions Generative Models Discriminative Models

Perceptron Learning

• Two class problem
• For ease of notation, we will use t = 1 for class C1 and

t = −1 for class C2

• We saw that squared error was problematic
• Instead, we’d like to minimize the number of misclassified

examples
• An example is mis-classified if wTφ(xn)tn < 0
• Perceptron criterion:

EP(w) = −
∑

n∈M
wTφ(xn)tn

sum over mis-classified examples only

Discriminant Functions Generative Models Discriminative Models

Perceptron Learning

• Two class problem
• For ease of notation, we will use t = 1 for class C1 and

t = −1 for class C2

• We saw that squared error was problematic
• Instead, we’d like to minimize the number of misclassified

examples
• An example is mis-classified if wTφ(xn)tn < 0
• Perceptron criterion:

EP(w) = −
∑

n∈M
wTφ(xn)tn

sum over mis-classified examples only

Discriminant Functions Generative Models Discriminative Models

Perceptron Learning

• Two class problem
• For ease of notation, we will use t = 1 for class C1 and

t = −1 for class C2

• We saw that squared error was problematic
• Instead, we’d like to minimize the number of misclassified

examples
• An example is mis-classified if wTφ(xn)tn < 0
• Perceptron criterion:

EP(w) = −
∑

n∈M
wTφ(xn)tn

sum over mis-classified examples only

Discriminant Functions Generative Models Discriminative Models

Perceptron Learning

• Two class problem
• For ease of notation, we will use t = 1 for class C1 and

t = −1 for class C2

• We saw that squared error was problematic
• Instead, we’d like to minimize the number of misclassified

examples
• An example is mis-classified if wTφ(xn)tn < 0
• Perceptron criterion:

EP(w) = −
∑

n∈M
wTφ(xn)tn

sum over mis-classified examples only

Discriminant Functions Generative Models Discriminative Models

Perceptron Learning Algorithm

• Minimize the error function using stochastic gradient
descent (gradient descent per example):

w(τ+1) = w(τ) − η∇EP(w)

= w(τ) + ηφ(xn)tn︸ ︷︷ ︸
if incorrect

• Iterate over all training examples, only change w if the
example is mis-classified

• Guaranteed to converge if data are linearly separable
• Will not converge if not
• May take many iterations
• Sensitive to initialization

Discriminant Functions Generative Models Discriminative Models

Perceptron Learning Algorithm

• Minimize the error function using stochastic gradient
descent (gradient descent per example):

w(τ+1) = w(τ) − η∇EP(w) = w(τ) + ηφ(xn)tn︸ ︷︷ ︸
if incorrect

• Iterate over all training examples, only change w if the
example is mis-classified

• Guaranteed to converge if data are linearly separable
• Will not converge if not
• May take many iterations
• Sensitive to initialization

Discriminant Functions Generative Models Discriminative Models

Perceptron Learning Algorithm

• Minimize the error function using stochastic gradient
descent (gradient descent per example):

w(τ+1) = w(τ) − η∇EP(w) = w(τ) + ηφ(xn)tn︸ ︷︷ ︸
if incorrect

• Iterate over all training examples, only change w if the
example is mis-classified

• Guaranteed to converge if data are linearly separable
• Will not converge if not
• May take many iterations
• Sensitive to initialization

Discriminant Functions Generative Models Discriminative Models

Perceptron Learning Illustration

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

• Note there are many hyperplanes with 0 error
• Support vector machines have a nice way of choosing one

Discriminant Functions Generative Models Discriminative Models

Perceptron Learning Illustration

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

• Note there are many hyperplanes with 0 error
• Support vector machines have a nice way of choosing one

Discriminant Functions Generative Models Discriminative Models

Perceptron Learning Illustration

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

• Note there are many hyperplanes with 0 error
• Support vector machines have a nice way of choosing one

Discriminant Functions Generative Models Discriminative Models

Perceptron Learning Illustration

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

• Note there are many hyperplanes with 0 error
• Support vector machines have a nice way of choosing one

Discriminant Functions Generative Models Discriminative Models

Perceptron Learning Illustration

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

• Note there are many hyperplanes with 0 error
• Support vector machines have a nice way of choosing one

Discriminant Functions Generative Models Discriminative Models

Limitations of Perceptrons

• Perceptrons can only solve linearly separable problems in
feature space
• Same as the other models in this chapter

• Canonical example of non-separable problem is X-OR
• Real datasets can look like this too

Expressiveness of perceptrons

Consider a perceptron with g = step function (Rosenblatt, 1957, 1960)

Can represent AND, OR, NOT, majority, etc.

