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Regression

• Given training set {(x1, t1), . . . , (xN , tN)}
• ti is continuous: regression
• For now, assume ti ∈ R, xi ∈ RD

• E.g. ti is stock price, xi contains company profit, debt, cash
flow, gross sales, number of spam emails sent, . . .
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Linear Functions

• A function f (·) is linear if

f (αu + βv) = αf (u) + βf (v)

• Linear functions will lead to simple algorithms, so let’s see
what we can do with them
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Linear Regression

• Simplest linear model for regression

y(x,w) = w0 + w1x1 + w2x2 + . . .+ wDxD

• Remember, we’re learning w
• Set w so that y(x,w) aligns with target value in training data

• This is a very simple model, limited in what it can do
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Linear Basis Function Models

• Simplest linear model

y(x,w) = w0 + w1x1 + w2x2 + . . .+ wDxD

was linear in x (∗) and w
• Linear in w is what will be important for simple algorithms
• Extend to include fixed non-linear functions of data

y(x,w) = w0 + w1φ1(x) + w2φ2(x) + . . .+ wM−1φM−1(x)

• Linear combinations of these basis functions also linear in
parameters
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Linear Basis Function Models

• Bias parameter allows fixed offset in data

y(x,w) = w0︸︷︷︸
bias

+w1φ1(x) + w2φ2(x) + . . .+ wM−1φM−1(x)

• Think of simple 1-D x:

y(x,w) = w0︸︷︷︸
intercept

+ w1︸︷︷︸
slope

x

• For notational convenience, define φ0(x) = 1:

y(x,w) =
M−1∑
j=0

wjφj(x) = wTφ(x)
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Linear Basis Function Models

• Function for regression y(x,w) is non-linear function of x,
but linear in w:

y(x,w) =
M−1∑
j=0

wjφj(x) = wTφ(x)

• Polynomial regression is an example of this
• Order M polynomial regression, φj(x) =?

• φj(x) = xj:

y(x,w) = w0x0 + w1x1 + . . .+ wMxM
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Basis Functions: Feature Functions

• Often we extract features from x
• An intuitve way to think of φj(x) is as feature functions

• E.g. Automatic CMPT726 project report grading system
• x is text of report: In this project we apply the
algorithm of Mori [2] to recognizing blue
objects. We test this algorithm on
pictures of you and I from my holiday photo
collection. ...

• φ1(x) is count of occurrences of Mori [

• φ2(x) is count of occurrences of of you and I

• Regression grade y(x,w) = 20φ1(x)− 10φ2(x)
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Other Non-linear Basis Functions
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• Polynomial φj(x) = xj

• Gaussians φj(x) = exp{− (x−µj)2

2s2 }
• Sigmoidal φj(x) = 1

1+exp((µj−x)/s)
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Example - Gaussian Basis Functions: Temperature

• Use Gaussian basis functions, regression on temperature
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Example - Gaussian Basis Functions: Temperature

• µ1 = Vancouver, µ2 = San Francisco, µ3 = Oakland
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Example - Gaussian Basis Functions: Temperature

• µ1 = Vancouver, µ2 = San Francisco, µ3 = Oakland
• Temperature in x = Seattle? y(x,w) =

w1 exp{− (x−µ1)
2

2s2 }+ w2 exp{− (x−µ2)
2

2s2 }+ w3 exp{− (x−µ3)
2

2s2 }
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Example - Gaussian Basis Functions: Temperature

• µ1 = Vancouver, µ2 = San Francisco, µ3 = Oakland
• Temperature in x = Seattle? y(x,w) =

w1 exp{− (x−µ1)
2

2s2 }+ w2 exp{− (x−µ2)
2

2s2 }+ w3 exp{− (x−µ3)
2

2s2 }
• Compute distances to all µ, y(x,w) ≈ w1
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Example - Gaussian Basis Functions: 726 Report
Grading

• Define:
• µ1 = Crime and Punishment
• µ2 = Animal Farm
• µ3 = Some paper by Mori

• Learn weights:
• w1 = ?
• w2 = ?
• w3 = ?

