▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Combining Models Greg Mori - CMPT 419/726

Bishop PRML Ch. 14

Mixture of Experts

Boosting

Decision Trees

Mixture of Experts

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Combining Models

- Motivation: let's say we have a number of models for a problem
 - e.g. Regression with polynomials (different degree)
 - e.g. Classification with support vector machines (kernel type, parameters)
- Often, improved performance can be obtained by combining different models
- But how can we combine them together?

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Committees

- A combination of models is often called a committee
- Simplest way to combine models is to just average them together:

$$y_{COM}(\boldsymbol{x}) = \frac{1}{M} \sum_{m=1}^{M} y_m(\boldsymbol{x})$$

- It turns out this simple method is better than (or same as) the individual models on average (in expectation)
 - And usually slightly better
- But there are better methods, which we shall discuss

Error of Individual Models

• Consider individual models *y_m*(*x*), assume they can be written as true value plus error:

$$y_m(\boldsymbol{x}) = h(\boldsymbol{x}) + \epsilon_m(\boldsymbol{x})$$

• The expected value of the error of an individual model is then:

$$\mathbb{E}_{\boldsymbol{x}}[\{y_m(\boldsymbol{x}) - h(\boldsymbol{x})\}^2] = \mathbb{E}_{\boldsymbol{x}}[\epsilon_m(\boldsymbol{x})^2]$$

• The average error made by an individual model is then:

$$E_{AV} = \frac{1}{M} \sum_{m=1}^{M} \mathbb{E}_{\mathbf{x}}[\epsilon_m(\mathbf{x})^2]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ●臣 = の々で

(ロ) (同) (三) (三) (三) (○) (○)

Error of Individual Models

• Consider individual models *y_m*(*x*), assume they can be written as true value plus error:

$$y_m(\boldsymbol{x}) = h(\boldsymbol{x}) + \epsilon_m(\boldsymbol{x})$$

• The expected value of the error of an individual model is then:

$$\mathbb{E}_{\boldsymbol{x}}[\{y_m(\boldsymbol{x}) - h(\boldsymbol{x})\}^2] = \mathbb{E}_{\boldsymbol{x}}[\epsilon_m(\boldsymbol{x})^2]$$

• The average error made by an individual model is then:

$$E_{AV} = \frac{1}{M} \sum_{m=1}^{M} \mathbb{E}_{\mathbf{x}}[\epsilon_m(\mathbf{x})^2]$$

(ロ) (同) (三) (三) (三) (○) (○)

Error of Individual Models

• Consider individual models *y_m*(*x*), assume they can be written as true value plus error:

$$y_m(\boldsymbol{x}) = h(\boldsymbol{x}) + \epsilon_m(\boldsymbol{x})$$

• The expected value of the error of an individual model is then:

$$\mathbb{E}_{\boldsymbol{x}}[\{y_m(\boldsymbol{x}) - h(\boldsymbol{x})\}^2] = \mathbb{E}_{\boldsymbol{x}}[\epsilon_m(\boldsymbol{x})^2]$$

• The average error made by an individual model is then:

$$E_{AV} = \frac{1}{M} \sum_{m=1}^{M} \mathbb{E}_{\boldsymbol{x}}[\epsilon_m(\boldsymbol{x})^2]$$

Error of Committee

• The committee

$$y_{COM}(\boldsymbol{x}) = \frac{1}{M} \sum_{m=1}^{M} y_m(\boldsymbol{x})$$

has expected error

$$E_{COM} = \mathbb{E}_{\mathbf{x}} \left[\left\{ \left(\frac{1}{M} \sum_{m=1}^{M} y_m(\mathbf{x}) \right) - h(\mathbf{x}) \right\}^2 \right]$$

$$\mathcal{L} = \mathbb{E}_{oldsymbol{x}} \left[\left\{ \left(rac{1}{M} \sum_{m=1}^{M} h(oldsymbol{x}) + \epsilon_m(oldsymbol{x})
ight) - h(oldsymbol{x})
ight\}^2
ight]$$

$$=\mathbb{E}_{\mathbf{x}}\left[\left\{\left(\frac{1}{M}\sum_{m=1}^{M}\epsilon_{m}(\mathbf{x})\right)+h(\mathbf{x})-h(\mathbf{x})\right\}^{2}\right]=\mathbb{E}_{\mathbf{x}}\left[\left\{\frac{1}{M}\sum_{m=1}^{M}\epsilon_{m}(\mathbf{x})\right\}^{2}\right]$$