Represents a linear separator in input space:

ΣjWjxj > 0 or W · x > 0

I 1

I 2

I 1

I 2

I 1

I 2

?

(a) (b) (c)

0 1

0

1

0

1 1

0

0 1 0 1

xor I 2I 1orI 1 I 2and I 1 I 2

Chapter 20 11

Discriminant Functions Generative Models Discriminative Models

Outline

Discriminant Functions

Generative Models

Discriminative Models

Discriminant Functions Generative Models Discriminative Models

Probabilistic Generative Models
• Up to now we’ve looked at learning classification by

choosing parameters to minimize an error function
• We’ll now develop a probabilistic approach
• With 2 classes, C1 and C2:

p(C1|x) =
p(x|C1)p(C1)

p(x)
Bayes’ Rule

p(C1|x) =
p(x|C1)p(C1)

p(x, C1) + p(x, C2)
Sum rule

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)
Product rule

• In generative models we specify the distribution p(x|Ck)
which generates the data for each class

Discriminant Functions Generative Models Discriminative Models

Probabilistic Generative Models
• Up to now we’ve looked at learning classification by

choosing parameters to minimize an error function
• We’ll now develop a probabilistic approach
• With 2 classes, C1 and C2:

p(C1|x) =
p(x|C1)p(C1)

p(x)
Bayes’ Rule

p(C1|x) =
p(x|C1)p(C1)

p(x, C1) + p(x, C2)
Sum rule

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)
Product rule

• In generative models we specify the distribution p(x|Ck)
which generates the data for each class

Discriminant Functions Generative Models Discriminative Models

Probabilistic Generative Models
• Up to now we’ve looked at learning classification by

choosing parameters to minimize an error function
• We’ll now develop a probabilistic approach
• With 2 classes, C1 and C2:

p(C1|x) =
p(x|C1)p(C1)

p(x)
Bayes’ Rule

p(C1|x) =
p(x|C1)p(C1)

p(x, C1) + p(x, C2)
Sum rule

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)
Product rule

• In generative models we specify the distribution p(x|Ck)
which generates the data for each class

Discriminant Functions Generative Models Discriminative Models

Probabilistic Generative Models
• Up to now we’ve looked at learning classification by

choosing parameters to minimize an error function
• We’ll now develop a probabilistic approach
• With 2 classes, C1 and C2:

p(C1|x) =
p(x|C1)p(C1)

p(x)
Bayes’ Rule

p(C1|x) =
p(x|C1)p(C1)

p(x, C1) + p(x, C2)
Sum rule

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)
Product rule

• In generative models we specify the distribution p(x|Ck)
which generates the data for each class

Discriminant Functions Generative Models Discriminative Models

Probabilistic Generative Models
• Up to now we’ve looked at learning classification by

choosing parameters to minimize an error function
• We’ll now develop a probabilistic approach
• With 2 classes, C1 and C2:

p(C1|x) =
p(x|C1)p(C1)

p(x)
Bayes’ Rule

p(C1|x) =
p(x|C1)p(C1)

p(x, C1) + p(x, C2)
Sum rule

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)
Product rule

• In generative models we specify the distribution p(x|Ck)
which generates the data for each class

Discriminant Functions Generative Models Discriminative Models

Probabilistic Generative Models
• Up to now we’ve looked at learning classification by

choosing parameters to minimize an error function
• We’ll now develop a probabilistic approach
• With 2 classes, C1 and C2:

p(C1|x) =
p(x|C1)p(C1)

p(x)
Bayes’ Rule

p(C1|x) =
p(x|C1)p(C1)

p(x, C1) + p(x, C2)
Sum rule

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)
Product rule

• In generative models we specify the distribution p(x|Ck)
which generates the data for each class

Discriminant Functions Generative Models Discriminative Models

Probabilistic Generative Models - Example

• Let’s say we observe x which is the current temperature
• Determine if we are in Vancouver (C1) or Honolulu (C2)
• Generative model:

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)

• p(x|C1) is distribution over typical temperatures in
Vancouver
• e.g. p(x|C1) = N (x; 10, 5)

• p(x|C2) is distribution over typical temperatures in Honolulu
• e.g. p(x|C2) = N (x; 25, 5)