• Grade a project report x:
• Measure similarity of x to each µ, Gaussian, with weights:

y(x,w) =
w1 exp{− (x−µ1)

2

2s2 }+ w2 exp{− (x−µ2)
2

2s2 }+ w3 exp{− (x−µ3)
2

2s2 }
• The Gaussian basis function models end up similar to

template matching
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Loss Functions for Regression

• We want to find the “best” set of coefficients w
• Recall, one way to define “best” was minimizing squared

error:

E(w) =
1
2

N∑
n=1

{y(xn,w)− tn}2

• We will now look at another way, based on maximum
likelihood
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Gaussian Noise Model for Regression

• We are provided with a training set {(xi, ti)}
• Let’s assume t arises from a deterministic function plus

Gassian distributed (with precision β) noise:

t = y(x,w) + ε

• The probability of observing a target value t is then:

p(t|x,w, β) = N (t|y(x,w), β−1)

• Notation: N (x|µ, σ2); x drawn from Gaussian with mean µ,
variance σ2
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Maximum Likelihood for Regression
• The likelihood of data t = {ti} using this Gaussian noise

model is:

p(t|w, β) =
N∏

n=1

N (tn|wTφ(xn), β
−1)

• The log-likelihood is:

ln p(t|w, β) = ln
N∏

n=1

√
β√
2π

exp(−β
2
(tn − wTφ(xn))

2)

=
N
2

lnβ − N
2

ln(2π)︸ ︷︷ ︸
const. wrt w

−β 1
2

N∑
n=1

(tn − wTφ(xn))
2

︸ ︷︷ ︸
squared error

• Sum of squared errors is maximum likelihood under a
Gaussian noise model
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Finding Optimal Weights

• How do we maximize likelihood wrt w (or minimize squared
error)?

• Take gradient of log-likelihood wrt w:

∂

∂wi
ln p(t|w, β) = β

N∑
n=1

(tn − wTφ(xn))φi(xn)

• In vector form:

∇ ln p(t|w, β) = β
N∑

n=1

(tn − wTφ(xn))φ(xn)
T
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Finding Optimal Weights
• Set gradient to 0:

0T =
N∑

n=1

tnφ(xn)
T − wT

(
N∑

n=1

φ(xn)φ(xn)
T

)

• Maximum likelihood estimate for w:

wML =
(
ΦTΦ

)−1
ΦT t

Φ =


φ0(x1) φ1(x1) . . . φM−1(x1)
φ0(x2) φ1(x2) . . . φM−1(x2)

...
...

. . .
...

φ0(xN) φ1(xN) . . . φM−1(xN)


• Φ† =

(
ΦTΦ

)−1
ΦT known as the pseudo-inverse

(numpy.linalg.pinv in python)
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Geometry of Least Squares

S
t

yϕ1

ϕ2

• t = (t1, . . . , tN) is the target value vector
• S is space spanned by ϕj = (φj(x1), . . . , φj(xN))

• Solution y lies in S
• Least squares solution is orthogonal projection of t onto S
• Can verify this by looking at y = ΦwML = ΦΦ†t = Pt

• P2 = P, P = PT
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Sequential Learning

• In practice N might be huge, or data might arrive online
• Can use a gradient descent method:

• Start with initial guess for w
• Update by taking a step in gradient direction ∇E of error

function
• Modify to use stochastic / sequential gradient descent:

• If error function E =
∑

n En (e.g. least squares)
• Update by taking a step in gradient direction ∇En for one

example
• Details about step size are important – decrease step size

at the end
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Regularization

• Last week we discussed regularization as a technique to
avoid over-fitting:

Ẽ(w) =
1
2

N∑
n=1

{y(xn,w)− tn}2 +
λ

2
||w||2︸ ︷︷ ︸

regularizer

• Next on the menu:
• Other regularlizers
• Bayesian learning and quadratic regularizer
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Other Regularizers

q = 0.5 q = 1 q = 2 q = 4

• Can use different norms for regularizer:

Ẽ(w) =
1
2

N∑
n=1

{y(xn,w)− tn}2 +
λ

2

M∑
j=1

|wj|q

• e.g. q = 2 – ridge regression
• e.g. q = 1 – lasso
• math is easiest with ridge regression
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Optimization with a Quadratic Regularizer

• With q = 2, total error still a nice quadratic:

Ẽ(w) =
1
2

N∑
n=1

{y(xn,w)− tn}2 +
λ

2
wTw

• Calculus ...
w = (λI +ΦTΦ︸ ︷︷ ︸

regularlized

)−1ΦT t

• Similar to unregularlized least squares
• Advantage (λI +ΦTΦ) is well conditioned so inversion is

stable
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Ridge Regression vs. Lasso

w1

w2

w?

w1

w2

w?

