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Boosting Decision Trees Mixture of Experts

Combining Models

• Motivation: let’s say we have a number of models for a
problem

• e.g. Regression with polynomials (different degree)
• e.g. Classification with support vector machines (kernel

type, parameters)

• Often, improved performance can be obtained by
combining different models

• But how can we combine them together?
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Committees

• A combination of models is often called a committee
• Simplest way to combine models is to just average them

together:

yCOM(x) =
1
M

M∑
m=1

ym(x)

• It turns out this simple method is better than (or same as)
the individual models on average (in expectation)

• And usually slightly better

• But there are better methods, which we shall discuss
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Error of Individual Models

• Consider individual models ym(x), assume they can be
written as true value plus error:

ym(x) = h(x) + εm(x)

• The expected value of the error of an individual model is
then:

Ex[{ym(x)− h(x)}2] = Ex[εm(x)2]

• The average error made by an individual model is then:

EAV =
1
M

M∑
m=1

Ex[εm(x)2]
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Error of Committee
• The committee

yCOM(x) =
1
M

M∑
m=1

ym(x)

has expected error

ECOM = Ex

{( 1
M

M∑
m=1

ym(x)

)
− h(x)

}2


= Ex

{( 1
M

M∑
m=1

h(x) + εm(x)

)
− h(x)

}2


= Ex

{( 1
M

M∑
m=1

εm(x)

)
+ h(x)− h(x)

}2
 = Ex

{ 1
M

M∑
m=1

εm(x)

}2
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Committee Error vs. Individual Error
• So, the committee error is

ECOM = Ex

{ 1
M

M∑
m=1

εm(x)

}2
 =

1
M2

M∑
m=1

M∑
n=1

Ex [εm(x)εn(x)]

• If we assume errors are uncorrelated, Ex [εm(x)εn(x)] = 0
when m 6= n, then:

ECOM =
1

M2

M∑
m=1

Ex
[
εm(x)2] = 1

M
EAV

• However, errors are rarely uncorrelated
• For example, if all errors are the same, εm(x) = εn(x), then

ECOM = EAV
• Using Jensen’s inequality (convex functions), can show

ECOM ≤ EAV
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Boosting

• Boosting is a technique for combining classifiers into a
committee

• We describe AdaBoost (adaptive boosting), the most
commonly used variant

• Boosting is a meta-learning technique
• Combines a set of classifiers trained using their own

learning algorithms
• Magic: can work well even if those classifiers only perform

slightly better than random!
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Boosting Model

• We consider two-class classification problems, training
data (xi, ti), with ti ∈ {−1, 1}

• In boosting we build a “linear” classifier of the form:

y(x) =
M∑

m=1

αmym(x)

• A committee of classifiers, with weights
• In boosting terminology:

• Each ym(x) is called a weak learner or base classifier
• Final classifier y(x) is called strong learner

• Learning problem: how do we choose the weak learners
ym(x) and weights αm?
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Example - Thresholds

• Let’s consider a simple example where weak learners are
thresholds

• i.e. Each ym(x) is of the form:

ym(x) = xi > θ

• To allow different directions of threshold, include
p ∈ {−1,+1}:

ym(x) = pxi > pθ
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Choosing Weak Learners
�����
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• Boosting is a greedy strategy for building the strong learner

y(x) =
M∑

m=1

αmym(x)

• Start by choosing the best weak learner, use it as y1(x)
• Best is defined as that which minimizes number of mistakes

made (0-1 classification loss)
• i.e. Search over all p, θ, i to find best

ym(x) = pxi > pθ
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Choosing Weak Learners
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• The first weak learner y1(x) made some mistakes
• Choose the second weak learner y2(x) to try to get those

ones correct
• Best is now defined as that which minimizes weighted

number of mistakes made
• Higher weight given to those y1(x) got incorrect

• Strong learner now

y(x) = α1y1(x) + α2y2(x)
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Choosing Weak Learners
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• Repeat: reweight examples and choose new weak learner
based on weights

• Green line shows decision boundary of strong learner
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What About Those Weights?

• So exactly how should we choose the weights for the
examples when classified incorrectly?

• And what should the αm be for combining the weak
learners ym(x)?

• As usual, we define a loss function, and choose these
parameters to minimize it
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Exponential Loss

• Boosting attempts to minimize the exponential
loss

En = exp{−tny(xn)}

error on nth training example
• Exponential loss is differentiable

approximation to 0/1 loss
• Better for optimization

• Total error

E =

N∑
n=1

exp{−tny(xn)}

Exponential loss function

• We will use the exponential loss to measure the quality of the classifier:

L(H(x), y) = e−y·H(x)

LN(H) =
N∑

i=1

L(H(xi), yi)

=
N∑

i=1

e−yi·H(xi)
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• Differentiable approximation (bound) of 0/1 loss

– Easy to optimize!