• Class priors p(C1) = 0.1, p(C2) = 0.9

• p(C1|x = 15) = 0.0484·0.1
0.0484·0.1+0.0108·0.9 ≈ 0.33

Discriminant Functions Generative Models Discriminative Models

Probabilistic Generative Models - Example

• Let’s say we observe x which is the current temperature
• Determine if we are in Vancouver (C1) or Honolulu (C2)
• Generative model:

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)

• p(x|C1) is distribution over typical temperatures in
Vancouver
• e.g. p(x|C1) = N (x; 10, 5)

• p(x|C2) is distribution over typical temperatures in Honolulu
• e.g. p(x|C2) = N (x; 25, 5)

• Class priors p(C1) = 0.1, p(C2) = 0.9

• p(C1|x = 15) = 0.0484·0.1
0.0484·0.1+0.0108·0.9 ≈ 0.33

Discriminant Functions Generative Models Discriminative Models

Generalized Linear Models

• We can write the classifier in another form

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)

=
1

1 + exp(−a)
≡ σ(a)

where a = ln
p(x|C1)p(C1)

p(x|C2)p(C2)

• This looks like gratuitous math, but if a takes a simple form
this is another generalized linear model which we have
been studying
• Of course, we will see how such a simple form a = wTx+w0

arises naturally

Discriminant Functions Generative Models Discriminative Models

Generalized Linear Models

• We can write the classifier in another form

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)

=
1

1 + exp(−a)
≡ σ(a)

where a = ln
p(x|C1)p(C1)

p(x|C2)p(C2)

• This looks like gratuitous math, but if a takes a simple form
this is another generalized linear model which we have
been studying
• Of course, we will see how such a simple form a = wTx+w0

arises naturally

Discriminant Functions Generative Models Discriminative Models

Generalized Linear Models

• We can write the classifier in another form

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)

=
1

1 + exp(−a)
≡ σ(a)

where a = ln
p(x|C1)p(C1)

p(x|C2)p(C2)

• This looks like gratuitous math, but if a takes a simple form
this is another generalized linear model which we have
been studying
• Of course, we will see how such a simple form a = wTx+w0

arises naturally

Discriminant Functions Generative Models Discriminative Models

Logistic Sigmoid

−5 0 5
0

0.5

1

• The function σ(a) = 1
1+exp(−a) is known as the logistic

sigmoid
• It squashes the real axis down to [0, 1]
• It is continuous and differentiable
• It avoids the problems encountered with the too correct

least-squares error fitting (later)

Discriminant Functions Generative Models Discriminative Models

Multi-class Extension

• There is a generalization of the logistic sigmoid to K > 2
classes:

p(Ck|x) =
p(x|Ck)p(Ck)∑

j p(x|Cj)p(Cj)

=
exp(ak)∑

j exp(aj)

where ak = ln p(x|Ck)p(Ck)

• a. k. a. softmax function
• If some ak � aj, p(Ck|x) goes to 1

Discriminant Functions Generative Models Discriminative Models

Multi-class Extension

• There is a generalization of the logistic sigmoid to K > 2
classes:

p(Ck|x) =
p(x|Ck)p(Ck)∑

j p(x|Cj)p(Cj)

=
exp(ak)∑

j exp(aj)

where ak = ln p(x|Ck)p(Ck)

• a. k. a. softmax function
• If some ak � aj, p(Ck|x) goes to 1

Discriminant Functions Generative Models Discriminative Models

Gaussian Class-Conditional Densities

• Back to that a in the logistic sigmoid for 2 classes
• Let’s assume the class-conditional densities p(x|Ck) are

Gaussians, and have the same covariance matrix Σ:

p(x|Ck) =
1

(2π)D/2|Σ|1/2 exp
{
−1

2
(x− µk)

TΣ−1(x− µk)

}
• a takes a simple form:

a = ln
p(x|C1)p(C1)

p(x|C2)p(C2)
= wTx + w0

• Note that quadratic terms xTΣ−1x cancel

Discriminant Functions Generative Models Discriminative Models

Gaussian Class-Conditional Densities

• Back to that a in the logistic sigmoid for 2 classes
• Let’s assume the class-conditional densities p(x|Ck) are

Gaussians, and have the same covariance matrix Σ:

p(x|Ck) =
1

(2π)D/2|Σ|1/2 exp
{
−1

2
(x− µk)

