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Combining Models

e Motivation: let’s say we have a number of models for a
problem
¢ e.g. Regression with polynomials (different degree)
¢ e.g. Classification with support vector machines (kernel
type, parameters)
o Often, improved performance can be obtained by
combining different models

e But how can we combine them together?



Committees

A combination of models is often called a committee
Simplest way to combine models is to just average them

together:
YCOM Z ym

It turns out this simple method is better than (or same as)
the individual models on average (in expectation)

o And usually slightly better
But there are better methods, which we shall discuss
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Error of Individual Models

e Consider individual models y,,(x), assume they can be
written as true value plus error:

Ym(X) = h(x) + €n(x)



Error of Individual Models

e Consider individual models y,,(x), assume they can be
written as true value plus error:

Ym(¥) = h(x) + €n(x)
e The expected value of the error of an individual model is

then:
Ex [{ym(x) — h(x)}?] = Ex[en(x)?]



Error of Individual Models

e Consider individual models y,,(x), assume they can be
written as true value plus error:

Ym(X) = h(x) + €n(x)

e The expected value of the error of an individual model is
then:
Ex[{ym(x) — h(x)}?] = Ex[en(x)?]

e The average error made by an individual model is then:

Exy = % Z Ex[en(x)?]

m=1
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Committee Error vs. Individual Error

e So, the committee error is

LM 2 | MM
Ecom = Ex {M Z em(x)} =10 Z Z]Ex [em(x)en(x)]
m=1

m=1 n=1
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Committee Error vs. Individual Error
e So, the committee error is

LM 2 | MM
Ecom = Ex {M Z em(x)} =10 Z Z]Ex [em(x)en(x)]
m=1

m=1 n=1

e If we assume errors are uncorrelated, E, [e,,(x)e, (x)] =0
when m # n, then:

M
1 1
Ecom = Y2 ZEx em(x)?] = MEAV
e



Committee Error vs. Individual Error
e So, the committee error is

2 | MM
Ecoy = E { Zem } ZjZZEx[Em(x)En(x)]

m=1 n=1

e If we assume errors are uncorrelated, E, [e,,(x)e, (x)] =0
when m # n, then:

1M1=
£
S
o
<

Ecom = Y2

e However, errors are rarely uncorrelated
e For example, if all errors are the same, ¢, (x) = €,(x), then
Ecom = Eav
e Using Jensen’s inequality (convex functions), can show
Ecom < Eav
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Boosting

e Boosting is a technique for combining classifiers into a
committee
e We describe AdaBoost (adaptive boosting), the most
commonly used variant
e Boosting is a meta-learning technique
e Combines a set of classifiers trained using their own
learning algorithms
¢ Magic: can work well even if those classifiers only perform
slightly better than random!



Boosting

Boosting Model
e We consider two-class classification problems, training

data (x;,#;), with; € {—1,1}
¢ In boosting we build a “linear” classifier of the form:

M
y(x) = Z amym<x)
m=1
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Boosting Model

We consider two-class classification problems, training
data (x;,#;), with; € {—1,1}
In boosting we build a “linear” classifier of the form:

M
y(x) = Z amym(x)
m=1

A committee of classifiers, with weights
In boosting terminology:

e Each y,(x) is called a weak learner or base classifier
o Final classifier y(x) is called strong learner
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Boosting Model

We consider two-class classification problems, training
data (x;,#;), with; € {—1,1}

In boosting we build a “linear” classifier of the form:

M
y(x) = Z amym<x)
m=1

A committee of classifiers, with weights
In boosting terminology:

e Each y,(x) is called a weak learner or base classifier
o Final classifier y(x) is called strong learner

Learning problem: how do we choose the weak learners
ym(x) and weights o, ?