Error of Committee

• The committee

$$y_{COM}(\boldsymbol{x}) = \frac{1}{M} \sum_{m=1}^{M} y_m(\boldsymbol{x})$$

has expected error

$$E_{COM} = \mathbb{E}_{\mathbf{x}} \left[\left\{ \left(\frac{1}{M} \sum_{m=1}^{M} y_m(\mathbf{x}) \right) - h(\mathbf{x}) \right\}^2 \right]$$
$$= \mathbb{E}_{\mathbf{x}} \left[\left\{ \left(\frac{1}{M} \sum_{m=1}^{M} h(\mathbf{x}) + \epsilon_m(\mathbf{x}) \right) - h(\mathbf{x}) \right\}^2 \right]$$

Error of Committee

• The committee

$$y_{COM}(\boldsymbol{x}) = \frac{1}{M} \sum_{m=1}^{M} y_m(\boldsymbol{x})$$

has expected error

$$E_{COM} = \mathbb{E}_{\mathbf{x}} \left[\left\{ \left(\frac{1}{M} \sum_{m=1}^{M} y_m(\mathbf{x}) \right) - h(\mathbf{x}) \right\}^2 \right]$$
$$= \mathbb{E}_{\mathbf{x}} \left[\left\{ \left(\frac{1}{M} \sum_{m=1}^{M} h(\mathbf{x}) + \epsilon_m(\mathbf{x}) \right) - h(\mathbf{x}) \right\}^2 \right]$$
$$= \mathbb{E}_{\mathbf{x}} \left[\left\{ \left(\frac{1}{M} \sum_{m=1}^{M} \epsilon_m(\mathbf{x}) \right) + h(\mathbf{x}) - h(\mathbf{x}) \right\}^2 \right] = \mathbb{E}_{\mathbf{x}} \left[\left\{ \left(\frac{1}{M} \sum_{m=1}^{M} \epsilon_m(\mathbf{x}) \right) + h(\mathbf{x}) - h(\mathbf{x}) \right\}^2 \right]$$

Committee Error vs. Individual Error

· So, the committee error is

$$E_{COM} = \mathbb{E}_{\boldsymbol{x}} \left[\left\{ \frac{1}{M} \sum_{m=1}^{M} \epsilon_m(\boldsymbol{x}) \right\}^2 \right] = \frac{1}{M^2} \sum_{m=1}^{M} \sum_{n=1}^{M} \mathbb{E}_{\boldsymbol{x}} \left[\epsilon_m(\boldsymbol{x}) \epsilon_n(\boldsymbol{x}) \right]$$

• If we assume errors are uncorrelated, $\mathbb{E}_x [\epsilon_m(x)\epsilon_n(x)] = 0$ when $m \neq n$, then:

$$E_{COM} = rac{1}{M^2} \sum_{m=1}^{M} \mathbb{E}_{\boldsymbol{x}} \left[\epsilon_m(\boldsymbol{x})^2
ight] = rac{1}{M} E_{AV}$$

- However, errors are rarely uncorrelated
 - For example, if all errors are the same, $\epsilon_m(\mathbf{x}) = \epsilon_n(\mathbf{x})$, then $E_{COM} = E_{AV}$
 - Using Jensen's inequality (convex functions), can show $E_{COM} \leq E_{AV}$