TΣ−1(x− µk)

}
• a takes a simple form:

a = ln
p(x|C1)p(C1)

p(x|C2)p(C2)
= wTx + w0

• Note that quadratic terms xTΣ−1x cancel

Discriminant Functions Generative Models Discriminative Models

Gaussian Class-Conditional Densities

• Back to that a in the logistic sigmoid for 2 classes
• Let’s assume the class-conditional densities p(x|Ck) are

Gaussians, and have the same covariance matrix Σ:

p(x|Ck) =
1

(2π)D/2|Σ|1/2 exp
{
−1

2
(x− µk)

TΣ−1(x− µk)

}
• a takes a simple form:

a = ln
p(x|C1)p(C1)

p(x|C2)p(C2)
= wTx + w0

• Note that quadratic terms xTΣ−1x cancel

Discriminant Functions Generative Models Discriminative Models

Gaussian Class-Conditional Densities

• Back to that a in the logistic sigmoid for 2 classes
• Let’s assume the class-conditional densities p(x|Ck) are

Gaussians, and have the same covariance matrix Σ:

p(x|Ck) =
1

(2π)D/2|Σ|1/2 exp
{
−1

2
(x− µk)

TΣ−1(x− µk)

}
• a takes a simple form:

a = ln
p(x|C1)p(C1)

p(x|C2)p(C2)
= wTx + w0

• Note that quadratic terms xTΣ−1x cancel

Discriminant Functions Generative Models Discriminative Models

Maximum Likelihood Learning

• We can fit the parameters to this model using maximum
likelihood
• Parameters are µ1, µ2, Σ−1, p(C1) ≡ π, p(C2) ≡ 1− π
• Refer to as θ

• For a datapoint xn from class C1 (tn = 1):

p(xn, C1) = p(C1)p(xn|C1) = πN (xn|µ1,Σ)

• For a datapoint xn from class C2 (tn = 0):

p(xn, C2) = p(C2)p(xn|C2) = (1− π)N (xn|µ2,Σ)

Discriminant Functions Generative Models Discriminative Models

Maximum Likelihood Learning

• We can fit the parameters to this model using maximum
likelihood
• Parameters are µ1, µ2, Σ−1, p(C1) ≡ π, p(C2) ≡ 1− π
• Refer to as θ

• For a datapoint xn from class C1 (tn = 1):

p(xn, C1) = p(C1)p(xn|C1) = πN (xn|µ1,Σ)

• For a datapoint xn from class C2 (tn = 0):

p(xn, C2) = p(C2)p(xn|C2) = (1− π)N (xn|µ2,Σ)

Discriminant Functions Generative Models Discriminative Models

Maximum Likelihood Learning

• We can fit the parameters to this model using maximum
likelihood
• Parameters are µ1, µ2, Σ−1, p(C1) ≡ π, p(C2) ≡ 1− π
• Refer to as θ

• For a datapoint xn from class C1 (tn = 1):

p(xn, C1) = p(C1)p(xn|C1) = πN (xn|µ1,Σ)

• For a datapoint xn from class C2 (tn = 0):

p(xn, C2) = p(C2)p(xn|C2) = (1− π)N (xn|µ2,Σ)

Discriminant Functions Generative Models Discriminative Models

Maximum Likelihood Learning

• The likelihood of the training data is:

p(t|π,µ1,µ2,Σ) =

N∏
n=1

[πN (xn|µ1,Σ)]tn [(1−π)N (xn|µ2,Σ)]1−tn

• As usual, ln is our friend:

`(t; θ) =
N∑

n=1

tn lnπ + (1− tn) ln(1− π)︸ ︷︷ ︸
π

+ tn lnN1 + (1− tn) lnN2︸ ︷︷ ︸
µ1,µ2,Σ

• Maximize for each separately

Discriminant Functions Generative Models Discriminative Models

Maximum Likelihood Learning

• The likelihood of the training data is:

p(t|π,µ1,µ2,Σ) =

N∏
n=1

[πN (xn|µ1,Σ)]tn [(1−π)N (xn|µ2,Σ)]1−tn

• As usual, ln is our friend:

`(t; θ) =
N∑

n=1

tn lnπ + (1− tn) ln(1− π)︸ ︷︷ ︸
π

+ tn lnN1 + (1− tn) lnN2︸ ︷︷ ︸
µ1,µ2,Σ

• Maximize for each separately

Discriminant Functions Generative Models Discriminative Models

Maximum Likelihood Learning - Class Priors

• Maximization with respect to the class priors parameter π
is straightforward:

∂

∂π
`(t; θ) =

N∑
n=1

tn
π
− 1− tn

1− π

⇒ π =
N1

N1 + N2

• N1 and N2 are the number of training points in each class
• Prior is simply the fraction of points in each class

Discriminant Functions Generative Models Discriminative Models

Maximum Likelihood Learning - Class Priors

• Maximization with respect to the class priors parameter π
is straightforward:

∂

∂π
`(t; θ) =

N∑
n=1

tn
π
− 1− tn

1− π

⇒ π =
N1

N1 + N2

• N1 and N2 are the number of training points in each class
• Prior is simply the fraction of points in each class

Discriminant Functions Generative Models Discriminative Models

Maximum Likelihood Learning - Class Priors

• Maximization with respect to the class priors parameter π
is straightforward:

∂

∂π
`(t; θ) =

N∑
n=1

tn
π
− 1− tn

1− π

⇒ π =
N1

N1 + N2

• N1 and N2 are the number of training points in each class
• Prior is simply the fraction of points in each class

Discriminant Functions Generative Models Discriminative Models

Maximum Likelihood Learning - Gaussian Parameters
• The other parameters can also be found in the same

fashion
• Class means:

µ1 =
1

N1

N∑
n=1

tnxn

µ2 =
1

N2

N∑
n=1

(1− tn)xn

• Means of training examples from each class
• Shared covariance matrix:

Σ =
N1

N
1

N1

∑
n∈C1

(xn−µ1)(xn−µ1)
T+

N2

N
1

N2

∑
n∈C2

(xn−µ2)(xn−µ2)
T

• Weighted average of class covariances

Discriminant Functions Generative Models Discriminative Models

Maximum Likelihood Learning - Gaussian Parameters
• The other parameters can also be found in the same

fashion
• Class means:

µ1 =
1

N1

N∑
n=1

tnxn

µ2 =
1

N2

N∑
n=1

(1− tn)xn

• Means of training examples from each class
• Shared covariance matrix:

Σ =
N1

N
1

N1

∑
n∈C1

(xn−µ1)(xn−µ1)
T+

N2

N
1

N2

∑
n∈C2

(xn−µ2)(xn−µ2)
T

• Weighted average of class covariances

Discriminant Functions Generative Models Discriminative Models

Probabilistic Generative Models Summary

• Fitting Gaussian using ML criterion is sensitive to outliers
• Simple linear form for a in logistic sigmoid occurs for more

than just Gaussian distributions
• Arises for any distribution in the exponential family, a large

class of distributions

Discriminant Functions Generative Models Discriminative Models

Outline

Discriminant Functions

Generative Models

Discriminative Models

Discriminant Functions Generative Models Discriminative Models

Probabilistic Discriminative Models

• Generative model made assumptions about form of
class-conditional distributions (e.g. Gaussian)
• Resulted in logistic sigmoid of linear function of x

• Discriminative model - explicitly use functional form

p(C1|x) =
1

1 + exp(−wTx + w0)

and find w directly
• For the generative model we had 2M + M(M + 1)/2 + 1

parameters
• M is dimensionality of x

• Discriminative model will have M + 1 parameters

Discriminant Functions Generative Models Discriminative Models

Probabilistic Discriminative Models

• Generative model made assumptions about form of
class-conditional distributions (e.g. Gaussian)
• Resulted in logistic sigmoid of linear function of x

• Discriminative model - explicitly use functional form

p(C1|x) =
1

1 + exp(−wTx + w0)

and find w directly
• For the generative model we had 2M + M(M + 1)/2 + 1

parameters
• M is dimensionality of x

• Discriminative model will have M + 1 parameters

Discriminant Functions Generative Models Discriminative Models

Probabilistic Discriminative Models

• Generative model made assumptions about form of
class-conditional distributions (e.g. Gaussian)
• Resulted in logistic sigmoid of linear function of x

