Discriminant Functions Generative Models Discriminative Models Discriminant Functions Generative Models Discriminative Models

Classification: Hand-written Digit Recognition

Linear Models for Classification *i= 4 6=(0,00,1,0,0,0,0,0,0)
Greg Mori - CMPT 419/726

Each input vector classified into one of K discrete classes
o Denote classes by Cx
Bishop PRML Ch. 4 « Represent input image as a vector x; € R74.
o We have target vector t; € {0, 1}'°

e Given a training set {(x1,¢),. .., (xy,tv)}, learning problem
is to construct a “good” function y(x) from these.
o y: ]R784 — RIO
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Generalized Linear Models Outline

« Similar to previous chapter on linear models for regression,
we will use a “linear” model for classification:

y(x) = Fw'x + wo) Discriminant Functions
e This is called a generalized linear model

e f(-) is a fixed non-linear function Generative Models

e eg.
1ifu>0
flu) = { 0 otherwise
o Decision boundary between classes will be linear function
of x

e Can also apply non-linearity to x, as in ¢;(x) for regression

Discriminative Models
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Discriminant Functions with Two Classes

y>0 T2

o 0 P o Start with 2 class problem,
y -

Ra ti € {0,1}
o Simple linear discriminant

60 y(x) = wlix + wy

apply threshold function to get
classification

T ¢ Projection of x in w dir. is 5

\WH
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Multiple Classes

e A solution is to build K linear functions:
yk(x) = w,fx -+ Wio
assign x to class arg maxy yy (x)
» Gives connected, convex decision regions
Axa + (1 — /\)JCB
ye®) = Aye(xa) + (1 = A)yx(xp)
=n@®) > yE),Y#k

N
I
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Multiple Classes

C3
Ci

I

¢ A linear discriminant between two classes separates with a
hyperplane

e How to use this for multiple classes?

o One-versus-the-rest method: build K — 1 classifiers,
between C; and all others

e One-versus-one method: build K(K — 1)/2 classifiers,
between all pairs
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Least Squares for Classification

e How do we learn the decision boundaries (wy, wko)?
e One approach is to use least squares, similar to regression

o Find W to minimize squared error over all examples and all
components of the label vector:

1 N K
E(W EZZ Vi xn 7tnk

n=1 k=1

e Some algebra, we get a solution using the pseudo-inverse
as in regression
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Problems with Least Squares
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o Gets worse by adding easy
points?!
e Looks okay... o Why?

o If target value is 1, points far
from boundary will have high
value, say 10; this is a large
error so the boundary is
moved

o Similar to logistic regression
decision boundary (more later)
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Perceptrons

o Perceptrons is used to refer to many neural network
structures (more next week)

e The classic type is a fixed non-linear transformation of
input, one layer of adaptive weights, and a threshold:

» Developed by Rosenblatt in the 50s

e The main difference compared to the methods we’ve seen
so far is the learning algorithm
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More Least Squares Problems

6

o Easily separated by hyperplanes, but not found using least
squares!

o We'll address these problems later with better models
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Perceptron Learning

o Two class problem
o For ease of notation, we will use r = 1 for class C; and
t = —1 for class C;
o We saw that squared error was problematic
o Instead, we’d like to minimize the number of misclassified
examples
o An example is mis-classified if w’ ¢(x, ), < 0
o Perceptron criterion:

Ep(w) = — Z wl o (x,)t,

nem

sum over mis-classified examples only
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Perceptron Learning Algorithm

o Minimize the error function using stochastic gradient
descent (gradient descent per example):

w D = (™ — ) VEp(w) = w™ + no(xa)ty
N——

if incorrect

« lterate over all training examples, only change w if the
example is mis-classified

o Guaranteed to converge if data are linearly separable
o Will not converge if not

o May take many iterations

o Sensitive to initialization
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Limitations of Perceptrons

o Perceptrons can only solve linearly separable problems in
feature space
e Same as the other models in this chapter
o Canonical example of non-separable problem is X-OR
o Real datasets can look like this too