Committee Error vs. Individual Error

• So, the committee error is

$$E_{COM} = \mathbb{E}_{\boldsymbol{x}} \left[\left\{ \frac{1}{M} \sum_{m=1}^{M} \epsilon_m(\boldsymbol{x}) \right\}^2 \right] = \frac{1}{M^2} \sum_{m=1}^{M} \sum_{n=1}^{M} \mathbb{E}_{\boldsymbol{x}} \left[\epsilon_m(\boldsymbol{x}) \epsilon_n(\boldsymbol{x}) \right]$$

If we assume errors are uncorrelated, E_x [ϵ_m(x)ϵ_n(x)] = 0 when m ≠ n, then:

$$E_{COM} = \frac{1}{M^2} \sum_{m=1}^{M} \mathbb{E}_{\boldsymbol{x}} \left[\epsilon_m(\boldsymbol{x})^2 \right] = \frac{1}{M} E_{AV}$$

- However, errors are rarely uncorrelated
 - For example, if all errors are the same, $\epsilon_m(\mathbf{x}) = \epsilon_n(\mathbf{x})$, then $E_{COM} = E_{AV}$
 - Using Jensen's inequality (convex functions), can show $E_{COM} \leq E_{AV}$

Committee Error vs. Individual Error

• So, the committee error is

$$E_{COM} = \mathbb{E}_{\boldsymbol{x}} \left[\left\{ \frac{1}{M} \sum_{m=1}^{M} \epsilon_m(\boldsymbol{x}) \right\}^2 \right] = \frac{1}{M^2} \sum_{m=1}^{M} \sum_{n=1}^{M} \mathbb{E}_{\boldsymbol{x}} \left[\epsilon_m(\boldsymbol{x}) \epsilon_n(\boldsymbol{x}) \right]$$

If we assume errors are uncorrelated, E_x [ϵ_m(x)ϵ_n(x)] = 0 when m ≠ n, then:

$$E_{COM} = rac{1}{M^2} \sum_{m=1}^{M} \mathbb{E}_{oldsymbol{x}} \left[\epsilon_m(oldsymbol{x})^2
ight] = rac{1}{M} E_{AV}$$

- However, errors are rarely uncorrelated
 - For example, if all errors are the same, $\epsilon_m(\mathbf{x}) = \epsilon_n(\mathbf{x})$, then $E_{COM} = E_{AV}$
 - Using Jensen's inequality (convex functions), can show $E_{COM} \leq E_{AV}$

Mixture of Experts

Boosting

Decision Trees

Mixture of Experts

Mixture of Experts

Boosting

Decision Trees

Mixture of Experts

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Boosting

- Boosting is a technique for combining classifiers into a committee
 - We describe AdaBoost (adaptive boosting), the most commonly used variant
- Boosting is a meta-learning technique
 - Combines a set of classifiers trained using their own learning algorithms
 - Magic: can work well even if those classifiers only perform slightly better than random!

Boosting Model

- We consider two-class classification problems, training data (*x_i*, *t_i*), with *t_i* ∈ {−1, 1}
- In boosting we build a "linear" classifier of the form:

$$y(\boldsymbol{x}) = \sum_{m=1}^{M} \alpha_m y_m(\boldsymbol{x})$$

- A committee of classifiers, with weights
- In boosting terminology:
 - Each y_m(x) is called a weak learner or base classifier
 - Final classifier y(x) is called strong learner
- Learning problem: how do we choose the weak learners y_m(x) and weights α_m?

(ロ) (同) (三) (三) (三) (○) (○)

Boosting Model

- We consider two-class classification problems, training data (*x_i*, *t_i*), with *t_i* ∈ {−1, 1}
- In boosting we build a "linear" classifier of the form:

$$y(\boldsymbol{x}) = \sum_{m=1}^{M} \alpha_m y_m(\boldsymbol{x})$$

- A committee of classifiers, with weights
- In boosting terminology:
 - Each y_m(x) is called a weak learner or base classifier
 - Final classifier *y*(*x*) is called strong learner
- Learning problem: how do we choose the weak learners y_m(x) and weights α_m?