• Discriminative model - explicitly use functional form

p(C1|x) =
1

1 + exp(−wTx + w0)

and find w directly
• For the generative model we had 2M + M(M + 1)/2 + 1

parameters
• M is dimensionality of x

• Discriminative model will have M + 1 parameters

Discriminant Functions Generative Models Discriminative Models

Generative vs. Discriminative

• Generative models
• Can generate synthetic

example data
• Perhaps accurate

classification is equivalent to
accurate synthesis
• e.g. vision and graphics

• Tend to have more parameters
• Require good model of class

distributions

• Discriminative models
• Only usable for classification
• Don’t solve a harder problem

than you need to
• Tend to have fewer parameters
• Require good model of

decision boundary

Discriminant Functions Generative Models Discriminative Models

Maximum Likelihood Learning - Discriminative Model

• As usual we can use the maximum likelihood criterion for
learning

p(t|w) =
N∏

n=1

ytn
n {1− yn}1−tn ; where yn = p(C1|xn)

• Taking ln and derivative gives:

∇`(w) =
N∑

n=1

(tn − yn)xn

• This time no closed-form solution since yn = σ(wTx)
• Could use (stochastic) gradient descent

• But there’s a better iterative technique

Discriminant Functions Generative Models Discriminative Models

Maximum Likelihood Learning - Discriminative Model

• As usual we can use the maximum likelihood criterion for
learning

p(t|w) =
N∏

n=1

ytn
n {1− yn}1−tn ; where yn = p(C1|xn)

• Taking ln and derivative gives:

∇`(w) =
N∑

n=1

(tn − yn)xn

• This time no closed-form solution since yn = σ(wTx)
• Could use (stochastic) gradient descent

• But there’s a better iterative technique

Discriminant Functions Generative Models Discriminative Models

Maximum Likelihood Learning - Discriminative Model

• As usual we can use the maximum likelihood criterion for
learning

p(t|w) =
N∏

n=1

ytn
n {1− yn}1−tn ; where yn = p(C1|xn)

• Taking ln and derivative gives:

∇`(w) =
N∑

n=1

(tn − yn)xn

• This time no closed-form solution since yn = σ(wTx)
• Could use (stochastic) gradient descent

• But there’s a better iterative technique

Discriminant Functions Generative Models Discriminative Models

Maximum Likelihood Learning - Discriminative Model

• As usual we can use the maximum likelihood criterion for
learning

p(t|w) =
N∏

n=1

ytn
n {1− yn}1−tn ; where yn = p(C1|xn)

• Taking ln and derivative gives:

∇`(w) =
N∑

n=1

(tn − yn)xn

• This time no closed-form solution since yn = σ(wTx)
• Could use (stochastic) gradient descent

• But there’s a better iterative technique

Discriminant Functions Generative Models Discriminative Models

Iterative Reweighted Least Squares
• Iterative reweighted least squares (IRLS) is a descent

method
• As in gradient descent, start with an initial guess, improve it
• Gradient descent - take a step (how large?) in the gradient

direction
• IRLS is a special case of a Newton-Raphson method

• Approximate function using second-order Taylor expansion:

f̂ (w + v) = f (w) +∇f (w)T(v− w) +
1
2
(v− w)T∇2f (w)(v− w)

• Closed-form solution to minimize this is straight-forward:
quadratic, derivatives linear

• In IRLS this second-order Taylor expansion ends up being
a weighted least-squares problem, as in the regression
case from last week
• Hence the name IRLS

Discriminant Functions Generative Models Discriminative Models

Iterative Reweighted Least Squares
• Iterative reweighted least squares (IRLS) is a descent

method
• As in gradient descent, start with an initial guess, improve it
• Gradient descent - take a step (how large?) in the gradient

direction
• IRLS is a special case of a Newton-Raphson method

• Approximate function using second-order Taylor expansion:

f̂ (w + v) = f (w) +∇f (w)T(v− w) +
1
2
(v− w)T∇2f (w)(v− w)

• Closed-form solution to minimize this is straight-forward:
quadratic, derivatives linear

• In IRLS this second-order Taylor expansion ends up being
a weighted least-squares problem, as in the regression
case from last week
• Hence the name IRLS

Discriminant Functions Generative Models Discriminative Models

Iterative Reweighted Least Squares
• Iterative reweighted least squares (IRLS) is a descent

method
• As in gradient descent, start with an initial guess, improve it
• Gradient descent - take a step (how large?) in the gradient

direction
• IRLS is a special case of a Newton-Raphson method

• Approximate function using second-order Taylor expansion:

f̂ (w + v) = f (w) +∇f (w)T(v− w) +
1
2
(v− w)T∇2f (w)(v− w)

• Closed-form solution to minimize this is straight-forward:
quadratic, derivatives linear

