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• These are non-parametric methods
• Rather than having a fixed set of parameters (e.g. weight

vector for regression, µ,Σ for Gaussian) we have a possibly
infinite set of parameters based on each data point
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Histograms

• Consider the problem of modelling the distribution of
brightness values in pictures taken on sunny days versus
cloudy days

• We could build histograms of pixel values for each class
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• E.g. for sunny days
• Count ni number of datapoints (pixels)

with brightness value falling into each
bin: pi = ni

N∆i

• Sensitive to bin width ∆i

• Discontinuous due to bin edges
• In D-dim space with M bins per

dimension, MD bins
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Local Density Estimation

• In a histogram we use nearby points to estimate density
• For a small region around x, estimate density as:

p(x) =
K

NV

• K is number of points in region, V is volume of region, N is
total number of datapoints
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Kernel Density Estimation

• Try to keep idea of using nearby points to estimate density,
but obtain smoother estimate

• Estimate density by placing a small bump at each
datapoint

• Kernel function k(·) determines shape of these bumps

• Density estimate is

p(x) ∝ 1
N

N∑
n=1

k
(

x− xn

h

)
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• Example using Gaussian kernel:

p(x) =
1
N

N∑
n=1

1
(2πh2)1/2 exp

{
−||x− xn||2

2h2

}
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• Other kernels: Rectangle, Triangle, Epanechnikov

• Fast at training time, slow at test time – keep all datapoints
• Sensitive to kernel bandwidth h
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Nearest-neighbour for Classification
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• K Nearest neighbour is often used for classification
• Classification: predict labels ti from xi

• e.g. xi ∈ R2 and ti ∈ {0, 1}, 3-nearest neighbour

• K = 1 referred to as nearest-neighbour
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Nearest-neighbour for Classification

• Good baseline method
• Slow, but can use fancy data structures for efficiency

(KD-trees, Locality Sensitive Hashing)
• Nice theoretical properties

• As we obtain more training data points, space becomes
more filled with labelled data

• As N →∞ error no more than twice Bayes error
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Bayes Error
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• Best classification possible given features
• Two classes, PDFs shown
• Decision rule: C1 if x ≤ x̂; makes errors on red, green, and

blue regions
• Optimal decision rule: C1 if x ≤ x0, Bayes error is area of

green and blue regions
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Conclusion

• Readings: Ch. 2.5
• Kernel density estimation

• Model density p(x) using kernels around training datapoints
• Nearest neighbour

• Model density or perform classification using nearest
training datapoints

• Multivariate Gaussian
• Needed for next lectures, if you need a refresher read

pp. 78-81
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