(ロ) (同) (三) (三) (三) (○) (○)

Boosting Model

- We consider two-class classification problems, training data (*x_i*, *t_i*), with *t_i* ∈ {−1, 1}
- In boosting we build a "linear" classifier of the form:

$$y(\boldsymbol{x}) = \sum_{m=1}^{M} \alpha_m y_m(\boldsymbol{x})$$

- A committee of classifiers, with weights
- In boosting terminology:
 - Each y_m(x) is called a weak learner or base classifier
 - Final classifier *y*(*x*) is called strong learner
- Learning problem: how do we choose the weak learners y_m(x) and weights α_m?

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Example - Thresholds

- Let's consider a simple example where weak learners are thresholds
- i.e. Each $y_m(x)$ is of the form:

$$y_m(\boldsymbol{x}) = x_i > \theta$$

• To allow different directions of threshold, include $p \in \{-1, +1\}$:

$$y_m(\boldsymbol{x}) = px_i > p\theta$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Boosting is a greedy strategy for building the strong learner

$$y(\boldsymbol{x}) = \sum_{m=1}^{M} \alpha_m y_m(\boldsymbol{x})$$

- Start by choosing the best weak learner, use it as $y_1(x)$
 - Best is defined as that which minimizes number of mistakes made (0-1 classification loss)
- i.e. Search over all p, θ , i to find best

$$y_m(\boldsymbol{x}) = px_i > p\theta$$

Choosing Weak Learners

- The first weak learner $y_1(x)$ made some mistakes
- Choose the second weak learner $y_2(\mathbf{x})$ to try to get those ones correct
 - Best is now defined as that which minimizes weighted number of mistakes made
 - Higher weight given to those $y_1(x)$ got incorrect
- Strong learner now

$$y(\boldsymbol{x}) = \alpha_1 y_1(\boldsymbol{x}) + \alpha_2 y_2(\boldsymbol{x})$$

Choosing Weak Learners

 Repeat: reweight examples and choose new weak learner based on weights

・ロット (雪) (日) (日)

ъ

Green line shows decision boundary of strong learner

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

What About Those Weights?

- So exactly how should we choose the weights for the examples when classified incorrectly?
- And what should the *α_m* be for combining the weak learners *y_m*(*x*)?
- As usual, we define a loss function, and choose these parameters to minimize it

Exponential Loss

 Boosting attempts to minimize the exponential loss

$$E_n = \exp\{-t_n y(\boldsymbol{x}_n)\}$$

error on n^{th} training example

- Exponential loss is differentiable approximation to 0/1 loss
 - Better for optimization
- Total error

$$E = \sum_{n=1}^{N} \exp\{-t_n y(x_n)\}$$

figure from G. Shakhnarovich

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Exponential Loss

 Boosting attempts to minimize the exponential loss

$$E_n = \exp\{-t_n y(\boldsymbol{x}_n)\}$$

error on n^{th} training example

- Exponential loss is differentiable approximation to 0/1 loss
 - Better for optimization
- Total error

$$E = \sum_{n=1}^{N} \exp\{-t_n y(\boldsymbol{x}_n)\}$$

figure from G. Shakhnarovich

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Boosting

Minimizing Exponential Loss

• Let's assume we've already chosen weak learners $y_1(\mathbf{x}), \ldots, y_{m-1}(\mathbf{x})$ and their weights $\alpha_1, \ldots, \alpha_{m-1}$

• Define
$$f_{m-1}(\mathbf{x}) = \alpha_1 y_1(\mathbf{x}) + \ldots + \alpha_{m-1} y_{m-1}(\mathbf{x})$$

- Just focus on choosing $y_m(x)$ and α_m
 - Greedy optimization strategy
- Total error using exponential loss is:

$$E = \sum_{n=1}^{N} \exp\{-t_n y(\mathbf{x}_n)\} = \sum_{n=1}^{N} \exp\{-t_n [f_{m-1}(\mathbf{x}_n) + \alpha_m y_m(\mathbf{x}_n)]\}$$