• In IRLS this second-order Taylor expansion ends up being
a weighted least-squares problem, as in the regression
case from last week
• Hence the name IRLS

Discriminant Functions Generative Models Discriminative Models

Iterative Reweighted Least Squares
• Iterative reweighted least squares (IRLS) is a descent

method
• As in gradient descent, start with an initial guess, improve it
• Gradient descent - take a step (how large?) in the gradient

direction
• IRLS is a special case of a Newton-Raphson method

• Approximate function using second-order Taylor expansion:

f̂ (w + v) = f (w) +∇f (w)T(v− w) +
1
2
(v− w)T∇2f (w)(v− w)

• Closed-form solution to minimize this is straight-forward:
quadratic, derivatives linear

• In IRLS this second-order Taylor expansion ends up being
a weighted least-squares problem, as in the regression
case from last week
• Hence the name IRLS

Discriminant Functions Generative Models Discriminative Models

Iterative Reweighted Least Squares
• Iterative reweighted least squares (IRLS) is a descent

method
• As in gradient descent, start with an initial guess, improve it
• Gradient descent - take a step (how large?) in the gradient

direction
• IRLS is a special case of a Newton-Raphson method

• Approximate function using second-order Taylor expansion:

f̂ (w + v) = f (w) +∇f (w)T(v− w) +
1
2
(v− w)T∇2f (w)(v− w)

• Closed-form solution to minimize this is straight-forward:
quadratic, derivatives linear

• In IRLS this second-order Taylor expansion ends up being
a weighted least-squares problem, as in the regression
case from last week
• Hence the name IRLS

Discriminant Functions Generative Models Discriminative Models

Newton-Raphson
484 9 Unconstrained minimization

PSfrag replacements

f

f̂

(x, f(x))

(x + ∆xnt, f(x + ∆xnt))

Figure 9.16 The function f (shown solid) and its second-order approximation

f̂ at x (dashed). The Newton step ∆xnt is what must be added to x to give

the minimizer of f̂ .

9.5 Newton’s method

9.5.1 The Newton step

For x ∈ dom f , the vector

∆xnt = −∇2f(x)−1∇f(x)

is called the Newton step (for f , at x). Positive definiteness of ∇2f(x) implies that

∇f(x)T ∆xnt = −∇f(x)T∇2f(x)−1∇f(x) < 0

unless ∇f(x) = 0, so the Newton step is a descent direction (unless x is optimal).
The Newton step can be interpreted and motivated in several ways.

Minimizer of second-order approximation

The second-order Taylor approximation (or model) f̂ of f at x is

f̂(x + v) = f(x) + ∇f(x)T v +
1

2
vT∇2f(x)v, (9.28)

which is a convex quadratic function of v, and is minimized when v = ∆xnt. Thus,
the Newton step ∆xnt is what should be added to the point x to minimize the
second-order approximation of f at x. This is illustrated in figure 9.16.

This interpretation gives us some insight into the Newton step. If the function
f is quadratic, then x + ∆xnt is the exact minimizer of f . If the function f is
nearly quadratic, intuition suggests that x + ∆xnt should be a very good estimate
of the minimizer of f , i.e., x!. Since f is twice differentiable, the quadratic model
of f will be very accurate when x is near x!. It follows that when x is near x!,
the point x + ∆xnt should be a very good estimate of x!. We will see that this
intuition is correct.

• Figure from Boyd and Vandenberghe, Convex Optimization

• Excellent reference, free for download online
http://www.stanford.edu/~boyd/cvxbook/

http://www.stanford.edu/~boyd/cvxbook/

Discriminant Functions Generative Models Discriminative Models

Conclusion

• Readings: Ch. 4.1.1-4.1.4, 4.1.7, 4.2.1-4.2.2, 4.3.1-4.3.3
• Generalized linear models y(x) = f (wTx + w0)

• Threshold/max function for f (·)
• Minimize with least squares
• Fisher criterion - class separation
• Perceptron criterion - mis-classified examples

• Probabilistic models: logistic sigmoid / softmax for f (·)
• Generative model - assume class conditional densities in

exponential family; obtain sigmoid
• Discriminative model - directly model posterior using

sigmoid (a. k. a. logistic regression, though classification)
• Can learn either using maximum likelihood

• All of these models are limited to linear decision
boundaries in feature space

	Discriminant Functions
	Generative Models
	Discriminative Models