• Ridge regression aka parameter shrinkage
• Weights w shrink back towards origin

• Lasso leads to sparse models
• Components of w tend to 0 with large λ (strong

regularization)
• Intuitively, once minimum achieved at large radius,

minimum is on w1 = 0
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Bayesian Linear Regression

• Last week we saw an example of a Bayesian approach
• Coin tossing - prior on parameters

• We will now do the same for linear regression
• Prior on parameter w

• There will turn out to be a connection to regularlization
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Bayesian Linear Regression

• Start with a prior over parameters w
• Conjugate prior is a Gaussian:

p(w) = N (w|0, α−1I)

• This simple form will make math easier; can be done for
arbitrary Gaussian too

• Data likelihood, Gaussian model as before:

p(t|x,w, β) = N (t|y(x,w), β−1)
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Bayesian Linear Regression
• Posterior distribution on w:

p(w|t) ∝

(
N∏

n=1

p(tn|xn,w, β)

)
p(w)

=

[
N∏

n=1

√
β√
2π

exp
(
−β

2
(tn − wTφ(xn))

2
)]( α

2π

)M
2 exp(−α

2
wTw)

• Take the log:

− ln p(w|t) = β

2

N∑
n=1

(tn − wTφ(xn))
2 +

α

2
wTw + const

• L2 regularization is maximum a posteriori (MAP) with a
Gaussian prior.

• λ = α/β
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Bayesian Linear Regression - Intuition

• Simple example x, t ∈ R,
y(x,w) = w0 + w1x

• Start with Gaussian prior in
parameter space

• Samples shown in data space
• Receive data points (blue

circles in data space)
• Compute likelihood
• Posterior is prior (or

prev. posterior) times
likelihood
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Predictive Distribution

• Single estimate of w (ML or MAP) doesn’t tell whole story
• We have a distribution over w, and can use it to make

predictions
• Given a new value for x, we can compute a distribution

over t:
p(t|t, α, β) =

∫
p(t,w|t, α, β)dw

p(t|t, α, β) =
∫

p(t|w, β)︸ ︷︷ ︸
predict

p(w|t, α, β)︸ ︷︷ ︸
probability

dw︸︷︷︸
sum

• i.e. For each value of w, let it make a prediction, multiply by
its probability, sum over all w

• For arbitrary models as the distributions, this integral may
not be computationally tractable
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Predictive Distribution
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• With the Gaussians we’ve used for these distributions, the
predicitve distribution will also be Gaussian

• (math on convolutions of Gaussians)
• Green line is true (unobserved) curve, blue data points, red

line is mean, pink one standard deviation
• Uncertainty small around data points
• Pink region shrinks with more data
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Bayesian Model Selection

• So what do the Bayesians say about model selection?
• Model selection is choosing modelMi e.g. degree of

polynomial, type of basis function φ

• Don’t select, just integrate

p(t|x,D) =
L∑

i=1

p(t|x,Mi,D)︸ ︷︷ ︸
predictive dist.

p(Mi|D)

• Average together the results of all models
• Could choose most likely model a posteriori p(Mi|D)

• More efficient, approximation
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Bayesian Model Selection

• How do we compute the posterior over models?

p(Mi|D) ∝ p(D|Mi)p(Mi)

• Another likelihood + prior combination
• Likelihood:

p(D|Mi) =

∫
p(D|w,Mi)p(w|Mi)dw
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Conclusion

• Readings: Ch. 3.1, 3.1.1-3.1.4, 3.3.1-3.3.2, 3.4
• Linear Models for Regression

• Linear combination of (non-linear) basis functions
• Fitting parameters of regression model

• Least squares
• Maximum likelihood (can be = least squares)

• Controlling over-fitting
• Regularization
• Bayesian, use prior (can be = regularization)

• Model selection
• Cross-validation (use held-out data)
• Bayesian (use model evidence, likelihood)
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