=
$$\sum_{n=1}^{N} \exp\{-t_n f_{m-1}(\mathbf{x}_n) - t_n \alpha_m y_m(\mathbf{x}_n)\}$$

=
$$\sum_{n=1}^{N} \underbrace{\exp\{-t_n f_{m-1}(\mathbf{x}_n)\}}_{\text{weight } w_n^{(m)}} \exp\{-t_n \alpha_m y_m(\mathbf{x}_n)\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Boosting

Minimizing Exponential Loss

- Let's assume we've already chosen weak learners $y_1(\mathbf{x}), \ldots, y_{m-1}(\mathbf{x})$ and their weights $\alpha_1, \ldots, \alpha_{m-1}$
 - Define $f_{m-1}(x) = \alpha_1 y_1(x) + \ldots + \alpha_{m-1} y_{m-1}(x)$
- Just focus on choosing $y_m(\mathbf{x})$ and α_m
 - Greedy optimization strategy
- Total error using exponential loss is:

$$E = \sum_{n=1}^{N} \exp\{-t_n y(\mathbf{x}_n)\} = \sum_{n=1}^{N} \exp\{-t_n [f_{m-1}(\mathbf{x}_n) + \alpha_m y_m(\mathbf{x}_n)]\}$$

=
$$\sum_{n=1}^{N} \exp\{-t_n f_{m-1}(\mathbf{x}_n) - t_n \alpha_m y_m(\mathbf{x}_n)\}$$

=
$$\sum_{n=1}^{N} \underbrace{\exp\{-t_n f_{m-1}(\mathbf{x}_n)\}}_{\text{weight } w_n^{(m)}} \exp\{-t_n \alpha_m y_m(\mathbf{x}_n)\}$$

・ロト・西ト・西ト・日下・ のくの

(ロ) (同) (三) (三) (三) (○) (○)

Boosting

Minimizing Exponential Loss

- Let's assume we've already chosen weak learners $y_1(\mathbf{x}), \ldots, y_{m-1}(\mathbf{x})$ and their weights $\alpha_1, \ldots, \alpha_{m-1}$
 - Define $f_{m-1}(x) = \alpha_1 y_1(x) + \ldots + \alpha_{m-1} y_{m-1}(x)$
- Just focus on choosing $y_m(\mathbf{x})$ and α_m
 - Greedy optimization strategy
- Total error using exponential loss is:

$$E = \sum_{n=1}^{N} \exp\{-t_n y(\mathbf{x}_n)\} = \sum_{n=1}^{N} \exp\{-t_n [f_{m-1}(\mathbf{x}_n) + \alpha_m y_m(\mathbf{x}_n)]\}$$

=
$$\sum_{n=1}^{N} \exp\{-t_n f_{m-1}(\mathbf{x}_n) - t_n \alpha_m y_m(\mathbf{x}_n)\}$$

=
$$\sum_{n=1}^{N} \underbrace{\exp\{-t_n f_{m-1}(\mathbf{x}_n)\}}_{\text{weight } w_n^{(m)}} \exp\{-t_n \alpha_m y_m(\mathbf{x}_n)\}$$

(日) (日) (日) (日) (日) (日) (日)

Weighted Loss

On the *mth* iteration of boosting, we are choosing *y_m* and *α_m* to minimize the weighted loss:

$$E = \sum_{n=1}^{N} w_n^{(m)} \exp\{-t_n \alpha_m y_m(\boldsymbol{x}_n)\}$$

where $w_n^{(m)} = \exp\{-t_n f_{m-1}(x_n)\}$

- Can define these as weights since they are constant wrt y_m and α_m
 - We'll see they're the right weights to use