Boosting

Example - Thresholds

e Let’'s consider a simple example where weak learners are
thresholds

e i.e. Each y,(x) is of the form:
Ym(xX) =x; > 6

e To allow different directions of threshold, include
pe{-1,+1}:
Ym (%) = px; > pb
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Choozsing Weak Learners
O | OO m=1
o

e Boosting is a greedy strategy for building the strong learner

yx) = Z Y (X)
m=1

o Start by choosing the best weak learner, use it as y; (x)
o Best is defined as that which minimizes number of mistakes
made (0-1 classification loss)

e i.e. Search over all p, 6, i to find best

ym(X) = px; > pb
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Choosing Weak Learners

20 |oom:l 2f, ‘ °°m:2
o 00 P ° a) e
el ‘O °o
0 o J © 0 O
e 9 o ol .
%o &oo ° sobo
-2 (o] Oo -2 % o
o | °
-1 0 1 2 -1 0 1 2

e The first weak learner y;(x) made some mistakes

e Choose the second weak learner y,(x) to try to get those
ones correct

e Best is now defined as that which minimizes weighted
number of mistakes made
o Higher weight given to those y, (x) got incorrect

e Strong learner now

y(x) = ayi(x) + azya(x)



Boosting Decision Trees

Choosing Weak Learners
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¢ Repeat: reweight examples and choose new weak learner
based on weights

e Green line shows decision boundary of strong learner



Boosting

What About Those Weights?

e So exactly how should we choose the weights for the
examples when classified incorrectly?

¢ And what should the «,, be for combining the weak
learners y,(x)?

e As usual, we define a loss function, and choose these
parameters to minimize it
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Exponential Loss

e Boosting attempts to minimize the exponential

loss
Ey = exp{—tny(xn)}
error on n' training example
e Exponential loss is differentiable b
approximation to 0/1 loss N
o Better for optimization [ S —

figure from G. Shakhnarovich



Boosting

Exponential Loss

e Boosting attempts to minimize the exponential
loss
E, = exp{—t,y(xn)}

error on n' training example

e Exponential loss is differentiable
approximation to 0/1 loss

o Better for optimization
e Total error

N
E= Z exp{_tny(xn)}
n=1

figure from G. Shakhnarovich
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Minimizing Exponential Loss

e Let's assume we've already chosen weak learners
yi(x),...,ym—1(x) and their weights a;, ..., a,—1
[ Definefm_1 (x) = Q1)1 (x) + oot p—1Ym—1 (x)

Mixture of Experts



Boosting

Minimizing Exponential Loss
e Let's assume we've already chosen weak learners
yi(x),...,ym—1(x) and their weights a;, ..., a,—1
e Define f,—1(x) = ayi(x) + ... + tw—1Ym—1(x)
e Just focus on choosing y,,(x) and o,
o Greedy optimization strategy



Boosting

Minimizing Exponential Loss

e Let's assume we've already chosen weak learners
yi(x),...,ym—1(x) and their weights a;, ..., a,—1
e Define f,—1(x) = ayi(x) + ... + tw—1Ym—1(x)
e Just focus on choosing y,,(x) and o,
o Greedy optimization strategy

o Total error using exponential loss is:

E = Zexp{ tay(xn)} ZCXP{ talfm—1(%n) + vnym(x,)]}

n=1

= Z exp{_tnfm—l (xn) - [namym(xn)}
n=1

N
Z CXP{_tnfm—l (xn)} CXP{—anémym (xﬂ)}

weight w{™



Boosting

Weighted Loss

e On the m"™ iteration of boosting, we are choosing y,, and a,
to minimize the weighted loss:

N
E = ngm)exp{—tnamym(xn)}

n=1

where w™ — exp{—tufin—1(xs)}

e Can define these as weights since they are constant wrt y,,
and a,

o We'll see they’re the right weights to use



Boosting

Minimization wrt y,,
¢ Consider the weighted loss

N
E — ngm)e_tnamym(xn) — e_am Z WI(’Lm) _|_ eam Z ngm)
n=1 }’l€7;,, nEMm

where 7, is the set of points correctly classified by the
choice of y,(x), and N,, those that are not