• Other options are possible.

CS195-5 2006 – Lecture 29 4

figure from G. Shakhnarovich
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Minimizing Exponential Loss
• Let’s assume we’ve already chosen weak learners

y1(x), . . . , ym−1(x) and their weights α1, . . . , αm−1
• Define fm−1(x) = α1y1(x) + . . .+ αm−1ym−1(x)

• Just focus on choosing ym(x) and αm
• Greedy optimization strategy

• Total error using exponential loss is:

E =

N∑
n=1

exp{−tny(xn)} =
N∑

n=1

exp{−tn[fm−1(xn) + αmym(xn)]}

=

N∑
n=1

exp{−tnfm−1(xn)− tnαmym(xn)}

=

N∑
n=1

exp{−tnfm−1(xn)}︸ ︷︷ ︸
weight w(m)

n

exp{−tnαmym(xn)}
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Weighted Loss

• On the mth iteration of boosting, we are choosing ym and αm

to minimize the weighted loss:

E =

N∑
n=1

w(m)
n exp{−tnαmym(xn)}

where w(m)
n = exp{−tnfm−1(xn)}

• Can define these as weights since they are constant wrt ym
and αm

• We’ll see they’re the right weights to use
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Minimization wrt ym

• Consider the weighted loss

E =

N∑
n=1

w(m)
n e−tnαmym(xn) = e−αm

∑
n∈Tm

w(m)
n + eαm

∑
n∈Mm

w(m)
n

where Tm is the set of points correctly classified by the
choice of ym(x), and Nm those that are not

E = eαm

N∑
n=1

w(m)
n I(ym(xn) 6= tn) + e−αm

N∑
n=1

w(m)
n (1− I(ym(xn) 6= tn))

= (eαm − e−αm)

N∑
n=1

w(m)
n I(ym(xn) 6= tn) + e−αm

N∑
n=1

w(m)
n

• Since the second term is a constant wrt ym and
eαm − e−αm > 0 if αm > 0, best ym minimizes weighted 0-1
loss
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Choosing αm

• So best ym minimizes weighted 0-1 loss regardless of αm

• How should we set αm given this best ym?
• Recall from above:

E = eαm

N∑
n=1

w(m)
n I(ym(xn) 6= tn) + e−αm

N∑
n=1

w(m)
n (1− I(ym(xn) 6= tn))

= eαmεm + e−αm(1− εm)

where we define εm to be the weighted error of ym

• Calculus: αm = 1
2 log 1−εm

εm
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AdaBoost Summary

• Initialize weights w(1)
n = 1/N

• For m = 1, . . . ,M (and while εm < 1/2)
• Find weak learner ym(x) with minimum weighted error

εm =

N∑
n=1

w(m)
n I(ym(xn) 6= tn)

• Set αm = 1
2 log 1−εm

εm

• Update weights w(m+1)
n = w(m)

n exp{−αmtnym(xn)}
• Normalize weights to sum to one

• Final classifier is

y(x) = sign

(
M∑

m=1

αmym(x)

)
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AdaBoost Behaviour
AdaBoost behavior: test error

• Typical behavior: test error can still decrease after training error is flat (even
zero).

CS195-5 2006 – Lecture 29 12

• Typical behaviour:
• Test error decreases even after training error is flat (even

zero!)
• Tends not to overfit

from G. Shakhnarovich
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Boosting the Margin

• Define the margin of an example:

γ(xi) = ti
α1y1(xi) + . . .+ αmym(xi)

α1 + . . .+ αm

• Margin is 1 iff all yi classify correctly, -1 if none do
• Iterations of AdaBoost increase the margin of training

examples (even after training error is zero)
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Loss Functions for Classification

−2 −1 0 1 2
z

E(z)

• We revisit a graph from earlier: 0-1 loss, SVM hinge loss,
logistic regression cross-entropy loss, and AdaBoost
exponential loss are shown

• All are approximations (upper bounds) to 0-1 loss
• Exponential loss leads to simple greedy optimization

scheme
• But it has problems with outliers: note behaviour compared

to logistic regression cross-entropy loss for badly
mis-classified examples
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Carving Up Input Space
• The boosting method for building a committee builds a

model:

y(x) =
M∑

m=1

αmym(x)

• Note that the committee is built over all input space
• Though it can of course behave differently in different

regions

• Instead, we could explicitly carve up input space into
different regions Rm and have different committee
members act in different regions:

y(x) =
M∑

m=1

1Rm(x)ym(x)

where 1Rm(·) is the indicator function (0 or 1)
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Tree-based Models

A

B

C D

E

θ1 θ4

θ2

θ3

x1

x2

• A common method for carving up input space is to use
axis-aligned cuboid-shaped regions

• Each model ym(x) would only be responsible for one
subregion
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Decision Trees