Minimization wrt y_m

• Consider the weighted loss

$$E = \sum_{n=1}^{N} w_n^{(m)} e^{-t_n \alpha_m y_m(\mathbf{x}_n)} = e^{-\alpha_m} \sum_{n \in \mathcal{T}_m} w_n^{(m)} + e^{\alpha_m} \sum_{n \in \mathcal{M}_m} w_n^{(m)}$$

where T_m is the set of points correctly classified by the choice of $y_m(\mathbf{x})$, and \mathcal{N}_m those that are not

$$E = e^{\alpha_m} \sum_{n=1}^N w_n^{(m)} I(y_m(\mathbf{x}_n) \neq t_n) + e^{-\alpha_m} \sum_{n=1}^N w_n^{(m)} (1 - I(y_m(\mathbf{x}_n) \neq t_n))$$

= $(e^{\alpha_m} - e^{-\alpha_m}) \sum_{n=1}^N w_n^{(m)} I(y_m(\mathbf{x}_n) \neq t_n) + e^{-\alpha_m} \sum_{n=1}^N w_n^{(m)}$

• Since the second term is a constant wrt y_m and $e^{\alpha_m} - e^{-\alpha_m} > 0$ if $\alpha_m > 0$, best y_m minimizes weighted 0-1 loss

Minimization wrt ym

• Consider the weighted loss

$$E = \sum_{n=1}^{N} w_n^{(m)} e^{-t_n \alpha_m y_m(\mathbf{x}_n)} = e^{-\alpha_m} \sum_{n \in \mathcal{T}_m} w_n^{(m)} + e^{\alpha_m} \sum_{n \in \mathcal{M}_m} w_n^{(m)}$$

where T_m is the set of points correctly classified by the choice of $y_m(\mathbf{x})$, and \mathcal{N}_m those that are not

$$E = e^{\alpha_m} \sum_{n=1}^N w_n^{(m)} I(y_m(\mathbf{x}_n) \neq t_n) + e^{-\alpha_m} \sum_{n=1}^N w_n^{(m)} (1 - I(y_m(\mathbf{x}_n) \neq t_n))$$

= $(e^{\alpha_m} - e^{-\alpha_m}) \sum_{n=1}^N w_n^{(m)} I(y_m(\mathbf{x}_n) \neq t_n) + e^{-\alpha_m} \sum_{n=1}^N w_n^{(m)}$

• Since the second term is a constant wrt y_m and $e^{\alpha_m} - e^{-\alpha_m} > 0$ if $\alpha_m > 0$, best y_m minimizes weighted 0-1 loss

Minimization wrt y_m

Consider the weighted loss

$$E = \sum_{n=1}^{N} w_n^{(m)} e^{-t_n \alpha_m y_m(\mathbf{x}_n)} = e^{-\alpha_m} \sum_{n \in \mathcal{T}_m} w_n^{(m)} + e^{\alpha_m} \sum_{n \in \mathcal{M}_m} w_n^{(m)}$$

where T_m is the set of points correctly classified by the choice of $y_m(\mathbf{x})$, and \mathcal{N}_m those that are not

$$E = e^{\alpha_m} \sum_{n=1}^N w_n^{(m)} I(y_m(\mathbf{x}_n) \neq t_n) + e^{-\alpha_m} \sum_{n=1}^N w_n^{(m)} (1 - I(y_m(\mathbf{x}_n) \neq t_n))$$

= $(e^{\alpha_m} - e^{-\alpha_m}) \sum_{n=1}^N w_n^{(m)} I(y_m(\mathbf{x}_n) \neq t_n) + e^{-\alpha_m} \sum_{n=1}^N w_n^{(m)}$

• Since the second term is a constant wrt y_m and $e^{\alpha_m} - e^{-\alpha_m} > 0$ if $\alpha_m > 0$, best y_m minimizes weighted 0-1 loss

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Choosing α_m

- So best y_m minimizes weighted 0-1 loss regardless of α_m
- How should we set α_m given this best y_m ?
- Recall from above:

$$E = e^{\alpha_m} \sum_{n=1}^{N} w_n^{(m)} I(y_m(\mathbf{x}_n) \neq t_n) + e^{-\alpha_m} \sum_{n=1}^{N} w_n^{(m)} (1 - I(y_m(\mathbf{x}_n) \neq t_n))$$

