Outline

Non-parametric Methods Greg Mori - CMPT 419/726

Bishop PRML Ch. 2.5

Kernel Density Estimation

Nearest-neighbour

- These are non-parametric methods
 - Rather than having a fixed set of parameters (e.g. weight vector for regression, μ, Σ for Gaussian) we have a possibly infinite set of parameters based on each data point

Kernel Density Estimation Histograms

- · Consider the problem of modelling the distribution of brightness values in pictures taken on sunny days versus cloudy days
- We could build histograms of pixel values for each class

Kernel Density Estimation Histograms

- · E.g. for sunny days
- Count n_i number of datapoints (pixels) with brightness value falling into each bin: $p_i = \frac{n_i}{N\Delta_i}$
- Sensitive to bin width Δ_i
- Discontinuous due to bin edges
- In D-dim space with M bins per dimension, M^D bins

Local Density Estimation

- In a histogram we use nearby points to estimate density
- For a small region around x, estimate density as:

$$p(x) = \frac{K}{NV}$$

 K is number of points in region, V is volume of region, N is total number of datapoints

Kernel Density Estimation Nearest-neigh

Kernel Density Estimation

- Try to keep idea of using nearby points to estimate density, but obtain smoother estimate
- Estimate density by placing a small bump at each datapoint
 - Kernel function $k(\cdot)$ determines shape of these bumps
- · Density estimate is

$$p(x) \propto \frac{1}{N} \sum_{n=1}^{N} k \left(\frac{x - x_n}{h} \right)$$

Kernel Density Estimation Nearest-neighbor

Kernel Density Estimation

• Example using Gaussian kernel:

$$p(x) = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{(2\pi h^2)^{1/2}} \exp\left\{-\frac{||x - x_n||^2}{2h^2}\right\}$$

Kernel Density Estimation Nearest-neighbour

Kernel Density Estimation

- Other kernels: **Rectangle**, Triangle, Epanechnikov
- Fast at training time, slow at test time keep all datapoints
- Sensitive to kernel bandwidth h

Kernel Density Estimation Nearest-neighbour

Nearest-neighbour for Classification

- K Nearest neighbour is often used for classification
 - Classification: predict labels t_i from x_i
 - e.g. $x_i \in \mathbb{R}^2$ and $t_i \in \{0, 1\}$, 3-nearest neighbour
- K = 1 referred to as nearest-neighbour

 x_2

Kernel Density Estimatio

Nearest-neighbour for Classification

- · Good baseline method
 - Slow, but can use fancy data structures for efficiency (KD-trees, Locality Sensitive Hashing)
- · Nice theoretical properties
 - As we obtain more training data points, space becomes more filled with labelled data
 - As $N \to \infty$ error no more than twice Bayes error

Kernel Density Estimation Nearest-neighbor

Bayes Error $p(x,C_1)$ $p(x,C_2)$

- Best classification possible given features
- · Two classes, PDFs shown
- Decision rule: C_1 if $x \le \hat{x}$; makes errors on red, green, and blue regions
- Optimal decision rule: C_1 if $x \le x_0$, Bayes error is area of green and blue regions

Kernel Density Estimation Nearest-neighbour

Conclusion

- · Readings: Ch. 2.5
- · Kernel density estimation
 - Model density p(x) using kernels around training datapoints
- Nearest neighbour
 - Model density or perform classification using nearest training datapoints
- Multivariate Gaussian
 - Needed for next lectures, if you need a refresher read pp. 78-81