Boosting

Minimization wrt y,,
¢ Consider the weighted loss

ZN:W’(lm) o~ InQmym(Xn) _ ,—am Z w,(f") + e Z ngm)
n=1

neﬁ, VLEMm

where 7, is the set of points correctly classified by the
choice of y,(x), and N,, those that are not

E = a'"Zw’")Iymxn # 1n) + “’"ZWn (1= 1Om(en) 7 1),

n=1

= (&% — g~ Om Zw(m)l (Ym(xn) # 1) + e Z wn
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Minimization wrt y,,
¢ Consider the weighted loss

zN:WSlm)e_znamym(xn) — o Om Z W,(1m) + oo Z WSLm)
n=1

Vl€7;n nEMm

where 7, is the set of points correctly classified by the
choice of y,(x), and N,, those that are not

E = amenm)I (Vm(Xn) # 1) + a”’an (1= I(ym(xn) # )]

n=1 n=1

= (e¥m — e m Zw(m)l (Ym(xn) # 1) + e Z wn

e Since the second term is a constant wrt y,, and
em — e > 0 if oy, > 0, best y,, minimizes weighted 0-1
loss
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Choosing «,,

e So best y,, minimizes weighted 0-1 loss regardless of a,
e How should we set «,, given this best y,,?



Boosting

Choosing «,,

e So best y,, minimizes weighted 0-1 loss regardless of «,
e How should we set «,, given this best y,,?
¢ Recall from above:

S ST PR S
= ea’”ﬁm-l-e "(1 = €m)

where we define ¢, to be the weighted error of y,,



Boosting

Choosing «,,

e So best y,, minimizes weighted 0-1 loss regardless of «,
e How should we set «,, given this best y,,?
¢ Recall from above:

S ST PR S
= ea’”ﬁm-l-e "(1 = €m)

where we define ¢, to be the weighted error of y,,
» Calculus: o, = § log 1=



Boosting

AdaBoost Summary

e Initialize weights wf,l) =1/N
e Form=1,...,M (and while ¢,, < 1/2)

e Find weak learner y,,(x) with minimum weighted error

N
€m = Zwr(zm)l()’m(xn) # 1)

n=1

e Seta,, = 1log

=2
« Update weights w{" ™" = w{™ exp{—amtyym(xn)}

¢ Normalize weights to sum to one
¢ Final classifier is

M
y(x) = sign (Z am}’m(x)>
m=1

1—epn
€m
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AdaBoost Behaviour
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e Typical behaviour:

o Test error decreases even after training error is flat (even
zero!)
¢ Tends not to overfit

from G. Shakhnarovich



Boosting

Boosting the Margin

e Define the margin of an example:

a1y1 (xi) +...+ amyin(xi)
a4+ ...+ oy

v(xi) = t;

e Margin is 1 iff all y; classify correctly, -1 if none do

e lterations of AdaBoost increase the margin of training
examples (even after training error is zero)
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Loss Functions for Classification

E(z)

z
-2 -1 0 1 2

e We revisit a graph from earlier: 0-1 loss, SVM hinge loss,
logistic regression cross-entropy loss, and AdaBoost
exponential loss are shown

¢ All are approximations (upper bounds) to 0-1 loss

e Exponential loss leads to simple greedy optimization
scheme

e But it has problems with outliers: note behaviour compared
to logistic regression cross-entropy loss for badly
mis-classified examples
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Carving Up Input Space

e The boosting method for building a committee builds a
model:

M
3®) = anyn(x)
m=1

¢ Note that the committee is built over all input space

e Though it can of course behave differently in different
regions
¢ Instead, we could explicitly carve up input space into

different regions R,, and have different committee
members act in different regions:

M
m=1

where 1%, () is the indicator function (0 or 1)
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Tree-based Models

03
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0, 04 L1
e A common method for carving up input space is to use
axis-aligned cuboid-shaped regions

e Each model y,,(x) would only be responsible for one
subregion
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Decision Trees