A

B

C D

E

θ1 θ4

θ2

θ3

x1

x2

x1 > θ1

x2 > θ3

x1 6 θ4

x2 6 θ2

A B C D E

• These splits are commonly chosen in a top-down fashion
to form a binary tree

• These are known as decision trees
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Building Decision Trees

• Given a dataset, the learning problem is to decide which is
the best tree

• There are (exponentially-exponentially) many different
trees to choose from

• Brute force impossible, so use a greedy strategy
• Start with an empty tree
• Choose a dimension i and value θ on which to split
• Make recursive calls

• Some training examples XL go down left branch, recursive
call with those

• Other training examples XR go down right branch, a second
recursive call with those
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Example - Waiting for Table

Attribute-based representations

Examples described by attribute values (Boolean, discrete, continuous, etc.)
E.g., situations where I will/won’t wait for a table:

Example Attributes Target
Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait

X1 T F F T Some $$$ F T French 0–10 T

X2 T F F T Full $ F F Thai 30–60 F

X3 F T F F Some $ F F Burger 0–10 T
X4 T F T T Full $ F F Thai 10–30 T

X5 T F T F Full $$$ F T French >60 F

X6 F T F T Some $$ T T Italian 0–10 T
X7 F T F F None $ T F Burger 0–10 F

X8 F F F T Some $$ T T Thai 0–10 T
X9 F T T F Full $ T F Burger >60 F

X10 T T T T Full $$$ F T Italian 10–30 F

X11 F F F F None $ F F Thai 0–10 F
X12 T T T T Full $ F F Burger 30–60 T

Classification of examples is positive (T) or negative (F)

Chapter 18, Sections 1–3 13

from Russell and Norvig AIMA

• Classification problem - tn is whether or not one should
wait for a table at a restaurant

• In this example attributes (components of xn) are discrete;
can be continuous too
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Choosing a Dimension
Choosing an attribute

Idea: a good attribute splits the examples into subsets that are (ideally) “all
positive” or “all negative”

None Some Full

Patrons?

French Italian Thai Burger

Type?

Patrons? is a better choice—gives information about the classification

Chapter 18, Sections 1–3 24

• Of all the dimensions one could choose to put at root of
decision tree, which is best?

• Compare using Patrons? versus Type?
• Patrons? looks better – more information about

classification
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Information

• Information answers questions
• The more clueless I am about the answer initially, the more

information is in the answer
• Scale: 1 bit = answer to Boolean question with prior

p(x = true) = 0.5
• For a K-class classification problem, we have a prior

p(x = k) = πk

• Information in answer is

H(x) = −
K∑

k=1

πk log2 πk

known as entropy of prior
• A good dimension produces a split that reduces entropy
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Entropy
Information contd.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8
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p
i

H
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p
i,1
!
p
i>
)

Chapter 18, Sections 1–3 26

• Entropy for binary classification (boolean prior)
• H(x) = −π1 log2 π1 − (1− π1) log2(1− π1)
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Choosing a Dimension
Choosing an attribute

Idea: a good attribute splits the examples into subsets that are (ideally) “all
positive” or “all negative”

None Some Full

Patrons?

French Italian Thai Burger

Type?

Patrons? is a better choice—gives information about the classification

Chapter 18, Sections 1–3 24

• Compare using Patrons? versus Type?
• Patrons? has average entropy of 0.459 bits
• Type? has average entropy of 1 bit

• Put Patrons? at root of tree
• Make recursive calls using training examples that fall down

each path
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Learnt Tree

Example contd.

Decision tree learned from the 12 examples:

No  Yes

Fri/Sat?

None Some Full

Patrons?

No Yes

Hungry?

Type?

French Italian Thai Burger

F T

T F

F

T

F T

Substantially simpler than “true” tree—a more complex hypothesis isn’t jus-
tified by small amount of data

Chapter 18, Sections 1–3 29

• At each leaf have an expert
• In this case, just report what type of examples are in this

region of input space
• More generally, could stop earlier, build classifier in each

region
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Outline

Boosting

Decision Trees

Mixture of Experts



Boosting Decision Trees Mixture of Experts

Mixture of Experts

• The mixture of experts model takes the idea of splitting up
regions of space in a probabilistic direction

• The decision on which model to use is probabilistic:

p(t|x) =
M∑

m=1

πm(x)pm(t|x)

• Note that all models pm(t|x) are used
• But contributions πm(x) depend on input variable x

• These coefficients πm(x) are known as gating functions
• Each pm(t|x) is an expert in a region of input space, the

gating functions determine when to use each expert
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Conclusion

• Readings: Ch. 14.3, 14.4
• Methods for combining models

• Simple averaging into a committee
• Greedy selection of models to minimize exponential loss

(AdaBoost)
• Select models which are good at particular regions of input

space (decision trees, mixture of experts)
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