1
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Perceptron Learning lllustration

o Note there are many hyperplanes with 0 error
» Support vector machines have a nice way of choosing one
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Probabilistic Generative Models
e Up to now we've looked at learning classification by
choosing parameters to minimize an error function
o We’'ll now develop a probabilistic approach
e With 2 classes, C; and C,:

_ p(x[C)p(Cy)
p(CI |x) - p(x)

__ px[Cp(Cr)
PR = e G+ ple. o)

ol
PC) = L Rep(C) + PGP ()

Bayes’ Rule

Sum rule

Product rule

« In generative models we specify the distribution p(x|Cy)
which generates the data for each class
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Probabilistic Generative Models - Example

o Let’s say we observe x which is the current temperature
o Determine if we are in Vancouver (C;) or Honolulu (C;)
o Generative model:

B p(C1)p(Cr)
PR = @) + i)

e p(x|Cy) is distribution over typical temperatures in
Vancouver

e eg. p(x|Ci) = N(x;10,5)

o p(x|C,) is distribution over typical temperatures in Honolulu
e eg. p(x|C2) = N(x;25,5)

e Class priors p(C;) = 0.1, p(C;) = 0.9

_ _ 0.0484-0.1 ~
* p(Cilx = 15) = Gzsa0.1+0610509 ~ 0-33

iminative Models

Logistic Sigmoid

-5 0 5

The function o(a) = m is known as the logistic
sigmoid

It squashes the real axis down to [0, 1]

It is continuous and differentiable

It avoids the problems encountered with the too correct
least-squares error fitting (later)
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Generalized Linear Models

o We can write the classifier in another form

B p(x|C)p(C1)
p(Cilx) = p(x[CP(C1) + p(x|Ca)p(Ca)
1 _
Trexp-a) %
PRy
where a _lnp(x|Cz)P(C2)

» This looks like gratuitous math, but if a takes a simple form

this is another generalized linear model which we have
been studying

o Of course, we will see how such a simple form a = w’x + wy
arises naturally

Discriminative Models

Multi-class Extension

e There is a generalization of the logistic sigmoid to K > 2
classes:

p(x[C)p(Cr)
> p(xIC)p(C)
exp(ax)
Zjexp(aj)
where a; = Inp(x|Ci)p(Ck)

p(Cilx)

e a. k. a. softmax function
o If some a; > a;, p(Cilx) goes to 1
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Gaussian Class-Conditional Densities Maximum Likelihood Learning

04

03 A : 08
. 06
02 R
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o We can fit the parameters to this model using maximum
likelihood

P ’ \;?\\‘/‘ ‘1 o Parameters are p,, i1,, ', p(C)) =7, p(C) =1 —7
SR S o Referto as ¢
 Back to that « in the logistic sigmoid for 2 classes e For a datapoint x, from class C; (1, = 1):
e Let’'s assume the class-conditional densities p(x|Cy) are
Gaussians, and have the same covariance matrix X: P(xn, C1) = p(C1)p(xalCr) = TN (xu|py, 2)

1 1 _
p(x|C) = W exp {*E(x — ) = - /J'k)}
4 e For a datapoint x,, from class C, (7, = 0):
e g takes a simple form:
a = In pi(x|C1)p(C1) =wlx +wy

px|C2)p(C2)

« Note that quadratic terms x” X~ 'x cancel

p(xn,C2) = p(C2)p(x,|Ca) = (1 — )N (x|, 2)
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Maximum Likelihood Learning Maximum Likelihood Learning - Class Priors

e The likelihood of the training data is: o . .
o Maximization with respect to the class priors parameter =