03
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e These splits are commonly chosen in a top-down fashion
to form a binary tree

e These are known as decision trees



Decision Trees

Building Decision Trees

¢ Given a dataset, the learning problem is to decide which is
the best tree

e There are (exponentially-exponentially) many different
trees to choose from
e Brute force impossible, so use a greedy strategy

o Start with an empty tree
e Choose a dimension i and value ¢ on which to split
o Make recursive calls
e Some training examples X, go down left branch, recursive
call with those
o Other training examples Xz go down right branch, a second
recursive call with those



Boosting

Decision Trees

Example - Waiting for Table

Mixture of Experts

Example Attributes Target
Alt | Bar | Fri| Hun | Pat | Price Rain | Res| Type | Est || WillWait
X1 T| F| F| T |Some| $$% F T | French| 0-10 T
X5 T| F | F T | Full $ F F | Thai |30-60 F
X3 F| T | F| F |Some| §$ F F | Burger| 0-10 T
X, T| F | T T | Full $ F F | Thai |10-30 T
X5 T| F | T | F | Full | $3% F T | French| >60 F
X F| T | F T |Some| $3 T T | Italian | 0-10 T
X; F| T | F| F |None| §$ T F | Burger| 0-10 F
X3 F| F | F T |Some| $3 T T | Thai | 0-10 T
Xy F| T T F Full $ T F | Burger| >60 F
X10 T| T | T| T | Full | $3% F T | ltalian | 10-30 F
X1 F| F | F F | None| § F F | Thai | 0-10 F
X9 T| T | T T | Full $ F F | Burger| 30-60 T

from Russell and Norvig AIMA

« Classification problem - ¢, is whether or not one should

wait for a table at a restaurant
¢ In this example attributes (components of x,,) are discrete;

can be continuous too
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Choosing a Dimension

000000 000000
000000 000000
None Some Full French ltalian Thai Burger
0000 00 o o 00 o0
o0 0000 (] e 00 o0

e Of all the dimensions one could choose to put at root of
decision tree, which is best?
e Compare using Patrons? versus Type?
e Patrons? looks better — more information about
classification



Decision Trees

Information

¢ Information answers questions

e The more clueless | am about the answer initially, the more
information is in the answer

e Scale: 1 bit = answer to Boolean question with prior
p(x = true) = 0.5

e For a K-class classification problem, we have a prior
p(x=k) =m

¢ Information in answer is

K
H(x) = — Z i log, Tk
k=1

known as entropy of prior
¢ A good dimension produces a split that reduces entropy
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Entropy

0 02 04 06 08 1
p.

e Entropy for binary classification (boolean prior)
e H(x) = —mlogy m — (1 —mp)log, (1 — )

Mixture of Experts
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Choosing a Dimension

000000 000000
000000 000000
None Some Full French Italian Thai Burger
0000 00 o o 00 o0
o0 0000 (] e 00 o0

e Compare using Patrons? versus Type?
e Patrons? has average entropy of 0.459 bits
e Type? has average entropy of 1 bit
e Put Patrons? at root of tree
o Make recursive calls using training examples that fall down
each path
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Learnt Tree

Burger

¢ At each leaf have an expert
¢ In this case, just report what type of examples are in this
region of input space
o More generally, could stop earlier, build classifier in each
region
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Mixture of Experts

The mixture of experts model takes the idea of splitting up
regions of space in a probabilistic direction

The decision on which model to use is probabilistic:

p(tlx) = Z?‘(‘m X)pm(t|x)

Note that all models p,,(t|x) are used
But contributions ,,(x) depend on input variable x

e These coefficients ,(x) are known as gating functions
e Each p,,(7]x) is an expert in a region of input space, the
gating functions determine when to use each expert



Mixture of Experts

Conclusion

e Readings: Ch. 14.3, 14.4
e Methods for combining models
e Simple averaging into a committee
o Greedy selection of models to minimize exponential loss
(AdaBoost)
e Select models which are good at particular regions of input
space (decision trees, mixture of experts)
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