= $e^{\alpha_m} \epsilon_m + e^{-\alpha_m} (1 - \epsilon_m)$

where we define ϵ_m to be the weighted error of y_m

• Calculus:
$$\alpha_m = \frac{1}{2} \log \frac{1-\epsilon_m}{\epsilon_m}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Choosing α_m

- So best y_m minimizes weighted 0-1 loss regardless of α_m
- How should we set α_m given this best y_m ?
- Recall from above:

$$E = e^{\alpha_m} \sum_{n=1}^{N} w_n^{(m)} I(y_m(\mathbf{x}_n) \neq t_n) + e^{-\alpha_m} \sum_{n=1}^{N} w_n^{(m)} (1 - I(y_m(\mathbf{x}_n) \neq t_n))$$

= $e^{\alpha_m} \epsilon_m + e^{-\alpha_m} (1 - \epsilon_m)$

where we define ϵ_m to be the weighted error of y_m

• Calculus:
$$\alpha_m = \frac{1}{2} \log \frac{1-\epsilon_m}{\epsilon_m}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Choosing α_m

- So best y_m minimizes weighted 0-1 loss regardless of α_m
- How should we set α_m given this best y_m ?
- Recall from above:

$$E = e^{\alpha_m} \sum_{n=1}^{N} w_n^{(m)} I(y_m(\mathbf{x}_n) \neq t_n) + e^{-\alpha_m} \sum_{n=1}^{N} w_n^{(m)} (1 - I(y_m(\mathbf{x}_n) \neq t_n))$$

= $e^{\alpha_m} \epsilon_m + e^{-\alpha_m} (1 - \epsilon_m)$

where we define ϵ_m to be the weighted error of y_m

• Calculus:
$$\alpha_m = \frac{1}{2} \log \frac{1-\epsilon_m}{\epsilon_m}$$

(日) (日) (日) (日) (日) (日) (日)

AdaBoost Summary

- Initialize weights $w_n^{(1)} = 1/N$
- For $m = 1, \ldots, M$ (and while $\epsilon_m < 1/2$)
 - Find weak learner $y_m(\mathbf{x})$ with minimum weighted error

$$\epsilon_m = \sum_{n=1}^N w_n^{(m)} I(y_m(\boldsymbol{x}_n) \neq t_n)$$

• Set
$$\alpha_m = \frac{1}{2} \log \frac{1-\epsilon_m}{\epsilon_m}$$

- Update weights $w_n^{(m+1)} = w_n^{(m)} \exp\{-\alpha_m t_n y_m(\mathbf{x}_n)\}$
- Normalize weights to sum to one
- Final classifier is

$$y(\mathbf{x}) = sign\left(\sum_{m=1}^{M} \alpha_m y_m(\mathbf{x})\right)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Typical behaviour:
 - Test error decreases even after training error is flat (even zero!)
 - Tends not to overfit

from G. Shakhnarovich

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Boosting the Margin

• Define the margin of an example:

$$\gamma(\mathbf{x}_i) = t_i \frac{\alpha_1 y_1(\mathbf{x}_i) + \ldots + \alpha_m y_m(\mathbf{x}_i)}{\alpha_1 + \ldots + \alpha_m}$$

- Margin is 1 iff all y_i classify correctly, -1 if none do
- Iterations of AdaBoost increase the margin of training examples (even after training error is zero)

- We revisit a graph from earlier: 0-1 loss, SVM hinge loss, logistic regression cross-entropy loss, and AdaBoost exponential loss are shown
- All are approximations (upper bounds) to 0-1 loss
- Exponential loss leads to simple greedy optimization scheme
- But it has problems with outliers: note behaviour compared to logistic regression cross-entropy loss for badly mis-classified examples

Mixture of Experts

Boosting

Decision Trees

Mixture of Experts

(ロ) (同) (三) (三) (三) (○) (○)