N is straightforward:
p(t‘ﬂ, His Mo, 2) = H[WN(xﬂ‘lJ‘lv 2)]&[(1 77T)N(xﬂ‘p'27 E)]litn N
n=1 7] t, 1—1
—L(t;0) = - —
on (£6) ; T l—
e As usual, In is our friend: -
N
N TTENEN
060) ="ty + (1= 1) In(1 = 7) + 1, I NG + (1 - 1,) In - 1N
=1 e e N; and N, are the number of training points in each class
L 1M

o Prior is simply the fraction of points in each class
o Maximize for each separately
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Maximum Likelihood Learning - Gaussian Parameters
e The other parameters can also be found in the same
fashion
e Class means:

1 N
Hny = Nil Z hXn
n=1
N

Ky = L Z(l — 1n)%n

N>

n=1

¢ Means of training examples from each class

e Shared covariance matrix:
Ny 1
Y= (xn_.ufl)(xn_:ul)T'i‘** Z(xn_u2)(xn_ﬂz)T

N N.
nec, 2 neCy

* Weighted average of class covariances
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Probabilistic Discriminative Models

o Generative model made assumptions about form of
class-conditional distributions (e.g. Gaussian)
o Resulted in logistic sigmoid of linear function of x

» Discriminative model - explicitly use functional form

1
pCifx) = 1+ exp(—wTx + wp)
and find w directly

« For the generative model we had 2M + M(M + 1)/2 + 1
parameters

e M is dimensionality of x
o Discriminative model will have M + 1 parameters
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Probabilistic Generative Models Summary

o Fitting Gaussian using ML criterion is sensitive to outliers

e Simple linear form for a in logistic sigmoid occurs for more
than just Gaussian distributions

o Arises for any distribution in the exponential family, a large

class of distributions
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Generative vs. Discriminative

e Generative models

e Can generate synthetic
example data

e Perhaps accurate
classification is equivalent to
accurate synthesis

e e.g. vision and graphics

¢ Tend to have more parameters

e Require good model of class
distributions

o Discriminative models
e Only usable for classification
e Don't solve a harder problem
than you need to
e Tend to have fewer parameters
¢ Require good model of
decision boundary
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Maximum Likelihood Learning - Discriminative Model Iterative Reweighted Least Squares
« As usual we can use the maximum likelihood criterion for o lterative reweighted least squares (IRLS) is a descent
learning method

¢ As in gradient descent, start with an initial guess, improve it
N o Gradient descent - take a step (how large?) in the gradient
plew) = [[vi{1 = yu}' ™ ; where y, = p(Ci|x,) direction
n=1 ¢ IRLS is a special case of a Newton-Raphson method
o Approximate function using second-order Taylor expansion:
e Taking In and derivative gives: . - 1 -
Fw4v) =fw) + Vf W) (v = w) + 500 = w) V2 f(w) (v —w)

VEW) =" (tn — yn)xn
=1 o Closed-form solution to minimize this is straight-forward:
quadratic, derivatives linear
« This time no closed-form solution since y, = o(w”x) o In IRLS this second-order Taylor expansion ends up being

a weighted least-squares problem, as in the regression
case from last week

e Hence the name IRLS

e Could use (stochastic) gradient descent
o But there’s a better iterative technique
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Newton-Raphson Conclusion

e Readings: Ch. 4.1.1-4.1.4,4.1.7,4.2.1-4.2.2,4.3.1-4.3.3
o Generalized linear models y(x) = f(w"x -+ wo)
A e Threshold/max function for f(-)

o Minimize with least squares
o Fisher criterion - class separation
» Perceptron criterion - mis-classified examples

(HAJ,,,‘7f<J»+Ax:,;j)”" 7 o Probabilistic models: logistic sigmoid / softmax for f(-)

(@, f(x))

o Generative model - assume class conditional densities in
o Figure from Boyd and Vandenberghe, Convex Optimization exponential family; obtain sigmoid
o Discriminative model - directly model posterior using
o Excellent reference, free for download online sigmoid (a. k. a. logistic regression, though classification)
http://www.stanford.edu/~boyd/cvxbook/ e Can learn either using maximum likelihood

o All of these models are limited to linear decision
boundaries in feature space


http://www.stanford.edu/~boyd/cvxbook/
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