Carving Up Input Space

• The boosting method for building a committee builds a model:

$$y(\boldsymbol{x}) = \sum_{m=1}^{M} \alpha_m y_m(\boldsymbol{x})$$

- Note that the committee is built over all input space
 - Though it can of course behave differently in different regions
- Instead, we could explicitly carve up input space into different regions R_m and have different committee members act in different regions:

$$y(\boldsymbol{x}) = \sum_{m=1}^{M} 1_{\mathcal{R}_m}(\boldsymbol{x}) y_m(\boldsymbol{x})$$

where $1_{\mathcal{R}_m}(\cdot)$ is the indicator function (0 or 1)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Tree-based Models

- A common method for carving up input space is to use axis-aligned cuboid-shaped regions
- Each model $y_m(\mathbf{x})$ would only be responsible for one subregion

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Decision Trees

- These splits are commonly chosen in a top-down fashion to form a binary tree
 - These are known as decision trees

(ロ) (同) (三) (三) (三) (○) (○)

Building Decision Trees

- Given a dataset, the learning problem is to decide which is the best tree
- There are (exponentially-exponentially) many different trees to choose from
- Brute force impossible, so use a greedy strategy
 - Start with an empty tree
 - Choose a dimension *i* and value θ on which to split
 - Make recursive calls
 - Some training examples X_L go down left branch, recursive call with those
 - Other training examples *X_R* go down right branch, a second recursive call with those

Example - Waiting for Table

Example	Attributes										Target
r.	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0–10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10–30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0–10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0–10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0–10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

from Russell and Norvig AIMA

- Classification problem *t_n* is whether or not one should wait for a table at a restaurant
- In this example attributes (components of *x_n*) are discrete; can be continuous too

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Choosing a Dimension

- Of all the dimensions one could choose to put at root of decision tree, which is best?
- Compare using Patrons? versus Type?
 - Patrons? looks better more information about classification

(ロ) (同) (三) (三) (三) (○) (○)

Information

- Information answers questions
- The more clueless I am about the answer initially, the more information is in the answer
- Scale: 1 bit = answer to Boolean question with prior p(x = true) = 0.5
- For a K-class classification problem, we have a prior $p(x = k) = \pi_k$
- Information in answer is

$$H(x) = -\sum_{k=1}^{K} \pi_k \log_2 \pi_k$$

known as entropy of prior

A good dimension produces a split that reduces entropy

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

- Entropy for binary classification (boolean prior)
- $H(x) = -\pi_1 \log_2 \pi_1 (1 \pi_1) \log_2 (1 \pi_1)$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Choosing a Dimension

- Compare using Patrons? versus Type?
 - Patrons? has average entropy of 0.459 bits
 - Type? has average entropy of 1 bit
- Put Patrons? at root of tree
 - Make recursive calls using training examples that fall down each path

Learnt Tree

- At each leaf have an expert
- In this case, just report what type of examples are in this region of input space

Mixture of Experts

Boosting

Decision Trees

Mixture of Experts

Mixture of Experts

- The mixture of experts model takes the idea of splitting up regions of space in a probabilistic direction
- The decision on which model to use is probabilistic:

$$p(t|\mathbf{x}) = \sum_{m=1}^{M} \pi_m(\mathbf{x}) p_m(t|\mathbf{x})$$

- Note that all models $p_m(t|\mathbf{x})$ are used
- But contributions $\pi_m(\mathbf{x})$ depend on input variable \mathbf{x}
 - These coefficients $\pi_m(\mathbf{x})$ are known as gating functions
 - Each $p_m(t|\mathbf{x})$ is an expert in a region of input space, the gating functions determine when to use each expert

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

- Readings: Ch. 14.3, 14.4
- Methods for combining models
 - Simple averaging into a committee
 - Greedy selection of models to minimize exponential loss (AdaBoost)
 - Select models which are good at particular regions of input space (decision trees, mixture of experts)